[1]

Pendry JB. Negative refraction makes a perfect lens. Phys Rev Lett 2000;85:3966–9.CrossrefGoogle Scholar

[2]

Smith DR, Pendry JB, Wiltshire MCK. Metamaterials and negative refractive index. Science 2004;305:788–92.CrossrefGoogle Scholar

[3]

Engheta N, Ziolkowski RW. Metamaterials: physics and engineering explorations. Hoboken, NJ, USA: Wiley & Sons, 2006.Google Scholar

[4]

Cai W, Shalaev V. Optical Metamaterials: Fundamentals and Applications. New York: Springer, 2009.Google Scholar

[5]

Holloway CL, Kuester EF, Gordon JA, O′Hara J, Booth J, Smith DR. An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials. IEEE Antennas Propag 2012;54(2):10–35.Google Scholar

[6]

Pendry JB, Holden AJ, Robbins DJ, Stewart WJ. Magnetism from conductors, and enhanced non-linear phenomena. Microwave Theory Tech 1999;47(11): 2075–84.Google Scholar

[7]

Linden S, Enkrich C, Wegener M, Zhou J, Koschny T, Soukoulis CM. Magnetic response of metamaterials at 100 Terahertz. Science 2004;306(5700):1351–3.Google Scholar

[8]

Yen TJ, Padilla WJ, Fang N, Vier DC, Smith DR, Pendry JB, Basov DN, Zhang X. Terahertz magnetic response from artificial materials. Science 2004;303(5663):1494–6.Google Scholar

[9]

Smith DR, Padilla WJ, Vier DC, Nemat-Nasser SC, Schultz S. Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett 2000;84:4184–7.CrossrefGoogle Scholar

[10]

Veselago VG. The electrodynamics of substances with simultaneously negative values of permittivity and permeability. Soviet Physics Uspekhi 1968;10(4):509–14.CrossrefGoogle Scholar

[11]

Shelby RA, Smith DR, Schultz S. Experimental verification of a negative index of refraction. Science 2001;292(5514):77–9.Google Scholar

[12]

Saadoun MMI, Engheta N. A reciprocal phase shifter using novel pseudochiral or omega medium. Microw Opt Techn Let 1992;5(4):184–8.CrossrefGoogle Scholar

[13]

Marqués R, Medina F, Rafii-El-Idrissi R. Role of bianisotropy in negative permeability and left-handed metamaterials. Phys Rev B 2002;65:144440.CrossrefGoogle Scholar

[14]

Serdyukov AN, Semchenko IV, Tretyakov SA, Sihvola A. Electromagnetics of bi-anisotropic materials: Theory and applications. Amsterdam: Gordon and Breach Science Publishers, 2001.Google Scholar

[15]

Fang N, Lee H, Sun C, Zhang X. Sub–diffraction-limited optical imaging with a silver superlens. Science 2005;308:534–7.CrossrefGoogle Scholar

[16]

Ulf L. Optical conformal mapping. Science 2006;312(5781):1777–80.Google Scholar

[17]

Pendry JB, Schurig D, Smith DR. Controlling electromagnetic fields. Science 2006;312(5514):1780–2.Google Scholar

[18]

Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr AF, Smith DR. Metamaterial electromagnetic cloak at microwave frequencies. Science 2006;314:977–80.CrossrefGoogle Scholar

[19]

Liu R, Ji C, Mock JJ, Chin JY, Cui TJ, Smith DR. Broadband ground-plane cloak. Science 2009;323(5912):366–9.Google Scholar

[20]

Chen H, Chan CT, Sheng P. Transformation optics and metamaterials. Nat Mater 2010;9:387–96.CrossrefGoogle Scholar

[21]

Wu C, Khanikaev AB, Adato R, Arju N, Yanik AA, Altug H, Shvets G. Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nat Mater 2012;11:69–75.Google Scholar

[22]

Adato R, Yanik AA, Amsden JJ, Kaplan DL, Omenetto FG, Hong MK, Erramilli S, Altug H. Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays. Proc Natl Acad Sci USA 2009;106:19227–32.CrossrefGoogle Scholar

[23]

Cubukcu E, Zhang S, Park Y-S, Bartal G, Zhang X. Split ring resonator sensors for infrared detection of single molecular monolayers. Appl Phys Lett 2009;95:043113.CrossrefGoogle Scholar

[24]

Çetin AE, Yanik AA, Yilmaz C, Somu S, Busnaina A, Altug H. Monopole antenna arrays for optical trapping, spectroscopy, and sensing. Appl Phys Lett 2011;98:111110:1–3.CrossrefGoogle Scholar

[25]

Kabashin AV, Evans P, Pastkovsky S, Hendren W, Wurtz GA, Atkinson R, Pollard R, Podolskiy VA, Zayats AV. Plasmonic nanorod metamaterials for biosensing. Nat Mater 2009;8:867–71.CrossrefGoogle Scholar

[26]

Fedotov VA, Rose M, Prosvirnin SL, Papasimakis N, Zheludev NI. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. Phys Rev Lett 2007;99:147401.CrossrefGoogle Scholar

[27]

Papasimakis N, Fedotov VA, Zheludev NI, Prosvirnin SL. Metamaterial analog of electromagnetically induced transparency. Phys Rev Lett 2008;101:253903:1–4.CrossrefGoogle Scholar

[28]

Zhang S, Genov DA, Wang Y, Liu M, Zhang X. Plasmon-induced transparency in metamaterials. Phys Rev Lett 2008;101:047401.CrossrefGoogle Scholar

[29]

Liu N, Langguth L, Weiss T, Kästel J, Fleischhauer M, Pfau T, Giessen H. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat Mater 2009;8:758–62.CrossrefGoogle Scholar

[30]

Singh R, Al-Naib IAI, Koch M, Zhang W. Sharp Fano resonances in THz metamaterials. Opt Express 2011;19:6312–9.CrossrefGoogle Scholar

[31]

Hao F, Sonnefraud Y, Van Dorpe P, Maier SA, Halas NJ, Nordlander P. Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. Nano Lett 2008;8(11):3983–8.CrossrefGoogle Scholar

[32]

Verellen N, Sonnefraud Y, Sobhani H, Hao F, Moshchalkov VV, Van Dorpe P, Nordlander P, Maier SA. Fano resonances in individual coherent plasmonic nanocavities. Nano Lett 2009;9(4):1663–7.CrossrefGoogle Scholar

[33]

Bao K, Mirin NA, Nordlander P. Fano resonances in planar silver nanosphere clusters. Appl Phys A 2010;100: 333–9.CrossrefGoogle Scholar

[34]

Kurter C, Tassin P, Zhang L, Koschny T, Zhuravel AP, Ustinov AV, Anlage SM, Soukoulis CM.Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial. Phys Rev Lett 2011;107:043901:1–4.CrossrefGoogle Scholar

[35]

Tassin P, Zhang L, Zhao R, Jain A, Koschny T, Soukoulis CM. Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation. Phys Rev Lett 2012;109:187401.CrossrefGoogle Scholar

[36]

Alonso-Gonzalez P, Schnell M, Sarriugarte P, Sobhani H, Wu C, Arju N, Khanikaev A, Golmar F, Albella P, Arzubiaga L, Casanova F, Hueso LE, Nordlander P, Shvets G, Hillenbrand R. Real-space mapping of Fano interference in plasmonic metamolecules. Nano Lett 2011;11(9):3922–6.CrossrefGoogle Scholar

[37]

Wu C, Khanikaev AB, Shvets G. Broadband Slow light metamaterial based on a double-continuum Fano resonance. Phys Rev Lett 2011;106:107403.CrossrefGoogle Scholar

[38]

Khanikaev AB, Mousavi SH, Tse W-K, Kargarian M, MacDonald AH, Shvets G. Photonic topological insulators. Nat Mater 2013;12:233.Google Scholar

[39]

Fano U. Effects of configuration interaction on intensities and phase shifts. Phys Rev 1961;124:1866.CrossrefGoogle Scholar

[40]

Fan S, Joannopoulos JD. Analysis of guided resonances in photonic crystal slabs. Phys Rev B 2002;65:235112.CrossrefGoogle Scholar

[41]

Miroshnichenko AE, Flach S, Kivshar YS. Fano resonances in nanoscale structures. Rev Mod Phys 2010;82:2257–98.CrossrefGoogle Scholar

[42]

Luk’yanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H, Chong CT. The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 2010;9:707–15.CrossrefGoogle Scholar

[43]

Garcia de Abajo FJ. Optical excitations in electron microscopy. Rev Mod Phys 2010;82:209–75.CrossrefGoogle Scholar

[44]

Gallinet B, Martin OJF. Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials. Phys Rev B 2011;83:235427.CrossrefGoogle Scholar

[45]

Gallinet B, Martin OJF. Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances. ACS Nano 2011;5:8999–9008.CrossrefGoogle Scholar

[46]

Gallinet B, Martin OJF. Relation between near–field and far–field properties of plasmonic Fano resonances. Opt Exp 2011;19:22167.CrossrefGoogle Scholar

[47]

Giannini V, Francescato Y, Amrania H, Phillips CC, Maier SA. Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach. Nano Lett 2011;11(7): 2835–40.CrossrefGoogle Scholar

[48]

Wu C, Neuner B, John J, Milder A, Zollars B, Savoy S, Shvets G. Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems. J Opt 2012;14:024005.CrossrefGoogle Scholar

[49]

Lahiri B, Khokhar AZ, De La Rue RM, McMeekin SG, Johnson NP. Asymmetric split ring resonators for optical sensing of organic materials. Opt Express 2009;17:1107.CrossrefGoogle Scholar

[50]

Lassiter JB, Sobhani H, Fan JA, Kundu J, Capasso F, Nordlander P, Halas NJ. Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability. Nano Lett 2010;10:3184–9.CrossrefGoogle Scholar

[51]

Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Sönnichsen C, Giessen H. Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett 2010;10(4):1103–7.CrossrefGoogle Scholar

[52]

Liu N, Tang ML, Hentschel M, Giessen H, Alivisatos AP. Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat Mater 2011;10:631–6.CrossrefGoogle Scholar

[53]

Haus H. Waves and Fields in Optoelectronics. Englewood Cliffs, NJ: Prentice-Hall, 1984.Google Scholar

[54]

Ruan Z, Fan S. Temporal coupled-mode theory for fano resonance in light scattering by a single obstacle. J Phys Chem C 2010;114:7324–9.CrossrefGoogle Scholar

[55]

Fan S, Suh W, Joannopoulos JD. Temporal coupled-mode theory for the Fano resonance in optical resonator. J Opt Soc Am A 2003;20:569–72.CrossrefGoogle Scholar

[56]

Fano U. Some theoretical considerations on anomalous diffraction gratings. Phys Rev 1936;50:573.CrossrefGoogle Scholar

[57]

Taubert R, Hentschel M, Kästel J, Giessen H. Classical analog of electromagnetically induced absorption in plasmonics. Nano Lett 2012;12(3):1367–71.CrossrefGoogle Scholar

[58]

Enders D, Rupp S, Kuller A, Pucci A. Surface enhanced infrared absorption on au nanoparticle films deposited on sio2/si for optical biosensing: detection of the antibody-antigen reaction. Surf Sci 2006;600:L305–8.Google Scholar

[59]

Neubrech F, Pucci A, Cornelius TW, Karim S, García-Etxarri A, Aizpurua J. Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection. Phys Rev Lett 2009;101:157403.Google Scholar

[60]

Tittl A, Mai P, Taubert R, Dregely D, Liu N, Giessen H. Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing. Nano Lett 2011;11:4366.CrossrefGoogle Scholar

[61]

Papasimakis N, Luo Z, Shen ZX, De Angelis F, Di Fabrizio E, Nikolaenko AE, Zheludev NI. Graphene in a photonic metamaterial. Opt Express 2010;18:8353–9.CrossrefGoogle Scholar

[62]

Lee SH, Choi M, Kim T-T, Lee S, Liu M, Yin X, Choi HK, Lee SS, Choi C-G, Choi S-Y, Zhang X, Min B. Switching terahertz waves with gate-controlled active graphene metamaterials. Nat Mater 2012;11:936–41.CrossrefGoogle Scholar

[63]

Mousavi SH, Kholmanov I, Alici KB, Purtseladze D, Arju N, Tatar K, Fozdar DY, Suk JW, Hao Y, Khanikaev AB, Ruoff RS, Shvets G. Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared. Nano Lett 2013;13(3):1111–7.CrossrefGoogle Scholar

[64]

Papasimakis N, Fedotov VA, Fu YH, Tsai DP, Zheludev NI. Coherent and incoherent metamaterials and order-disorder transitions. Phys Rev B 2009;80:041102.CrossrefGoogle Scholar

[65]

Zhao Y, Alù A. Manipulating light polarization with ultrathin plasmonic metasurfaces. Phys Rev B 2011;84:205428:1–6.CrossrefGoogle Scholar

[66]

Adato R, Yanik AA, Wu C-H, Shvets G, Altug H. Radiative engineering of plasmon lifetimes in embedded nanoantenna array. Opt Express 2010;18:4526–37.CrossrefGoogle Scholar

[67]

Maradudin AA. ed. Structured Surfaces as Optical Metamaterials. Cambridge, UK: Cambridge University Press, 2011.Google Scholar

[68]

Wood RW. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Philos Mag 1902;4:396–408.CrossrefGoogle Scholar

[69]

Rayleigh L. On the dynamical theory of gratings. Proc R Soc London 1907;79:399–416.CrossrefGoogle Scholar

[70]

Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 1998;391:667–9.CrossrefGoogle Scholar

[71]

Sarrazin M, Vigneron J-P, Vigoureux J-M. Role of wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes. Phys Rev B 2003;67:085415.CrossrefGoogle Scholar

[72]

Genet C, vanExter MP, Woerdman JP. Fanotype interpretation of red shifts and red tails in hole array transmission spectra. Opt Commun 2003;225:331–6.CrossrefGoogle Scholar

[73]

Chang S-H, Gray SK, Schatz GC. Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films. Opt Express 2005;13:3150–65.CrossrefGoogle Scholar

[74]

Auguié B, Barnes WL. Collective resonances in gold nanoparticle arrays. Phys Rev Lett 2008;101:143902.CrossrefGoogle Scholar

[75]

Garcia de Abajo FJ. Light scattering by particle and hole arrays. Rev Mod Phys 2007;79:1267–90.CrossrefGoogle Scholar

[76]

Nikolaenko AE, De Angelis F, Boden SA, Papasimakis N, Ashburn P, Di Fabrizio E, Zheludev NI. Carbon nanotubes in a photonic metamaterial. Phys Rev Lett 2010;104:153902.CrossrefGoogle Scholar

[77]

Wang Q, Tang C, Chen J, Zhan P, Wang Z. Effect of symmetry breaking on localized and delocalized surface plasmons in monolayer hexagonal-close-packed metallic truncated nanoshells. Opt Express 2011;19:23889–900.CrossrefGoogle Scholar

[78]

Verellen N, VanDorpe P, Vercruysse D, Vandenbosch GAE, Moshchalkov VV. Dark and bright localized surface plasmons in nanocrosses. Opt Express 2011;12:11034–51.CrossrefGoogle Scholar

[79]

Hao F, Nordlander P, Sonnefraud Y, Van Dorpe P, Maier SA. Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing. ACS Nano 2009;3(3):643–52.CrossrefGoogle Scholar

[80]

Fu YH, Zhang JB, Yu YF, Luk′yanchuk B. Generating and manipulating higher order fano resonances in dual-disk ring plasmonic nanostructures. ACS Nano 2012;6:5130–7.CrossrefGoogle Scholar

[81]

Bachelier G, Russier-Antoine I, Benichou E, Jonin C, Del Fatti N, Vallée F, Brevet P-F. Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles. Phys Rev Lett 2008;101:197401.CrossrefGoogle Scholar

[82]

Yang Z-J, Zhang Z-S, Zhang W, Hao Z-H, Wang Q-Q. Twinned Fano interferences induced by hybridized plasmons in Au–Ag nanorod heterodimers. Appl Phys Lett 2010;96:131113.CrossrefGoogle Scholar

[83]

Brown LV, Sobhani H, Lassiter JB, Nordlander P, Halas NJ. Heterodimers: plasmonic properties of mismatched nanoparticle pairs. ACS Nano 2010;4:819.CrossrefGoogle Scholar

[84]

López-Tejeira F, Paniagua-Domínguez R, Rodríguez-Oliveros R, Sánchez-Gil JA, Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna. New J Phys 2012;14:023035.CrossrefGoogle Scholar

[85]

Nordlander P, Oubre C, Prodan E, Li K, Stockman MI. Plasmon hybridization in nanoparticle dimers. Nano Lett 2004;4:899.CrossrefGoogle Scholar

[86]

Willingham B, Brandl DW, Nordlander P. Plasmon hybridization in nanorod dimers. Appl Phys B 2008;93:209–16.CrossrefGoogle Scholar

[87]

Slaughter LS, Wu YP, Willingham B, Nordlander P, Link S. Effects of symmetry breaking and conductive contact on the plasmon coupling in gold nanorod dimers. ACS Nano 2010;4(8):4657–66.CrossrefGoogle Scholar

[88]

Reed JM, Wang H, Hu W, Zou S. Shape of Fano resonance line spectra calculated for silver nanorods. Optics Lett 2011;36(22):4386–8.CrossrefGoogle Scholar

[89]

Shafiei F, Wu C, Wu Y, Khanikaev AB, Putzke P, Singh A, Li X, Shvets G. Plasmonic nano-protractor based on polarization spectro-tomography. Nat Photonics 2013;7:367–2.CrossrefGoogle Scholar

[90]

Mousavi SH, Khanikaev AB, Neuner B 3rd, Fozdar DY, Corrigan TD, Kolb PW, Drew HD, Phaneuf RJ, Alù A, Shvets G. Suppression of long-range collective effects in meta-surfaces formed by plasmonic antenna pairs. Optics Express 2011;19(22):22142–55.CrossrefGoogle Scholar

[91]

Prodan E, Radloff C, Halas NJ, Nordlander P. A Hybridization model for the plasmon response of complex nanostructures. Science 2003;302:419–22.CrossrefGoogle Scholar

[92]

Urzhumov YA, Shvets G, Fan JA, Capasso F, Brandl D, Nordlander P. Plasmonic nanoclusters: a path toward negative-index metafluids. Opt Express 2007;15:14129.CrossrefGoogle Scholar

[93]

Hentschel M, Saliba M, Vogelgesang R, Giessen H, Alivisatos AP, Liu N. Transition from isolated to collective modes in plasmonic oligomers. Nano Lett 2010;10:2721–6.CrossrefGoogle Scholar

[94]

Fan JA, Wu C, Bao K, Bao J, Bardhan R, Halas NJ, Manoharan VN, Nordlander P, Shvets G, Capasso F. Self-assembled plasmonic nanoparticle clusters. Science 2010;328:1135–8.CrossrefGoogle Scholar

[95]

Fan JA, He Y, Bao K, Wu C, Bao J, Schade NB, Manoharan VN, Shvets G, Nordlander P, Liu DR, Capasso F. DNA enabled self-assembly of plasmonic nanoclusters. Nano Lett 2011;11:4859–64.CrossrefGoogle Scholar

[96]

Hentschel M, Dregely D, Vogelgesang R, Giessen H, Liu N. Plasmonic oligomers: the role of individual particles in collective behavior. ACS Nano 2011;5(3):2042–50.CrossrefGoogle Scholar

[97]

Hentschel M, Schäferling M, Weiss T, Liu N, Giessen H. Three-dimmensional chiral oligomers. Nano Lett 2012;12(5):2542–7.CrossrefGoogle Scholar

[98]

Fan JA, Bao K, Wu C, Bao J, Bardhan R, Halas NJ, Manoharan VN, Shvets G, Nordlander P, Federico C. Fano-like interference in self-assembled plasmonic quadrumer clusters. Nano Lett 2010;10:4680–5.CrossrefGoogle Scholar

[99]

Artar A, Yanik AA, Altug H. Directional double fano resonances in plasmonic hetero-oligomers. Nano Lett 2011;11:3694–700.CrossrefGoogle Scholar

[100]

Rahmani M, Lukiyanchuk B, Ng B, Tavakkoli KGA, Liew YF, Hong MH. Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers. Opt Express 2011;19(6):4949–56.CrossrefGoogle Scholar

[101]

Rahmani M, Lei DY, Giannini V, Lukiyanchuk B, Ranjbar M, Liew TY, Hong M, Maier SA. Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape. Nano Lett 2012;12(4):2101–6.CrossrefGoogle Scholar

[102]

Shafiei F, Monticone F, Le KQ, Liu XX, Hartsfield T, Alù A, Li X. A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance. Nat Mater 2013;8:95–9.Google Scholar

[103]

Ginn JC, Brener I. Realizing optical magnetism from dielectric metamaterials. Phys Rev Lett 2012;108:097402.CrossrefGoogle Scholar

[104]

Neuner B III, Wu C, Eyck GT, Sinclair M, Brener I, Shvets G. Efficient infrared thermal emitters based on low-albedo polaritonic meta-surfaces. Appl Phys Lett 2013;102:211111.CrossrefGoogle Scholar

[105]

Miroshnichenko AE, Kivshar YS. Fano Resonances in all-dielectric oligomers. Nano Lett 2012;12(12):6459–63.CrossrefGoogle Scholar

[106]

Hillier J, Baker RF. Microanalysis by means of electrons. J Appl Phys 1944;15:663–75.CrossrefGoogle Scholar

[107]

Nelayah J. Kociak M, Stéphan O, García de Abajo FJ, Tencé M, Henrard L, Taverna D, Pastoriza-Santos I, Liz-Marzán LM, Colliex C. Mapping surface plasmons on single metallic nanoparticle. Nat Phys 2007;3:348–53.CrossrefGoogle Scholar

[108]

Koh AL, Fernandez-Domínguez AI, McComb DW, Maier SA, Yang JKW. High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures. Nano Lett 2011;11:1323–30.CrossrefGoogle Scholar

[109]

Schnell M, García-Etxarri A, Huber AJ, Crozier K, Aizpurua J, Hillenbrand R. Controlling the near-field oscillations of loaded plasmonic nanoantennas. Nat Photonics 2009;3(5):287–91.CrossrefGoogle Scholar

[110]

Liu N, Mesch M, Weiss T, Hentschel M, Giessen H. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett 2010;10:2342.CrossrefGoogle Scholar

[111]

Wu C, Neuner B III, ShvetsGY, John J, Milder A, Zollars B, Savoy S. Large-area wide-angle spectrally selective plasmonic absorber. Physl Rev B 2011;84:075102.CrossrefGoogle Scholar

[112]

Tao H, Bingham CM, Strikwerda AC, Pilon D, Shrekenhamer D, Landy NI, Fan K, Zhang X, Padilla WJ, Averitt RD. Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization. Phys Rev B 2008;78:241103 (R).CrossrefGoogle Scholar

[113]

Diem M, Koschny T, Soukoulis CM. Wide-angle perfect absorber/thermal emitter in the terahertz regime. Phys Rev B 2009;79:033101.CrossrefGoogle Scholar

[114]

Hao J, Wang J, Liu X, Padilla WJ, Zhou L, Qiu M. High performance optical absorber based on a plasmonic metamaterial. Appl Phys Lett 2010;96:251104.CrossrefGoogle Scholar

[115]

Liu X, Tyler T, Starr T, Starr AF, Jokerst NM, Padilla WJ. Taming the blackbody with infrared metamaterials as selective thermal emitters. Physl Rev Lett 2011;107:045901.CrossrefGoogle Scholar

[116]

Aydin K, Ferry VE, Briggs RM, Atwater HA. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat Commun 2011;2:517.CrossrefGoogle Scholar

[117]

Wu C, Avitzour Y, Shvets G. Ultra-thin, wide-angle perfect absorber for infrared frwequencies. Proc SPIE 2008;7029:70290W.Google Scholar

[118]

Cui Y, Xu J, Fung KH, Jin Y, Kumar A, He S, Fang NX. A thin film broadband absorber based on multi-sized nanoantennas. Appl Phys Lett 2011;99:253101.CrossrefGoogle Scholar

[119]

Mason JA, Smith S, Wasserman D. Strong absorption and selective thermal emission from a midinfrared metamaterial. Appl Phys Lett 2011;98:241105.CrossrefGoogle Scholar

[120]

Avitzour Y, Urzhumov YA, Shvets G. Wide-angle infrared absorber based on a negative-index plasmonic metamaterial. Phys Rev B 2009;79:045131.CrossrefGoogle Scholar

[121]

Liu X, Starr T, Starr AF, Padilla WJ. Infrared spatial and frequency selective metamaterial with near-unity absorbance. Phys Rev lett 2010;104:207403.CrossrefGoogle Scholar

[122]

Wu C, Shvets G. Design of metamaterial surfaces with broadband absorbance. Optics Lett 2012;37:308–10.CrossrefGoogle Scholar

[123]

Liu N, Liu H, Zhu S, Giessen H. Stereometamaterials. Nat Photonics 2009;3:157–62.CrossrefGoogle Scholar

[124]

Zhao Y, Belkin MA, Alù A. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers. Nat Commun 2012;3:Article no 870.CrossrefGoogle Scholar

[125]

Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, Genov DA, Bartal G, Zhang X. Three-dimensional optical metamaterial with a negative refractive index. Nature 2008;455:376–9.CrossrefGoogle Scholar

[126]

Gansel JK, Thiel M, Rill MS, Decker M, Bade K, Saile V, von Freymann G, Linden S, Wegener M. Gold helix photonic metamaterial as broadband circular polarizer. Science 2009;325:1513–5.CrossrefGoogle Scholar

[127]

Krauss TF. Why do we need slow light? Nat Photonics 2008;2:448–50.CrossrefGoogle Scholar

[128]

Driscoll T, Kim H-T, Chae B-G, Kim B-J, Lee Y-W, Jokerst NM, Palit S, Smith DR, Di Ventra M, Basov DN. Memory Metamaterials. Science 2003;325:1518.Google Scholar

[129]

Samson ZL, MacDonald KF, De Angelis F, Gholipour B, Knight K, Huang CC, Di Fabrizio E, Hewak DW, Zheludev NI. Metamaterial electrooptic switch of nanoscale thickness. Appl Phys Lett 2010;96:143105.CrossrefGoogle Scholar

[130]

Zhao Q, Kang L, Du B, Li B, Zhou J, Tang H, Liang X, Zhang B. Electrically tunable negative permeability metamaterials based on nematic liquid crystals. Appl Phys Lett 2007;90:011112.CrossrefGoogle Scholar

[131]

Wang X, Kwon D-H, Werner DH, Khoo I-C, Kildishev AV, Shalaev VM. Tunable optical negative-index metamaterials employing anisotropic liquid crystals. Appl Phys Lett 2007;91:143122.CrossrefGoogle Scholar

[132]

Khatua S, Chang W-S, Swanglap P, Olson J, Link S. Active modulation of nanorod plasmons. Nano Lett 2011;11(9): 3797–802.CrossrefGoogle Scholar

[133]

Chen HT, Padilla WJ, Zide JMO, Gossard AC, Taylor AJ, Averitt RD. Active terahertz metamaterial devices. Nature 2006;444:597–600.CrossrefGoogle Scholar

[134]

Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X. A graphene-based broadband optical modulator. Nature 2011;474:64–7.CrossrefGoogle Scholar

[135]

Emani NK, Chung T-F, Ni X, Kildishev AV, Chen YP, Boltasseva A. Electrically tunable damping of plasmonic resonances with Graphene. Nano Lett 2012;12(10): 5202–6.CrossrefGoogle Scholar

[136]

Yao Y, Kats MA, Genevet P, Yu N, Song Y, Kong J, Capasso F. Broad electrical tuning of graphene-loaded plasmonic antennas. Nano Lett 2013;13(3):1257–1264.CrossrefGoogle Scholar

[137]

Ou J-Y, Plum E, Zhang J, Zheludev NI. An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared. Nat Nanotechnol 2013;8:252–255.CrossrefGoogle Scholar

[138]

Cui Y, Zhou J, Tamma VA, Park W. Dynamic tuning and symmetry lowering of fano resonance in plasmonic nanostructure. ACS Nano 2012;6:2385–93.CrossrefGoogle Scholar

[139]

Zhang S, Bao K, Halas NJ, Xu H, Nordlander P. Substrate-induced fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. Nano Lett 2011;11(4):1657–63.CrossrefGoogle Scholar

[140]

López-Tejeira F, Paniagua-Domínguez R, Sánchez-Gil JA. High-performance nanosensors based on plasmonic fano-like interference: probing refractive index with individual nanorice and nanobelts. ACS Nano 2012;6(10):8989–96.CrossrefGoogle Scholar

[141]

Yanik AA, Cetin AE, Huang M, Artar A, Mousavic SH, Khanikaev A, Connord JH, Shvets G, Altug H. Seeing protein monolayers with naked eye through plasmonic Fano resonances. Proc Natl Acad Sci USA 2011;108(29):11784–9.CrossrefGoogle Scholar

## Comments (0)