[1]

Maier SA. Plasmonics: fundamentals and applications. New York: Springer; 2007.Google Scholar

[2]

Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML. Plasmonics for extreme light concentration and manipulation. Nat Mater 2010;9:193–204.CrossrefPubMedGoogle Scholar

[3]

Kneipp K. Surface-enhanced Raman scattering. Phys Today 2007;60:40–6.CrossrefGoogle Scholar

[4]

Wang F, Shen YR. General properties of local plasmons in metal nanostructures. Phys Rev Lett 2006;97:206806.CrossrefPubMedGoogle Scholar

[5]

Romero I, Aizpurua J, Bryant GW, García de Abajo FJ. Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. Opt Express 2006;14:9988–99.CrossrefGoogle Scholar

[6]

Kreibig U, Genzel L. Optical absorption of small metallic particles. Surf Sci 1985;156:678–700.CrossrefGoogle Scholar

[7]

Charlé K-P, Schulze W, Winter B. The size dependent shift of the surface-plasmon absorption-band of small spherical metal particles. Z Phys D 1989;12:471–5.Google Scholar

[8]

Ouyang F, Batson P, Isaacson M. Quantum size effects in the surface-plasmon excitation of small metallic particles by electron-energy-loss spectroscopy. Phys Rev B 1992;46:15421–5.CrossrefGoogle Scholar

[9]

Berciaud S, Cognet L, Tamarat P, Lounis B. Observation of intrinsic size effects in the optical response of individual gold nanoparticles. Nano Lett 2005;5:515–8.CrossrefPubMedGoogle Scholar

[10]

Scholl JA, Koh AL, Dionne JA. Quantum plasmon resonances of individual metallic nanoparticles. Nature 2012;483:421–7.CrossrefPubMedGoogle Scholar

[11]

Ciracì C, Hill RT, Mock JJ, Urzhumov Y, Fernández-Domínguez AI, Maier SA, Pendry JB, Chilkoti A, Smith DR. Probing the ultimate limits of plasmonic enhancement. Science 2012;337:1072–4.PubMedCrossrefGoogle Scholar

[12]

Kern J, Grossmann S, Tarakina NV, Häckel T, Emmerling M, Kamp M, Huang J-S, Biagioni P, Prangsma J, Hecht B. Atomic-scale confinement of resonant optical fields. Nano Lett 2012;12:5504–9.PubMedCrossrefGoogle Scholar

[13]

Genzel L, Martin TP, Kreibig U, Dielectric function and plasma resonance of small metal particles. Z Phys B 1975;21:339–46.CrossrefGoogle Scholar

[14]

Kraus WA, Schatz GC. Plasmon resonance broadening in small metal particles. J Chem Phys 1983;79:6130.CrossrefGoogle Scholar

[15]

Halperin WP, Quantum size effects in metal particles. Rev Mod Phys 1986;58:533–606.CrossrefGoogle Scholar

[16]

Keller O, Xiao M, Bozhevolnyi S. Optical diamagnetic polarizability of a mesoscopic metallic sphere: transverse self-field approach. Opt Comm 1993;102:238–44.CrossrefGoogle Scholar

[17]

Öztürk ZF, Xiao S, Yan M, Wubs M, Jauho A-P, Mortensen NA. Field enhancement at metallic interfaces due to quantum confinement. J Nanophot 2011;5:051602.CrossrefGoogle Scholar

[18]

Zuloaga J, Prodan E, Nordlander P. Quantum description of the plasmon resonances of a nanoparticle dimer. Nano Lett 2009;9:887–91.CrossrefPubMedGoogle Scholar

[19]

Mao L, Li Z, Wu B, Xu H. Effects of quantum tunneling in metal nanogap on surface-enhanced Raman scattering. Appl Phys Lett 2009;94:243102.CrossrefGoogle Scholar

[20]

Esteban R, Borisov AG, Nordlander P, Aizpurua J. Bridging quantum and classical plasmonics with a quantum-corrected model. Nat Commun 2012;3:825.CrossrefPubMedGoogle Scholar

[21]

Ljungbert A, Lundqvist S. Non-local effects in the optical absorption of small metallic particles. Phys Rev Lett 1985;156:839–44.Google Scholar

[22]

García de Abajo FJ. Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides. J Phys Chem C 2008;112:17983–7.CrossrefGoogle Scholar

[23]

David C, García de Abajo FJ. Spatial nonlocality in the optical response of metal nanoparticles. J Phys Chem C 2012;115:19470–5.Google Scholar

[24]

Aizpurua J, Rivacoba A. Nonlocal effects in the plasmons of nanowires and nanocavities excited by fast electron beams. Phys Rev B 2008;78:035404.CrossrefGoogle Scholar

[25]

Raza S, Toscano G, Jauho A-P, Wubs M, Mortensen NA. Unusual resonances in nanoplasmonic structures due to nonlocal response. Phys Rev B 2011;84:121412(R).Google Scholar

[26]

Toscano G, Raza S, Jauho A-P, Mortensen NA, Wubs M. Modified field enhancement and extinction in plasmonic nanowire dimers due to nonlocal response. Opt Express 2012;20:4176.PubMedCrossrefGoogle Scholar

[27]

Fernández-Domínguez AI, Wiener A, García-Vidal FJ, Maier SA, Pendry JB. Transformation-optics description of nonlocal effects in plasmonic nanostructures. Phys Rev Lett 2012;108:106802.CrossrefGoogle Scholar

[28]

García de Abajo FJ. Optical excitations in electron microscopy. Rev Mod Phys 2010;82:209–75.CrossrefGoogle Scholar

[29]

Nelayah J, Kociak M, Stephan O, García de Abajo FJ, Tence M, Henrard L, Taverna D, Pastoriza-Santos I, Liz-Marzan LM, Colliex C. Mapping surface plasmons on a single metallic nanoparticle. Nat Phys 2007;3:348–53.CrossrefGoogle Scholar

[30]

Koh AL, Bao K, Khan I, Smith WE, Kothleitner G, Nordlander P, Maier SA, McComb DW. Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes. ACS Nano 2009;3:3015–22.CrossrefPubMedGoogle Scholar

[31]

Nicoletti O, Wubs M, Mortensen NA, Sigle W, van Aken PA, Midgley PA. Surface plasmon modes of a single silver nanorod: an electron energy loss study. Opt Express 2011;19:15371.CrossrefPubMedGoogle Scholar

[32]

Koh AL, Fernández-Domínguez AI, McComb DW, Maier SA, Yang JKW. High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures. Nano Lett 2011;11:1323–30.PubMedCrossrefGoogle Scholar

[33]

Bloch F. Bremsvermögen von Atomen mit mehreren Elektronen. Z Phys A 1933;81:363–76.CrossrefGoogle Scholar

[34]

Boardman A. Electromagnetic surface modes. Hydrodynamic theory of plasmon-polaritons on plane surfaces. Chichester: John Wiley and Sons; 1982.Google Scholar

[35]

Mulfinger L, Solomon SD, Bahadory M, Jeyarajasingam A, Rutkowsky SA, Boritz C. Synthesis and study of silver nanoparticles. J Chem Educ 2007;84:322–5.CrossrefGoogle Scholar

[36]

Bååk T. Silicon oxynitride; a material for GRIN optics. Appl Opt 1982;21:1069–72.PubMedCrossrefGoogle Scholar

[37]

Ruppin R. Optical properties of a plasma sphere. Phys Rev Lett 1973;31:1434–7.CrossrefGoogle Scholar

[38]

Pendry JB, Aubry A, Smith DR, Maier SA. Transformation optics and subwavelength control of light. Science 2012;337:549–52.CrossrefPubMedGoogle Scholar

[39]

Dasgupta BB, Fuchs R. Polarizability of a small sphere including nonlocal effects, Phys Rev B 1981;24:554–61.CrossrefGoogle Scholar

[40]

Fuchs R, Claro F. Multipolar response of small metallic spheres: nonlocal theory. Phys Rev B 1987;35:3722–7.CrossrefGoogle Scholar

[41]

Rakić AD, Djurišić AB, Elazar JM, Majewski ML. Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Opt 1998;37:5271–83.CrossrefPubMedGoogle Scholar

[42]

Noguez C. Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J Phys Chem C 2007;111:3806–19.CrossrefGoogle Scholar

[43]

Ruppin R. Optical absorption by a small sphere above a substrate with inclusion of nonlocal effects. Phys Rev B 1992;45:11209–15.CrossrefGoogle Scholar

[44]

Li Z, Bao K, Fang Y, Guan Z, Halas NJ, Nordlander P, Xu H. Effect of a proximal substrate on plasmon propagation in silver nanowires. Phys Rev B 2010;82:1.Google Scholar

[45]

Zhang S, Xu H. Optimizing substrate-mediated plasmon coupling toward high-performance plasmonic nanowire waveguides. ACS Nano 2012;6:8128–35.PubMedCrossrefGoogle Scholar

[46]

Yamaguchi T, Yoshida S, Kinbara A. Optical effect of the substrate on the anomalous absorption of aggregated silver films. Thin Solid Films 1974;21:173–87.CrossrefGoogle Scholar

[47]

Jain PK, Huang W, El-Sayed MA. On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation. Nano Lett 2007;7:2080–8.CrossrefGoogle Scholar

[48]

Novotny L, Hecht B. Principles of nano-optics. New York: Cambridge; 2006.Google Scholar

[49]

Ruppin R. Surface modes and optical absorption of a small sphere above a substrate. Surf Sci 1983;127:108–18.CrossrefGoogle Scholar

[50]

Boardman AD, Paranjape BV. The optical surface modes of metal spheres. J Phys F Met Phys 1977;7:1935.CrossrefGoogle Scholar

[51]

Lang ND, Kohn W. Theory of metal surfaces: charge density and surface energy. Phys Rev B 1970;1:4555–68.CrossrefGoogle Scholar

[52]

Ascarelli P, Cini M. “Red shift” of the surface plasmon resonance absorption by fine metal particles. Solid State Commun 1976;18:385–8.CrossrefGoogle Scholar

[53]

Ruppin R. Plasmon frequencies of small metal spheres. J Phys Chem Solids 1978;39:233–7.CrossrefGoogle Scholar

[54]

Apell P, Ljungbert Å. Red shift of surface plasmons in small metal particles. Solid State Commun 1982;44:1367–9.CrossrefGoogle Scholar

[55]

Liebsch A. Surface-plasmon dispersion and size dependence of Mie resonance: silver versus simple metals. Phys Rev B 1993;48:11317–28.CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.