[1]

Nie S, Emory SR. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997;275:1102–6.Google Scholar

[2]

Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 1997;78:1667–70.CrossrefGoogle Scholar

[3]

Johansson P, Xu H, Käll M. Surface-enhanced Raman scattering and fluorescence near metal nanoparticles. Phys Rev B 2005;72: 035427.CrossrefGoogle Scholar

[4]

Talley CE, Jackson JB, Oubre C, Grady NK, Hollars CW, Lane SM, Huser TR, Nordlander P, Halas NJ. Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano Lett 2005;5:1569–74.CrossrefPubMedGoogle Scholar

[5]

RodrÍguez-Lorenzo L, Álvarez-Puebla RA, Pastoriza-Santos I, Mazzucco S, Stéphan O, Kociak M, Liz-Marzán LM, GarcÍa de Abajo FJ. Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering. J Am Chem Soc 2009;131:4616–8.Google Scholar

[6]

Qian X, Peng X-H, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, Yang L, Young AN, Wang MD, Nie S. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotech 2008;26:83–90.CrossrefGoogle Scholar

[7]

Hirsch L, Stafford R, Bankson J, Sershen S, Rivera B, Price R, Hazle J, Halas N, West J. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA 2003;100:13549–54.CrossrefGoogle Scholar

[8]

Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001;293:269–71.CrossrefPubMedGoogle Scholar

[9]

Kamat PV. Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J Phys Chem B 2002;106:7729–44.CrossrefGoogle Scholar

[10]

Grzelczak M, Pérez-Juste J, Mulvaney P, Liz-Marzán LM. Shape control in gold nanoparticle synthesis. Chem Soc Rev 2008;37:1783–91.CrossrefPubMedGoogle Scholar

[11]

Chapman R, Mulvaney P. Electro-optical shifts in silver nanoparticle. Am Chem Phys Lett 2001;349:358–62.Google Scholar

[12]

Hirakawa T, Kamat PV. Photoinduced electron storage and surface plasmon modulation in Ag@TiO_{2} clusters. Langmuir 2004;20:5645–7.CrossrefGoogle Scholar

[13]

Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK. The electronic properties of graphene. Rev Mod Phys 2009;81:109–62.CrossrefGoogle Scholar

[14]

Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel HA, Liang X, Zettl A, Shen YR, Wang F. Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotech 2011;6:630–4.CrossrefGoogle Scholar

[15]

Fei Z, Andreev GO, Bao W, Zhang LM, McLeod AS, Wang C, Stewart MK, Zhao Z, Dominguez G, Thiemens M, Fogler MM, Tauber MJ, Castro-Neto AH, Lau CN, Keilmann F, Basov DN. Infrared nanoscopy of Dirac plasmons at the graphene-SiO_{2} interface. Nano Lett 2011;11:4701–5.PubMedCrossrefGoogle Scholar

[16]

Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M, Zhu W, Avouris P, Xia F. Tunable infrared plasmonic devices using graphene/insulator stacks. Nat Nanotech 2012;7:330–4.CrossrefGoogle Scholar

[17]

Yan H, Low T, Zhu W, Wu Y, Freitag M, Li X, Guinea F, Avouris P, Xia F. Mid-infrared plasmons in scaled graphene nanostructures. arXiv 2012;0:arXiv:1209.1984v1.Google Scholar

[18]

Chen J, Badioli M, Alonso-González P, Thongrattanasiri S, Huth F, Osmond J, Spasenović M, Centeno A, Pesquera A, Godignon P, Zurutuza Elorza A, Camara N, García de Abajo FJ, Hillenbrand R, Koppens FHL. Optical nano-imaging of gate-tunable graphene plasmons. Nature 2012;487: 77–81.Google Scholar

[19]

Fei Z, Rodin AS, Andreev GO, Bao W, McLeod AS, Wagner M, Zhang LM, Zhao Z, Thiemens M, Dominguez G, Thiemens M, Fogler MM, Castro-Neto AH, Lau CN, Keilmann F, Basov DN. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 2012;487:82–5.Google Scholar

[20]

Emani NK, Chung T-F, Ni X, Kildishev AV, Chen YP, Boltasseva A. Electrically tunable damping of plasmonic resonances with graphene. Nano Lett 2012;12:5202–6.CrossrefPubMedGoogle Scholar

[21]

Fang Z, Liu Z, Wang Y, Ajayan PM, Nordlander P, Halas NJ. Graphene-antenna sandwich photodetector. Nano Lett 2012;12:3808–13.CrossrefPubMedGoogle Scholar

[22]

Fang Z, Liu Z, Wang Y, Ajayan PM, Nordlander P, Halas NJ. Plasmon-induced doping of graphene. ACS Nano 2012;6:10222–8.CrossrefPubMedGoogle Scholar

[23]

Pines D, Nozières P. The theory of quantum liquids. New York: W.A. Benjamin, Inc.; 1966.Google Scholar

[24]

Thongrattanasiri S, Manjavacas A, GarcÍa de Abajo FJ. Quantum finite-size effects in graphene plasmons. ACS Nano 2012;6:1766–75.CrossrefGoogle Scholar

[25]

Wallace PR. The band theory of graphite. Phys Rev 1947;71:622–34.CrossrefGoogle Scholar

[26]

Wunsch B, Stauber T, Sols F, Guinea F. Dynamical polarization of graphene at finite doping. New J Phys 2006;8:318.CrossrefGoogle Scholar

[27]

Brey L, Fertig HA. Elementary electronic excitations in graphene nanoribbons. Phys Rev B 2007;75:125434.CrossrefGoogle Scholar

[28]

Jablan M, Buljan H, Soljačić M. Plasmonics in graphene at infrared frequencies. Phys Rev B 2009;80:245435.CrossrefGoogle Scholar

[29]

Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science 2004;306:666–9.Google Scholar

[30]

Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005;438: 197–200.Google Scholar

[31]

Armbrust N, Güdde J, Jakob P, Höfer U. Time-resolved two-photon photoemission of unoccupied electronic states of periodically rippled graphene on Ru(0001). Phys Rev Lett 2012;108:056801.Google Scholar

[32]

Peres NMR, Ribeiro RM, Castro Neto AH. Excitonic effects in the optical conductivity of gated graphene. Phys Rev Lett 2010;105:055501.PubMedCrossrefGoogle Scholar

[33]

Fernández-Rossier J, Palacios JJ. Magnetism in graphene nanoislands. Phys Rev Lett 2007;99:177204.CrossrefGoogle Scholar

[34]

Ezawa M. Metallic graphene nanodisks: electric and magnetic properties. Phys Rev B 2007;76:245415.CrossrefGoogle Scholar

[35]

Akhmerov AR, Beenakker CWJ. Boundary conditions for Dirac fermions on a terminated honeycomb lattice. Phys Rev B 2008;77:085423.CrossrefGoogle Scholar

[36]

Zhang ZZ, Chang K, Peeters FM. Tuning of energy levels and optical properties of graphene quantum dots. Phys Rev B 2008;77:235411.CrossrefGoogle Scholar

[37]

Wimmer M, Akhmerov AR, Guinea F. Robustness of edge states in graphene quantum dots. Phys Rev B 2010;82:045409.CrossrefGoogle Scholar

[38]

Zarenia M, Chaves A, Farias GA, Peeters FM. Energy levels of triangular and hexagonal graphene quantum dots: a comparative study between the tight-binding and Dirac equation approach. Phys Rev B 2011;84:245403.CrossrefGoogle Scholar

[39]

Thongrattanasiri S, Koppens FHL, GarcÍa de Abajo FJ. Complete optical absorption in periodically patterned graphene. Phys Rev Lett 2012;108:047401.CrossrefGoogle Scholar

[40]

Luo YL, Shiao YS, Huang YF. Transforming C_{60} molecules into graphene quantum dots. Nat Nanotech 2011;6:247–52.CrossrefGoogle Scholar

[41]

Subramaniam D, Libisch F, Li Y, Pauly C, Geringer V, Reiter R, Mashoff T, Liebmann M, Burgdörfer J, Busse C, MichelyT, Mazzarello R, Pratzer M, Morgenstern M. Wave-function mapping of graphene quantum dots with soft confinement. Phys Rev Lett 2012;108:046801.PubMedCrossrefGoogle Scholar

[42]

Kim S, Hwang SW, Kim M-K, Shin DY, Shin DH, Kim CO, Yang SB, Park JH, Hwang E, Choi S-H, Ko G, Sim S, Sone C, Choi HJ, Bae S, Hong BH. Anomalous behaviors of visible luminescence from graphene quantum dots: interplay between size and shape. ACS Nano 2012;6:8203–8.CrossrefGoogle Scholar

[43]

Kobayashi Y, ichi Fukui K, Enoki T, Kusakabe K, Kaburagi Y. Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy. Phys Rev B 2005;71:193406.CrossrefGoogle Scholar

[44]

Tian J, Cao H, Wu W, Yu Q, Chen YP. Direct imaging of graphene edges: atomic structure and electronic scattering. Nano Lett 2011;11:3663–8.PubMedCrossrefGoogle Scholar

[45]

Girit ÇÖ, Meyer JC, Erni R, Rossell MD, Kisielowski C, Yang L, Park C-H, Crommie MF, Cohen ML, Louie SG, Zettl A. Graphene at the edge: stability and dynamics. Science 2009;27: 1705–8.CrossrefGoogle Scholar

[46]

Shu H, Chen X, Tao X, Ding F. Edge structural stability and kinetics of graphene chemical vapor deposition growth. ACS Nano 2012;6:3243–50.PubMedCrossrefGoogle Scholar

[47]

Gan CK, Srolovitz DJ. Analysis of the dielectric constants of the Ag_{2}O film by spectroscopic ellipsometry and single-oscillator model. Phys Rev B 2010;81:125445.CrossrefGoogle Scholar

[48]

Wu J, Pisula W, Müllen K. Graphenes as potential material for electronics. Chem Rev 2007;107:718–47.PubMedCrossrefGoogle Scholar

[49]

Feng X, Liu M, Pisula W, Takase M, Li J, Müllen K. Supramolecular organization and photovoltaics of triangle-shaped discotic graphenes with swallow-tailed alkyl substituents. Adv Mater 2008;20:2684–9.CrossrefGoogle Scholar

[50]

Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS. Detection of individual gas molecules adsorbed on graphene. Nat Mater 2007;6:652–5.PubMedCrossrefGoogle Scholar

[51]

Bharadwaj P, Bouhelier A, Novotny L. Electrical excitation of surface plasmons. Phys Rev Lett 2011;106:226802.CrossrefPubMedGoogle Scholar

[52]

Kundu J, Le F, Nordlander P, Halas NJ. Surface enhanced infrared absorption (SEIRA) spectroscopy on nanoshell aggregate substrates. Chem Phys Lett 2008;452:115–9.Google Scholar

[53]

Koppens FHL, Chang DE, GarcÍa de Abajo FJ. Graphene plasmonics: a platform for strong light-matter interactions. Nano Lett 2011;11:3370–7.PubMedCrossrefGoogle Scholar

[54]

Bostwick A, Ohta T, Seyller T, Horn K, Rotenberg E. Quasiparticle dynamics in graphene. Nat Phys 2007;3:36–40.CrossrefGoogle Scholar

[55]

Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL. Ultrahigh electron mobility in suspended graphene. Sol State Commun 2008;146:351–5.CrossrefGoogle Scholar

[56]

Christensen J, Manjavacas A, Thongrattanasiri S, Koppens FHL, García de Abajo FJ. Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. ACS Nano 2012;6:431–40.CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.