[1]

Jalali B, Fathpour S. Silicon photonics. J Lightwave Technol 2006;24:4600–15CrossrefGoogle Scholar

[2]

Miller D. Physical reasons for optical interconnection. Int J Optoelectron 1997;11:155–68.Google Scholar

[3]

Koo K-H, Kapur P, Saraswat KC. Compact performance models and comparisons for gigascale on-chip global interconnect technologies. IEEE Trans Electron Dev 2009;56:1787–98.CrossrefGoogle Scholar

[4]

Laval S, Vivien L, Cassan E, Marris-Morini D, Fédéli JM. New interconnect schemes: end of copper, optical interconnects? In Electronic devices architectures for the NANO-CMOS Era, from ultimate CMOS scaling beyond CMOS devices, Singapore: Pan Stanford Publishing; 2008.Google Scholar

[5]

Daldosso N, Melchiorri M, Garcia C, Pellegrino P, Garrido B, Sada C, Battaglin G, Gourbilleau F, Rizk R, Pavesi L. Er-coupled Si nanocluster waveguide. IEEE J Sel Top Quant 2006;12: 1607–17.CrossrefGoogle Scholar

[6]

Ghulinyan M, Navarro-Urrios D, Pitanti A, Lui A, Pucker G, Pavesi L. Whispering-gallery modes and light emission from a Si-nanocrystal-based single microdisk resonator. Opt Express 2008;16:13218–24.PubMedCrossrefGoogle Scholar

[7]

Camacho-Aguilera R, Cai Y, Patel N, Bessette J, Romagnoli M, Kimerling L, Michel J. An electrically pumped germanium laser. Opt Express 2012;20:11316–20.CrossrefGoogle Scholar

[8]

Fang A, Jones R, Park H, Cohen O, Raday O, Paniccia M, Bowers J. Integrated AlGaInAs-silicon evanescent racetrack laser and photodetector. Opt Express 2007;15:2315–22.PubMedCrossrefGoogle Scholar

[9]

Keyvaninia S, Roelkens G, Van Thourhout D, Jany C, Lamponi M, Le Liepvre A, Lelarge F, Make D, Duan G-H, Bordel D, Fédéli J-M. Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser. Opt Express 2013;21:3784–92.CrossrefGoogle Scholar

[10]

Watts M, Zortman W, Trotter D, Young R, Lentine A. Low-voltage, compact, depletion-mode, silicon Mach-Zehnder modulator. IEEE J Sel Top Quant 2010;16:159–64.CrossrefGoogle Scholar

[11]

Liao L, Liu A, Rubin D, Basak J, Chetrit Y, Nguyen H, Cohen R, Izhaky N, Paniccia M. 40 Gbit/s silicon optical modulator for high speed applications. Electron Lett 2007;43:1196–7.CrossrefGoogle Scholar

[12]

Thomson DJ, Gardes FY, Hu Y, Mashanovich G, Fournier M, Grosse P, Fédéli J-M, Reed GT. High contrast 40Gbit/s optical modulation in silicon. Opt Express 2011;19:11507–16.Google Scholar

[13]

Gardes FY, Thomson DJ, Emerson NG, Reed GT. 40 Gb/s silicon photonics modulator for TE and TM polarisations. Opt Express 2011;19:11804–14.CrossrefGoogle Scholar

[14]

Ziebell M, Marris-Morini D, Rasigade G, Fédéli J-M, Crozat P, Cassan E, Bouville D, Vivien L. 40 Gbit/s low-loss silicon optical modulator based on a pipin diode. Opt Express 2012;20:10591–6.CrossrefGoogle Scholar

[15]

Miller DAB. Energy consumption in optical modulators for interconnects. Opt Express 2012;20:293–308.CrossrefGoogle Scholar

[16]

Ziebell M, Marris-Morini D, Rasigade G, Crozat P, Fédéli J-M, Grosse P, Cassan E, Vivien L. 10 Gbit/s ring resonator silicon modulator based on interdigitated PN junctions. Opt Express 2011;19:14690–5.CrossrefGoogle Scholar

[17]

Feng N-N, Feng D, Liao S, Wang X, Dong P, Liang H, Kung C-C, Qian W, Fong J, Shafiiha R, Luo Y, Cunningham J, Krishnamoorthy A, Asghari M. 30 GHz Ge electro-absorption modulator integrated with 3 µm silicon-on-insulator waveguide. Opt Express 2011;19:7062–7.CrossrefGoogle Scholar

[18]

Chaisakul P, Marris-Morini D, Rouifed M-S, Isella G, Chrastina D, Frigerio J, Le Roux X, Edmond S, Coudevylle J-R, Vivien L. 23 GHz Ge/SiGe multiple quantum well electro-absorption modulator. Opt Express 2012;20:3219–25.CrossrefGoogle Scholar

[19]

Feng D, Liao S, Dong P, Feng N-N, Liang H, Zheng D, Kung C-C, Fong J, Shafiiha R, Cunningham J, Krishnamoorthy AV, Asghari M. High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide. Appl Phys Lett 2009;95:261105.CrossrefGoogle Scholar

[20]

Michel J, Liu J, Kimerling L. High performance Ge-on-Si photodetectors. Nature Photonics 2010;4:527–34.CrossrefGoogle Scholar

[21]

Vivien L, Polzer A, Marris-Morini D, Osmond J, Hartmann J-M, Crozat P, Cassan E, Kopp C, Zimmermann H, Fédéli J-M. Zero-bias 40 Gbit/s germanium waveguide photodetector on silicon. Opt Express 2012;20:1096–101.Google Scholar

[22]

Miller D, Chemla S, Damen T, Gossard A, Wiegmann W, Wood T, Burrus C. Band-edge electroabsorption in quantum well structures: the quantum-confined Stark effect. Phys Rev Lett 1984;53:2173–6.CrossrefGoogle Scholar

[23]

Kuo Y, Lee Y, Ge Y, Ren S, Roth J, Kamins T, Miller D, Harris J. Strong quantum-confined Stark effect in germanium quantum well structures on silicon. Nature 2005;437:1334–6.PubMedCrossrefGoogle Scholar

[24]

Edwards E, Lever L, Fei E, Kamins T, Ikonic Z, Harris J, Kelsall R, Miller D. Low-voltage broad-band électroabsorption from thin Ge/SiGe quantum wells epitaxially grown on silicon. Opt Express 2013;21:867–76.PubMedCrossrefGoogle Scholar

[25]

Kuo Y, Lee Y, Ge Y, Ren S, Roth J, Kamins T, Miller D, Harris J. Quantum-confined Stark effect in Ge/SiGe quantum wells on Si for optical modulators. IEEE J Sel Top Quant 2006;12:1503–13.CrossrefGoogle Scholar

[26]

Bonfanti M, Grilli E, Guzzi M, Chrastinal D, Isella G, von Knel H, Sigg H. Direct gap related optical transitions in Ge/SiGe quantum wells. Physica E 2009;41:972–5.CrossrefGoogle Scholar

[27]

Tsujino S, Sigg H, Mussler G, Chrastina D, von Kanel H. Photocurrent and transmission spectroscopy of direct-gap interband transitions in Ge/SiGe quantum wells. Appl Phys Lett 2006;89:262119.CrossrefGoogle Scholar

[28]

Isella G, Chrastina D, Rössner B, Hackbarth T, Herzog H-J, König U, von Känel H. Low-energy plasma-enhanced chemical vapor deposition for strained Si and Ge heterostructures and devices. Solid State Electron 2004;48:1317–23.CrossrefGoogle Scholar

[29]

Liu X-C, Myronov M, Dobbue A, Morris R, Leadley D. High-quality Ge/Si_{0.4}Ge_{0.6} multiple quantum wells for photonic applications: growth by reduced pressure chemical vapour deposition and structural characteristics. J Phys D: Appl Phys 2011;44:055102.Google Scholar

[30]

Lever L, Hu Y, Myronov M, Liu X, Owens N, Gardes F, Marko I, Sweeney S, Ikonic Z, Leadley D, Reed G, Kelsall R. Modulation of the absorption coefficient at 1.3 µm in Ge/SiGe multiple quantum well heterostructures on silicon. Opt Lett 2011;36:4158–60.CrossrefGoogle Scholar

[31]

Ren S, Rong Y, Kamins T, Harris J, Miller D. Selective epitaxial growth of Ge/Si_{0.15}Ge_{0.85} quantum wells on Si substrate using reduced pressure chemical vapor deposition. Appl Phys Lett 2011;98:151108.Google Scholar

[32]

Ren S, Rong Y, Claussen S, Schaevitz R, Kamins T, Harris J, Miller D. Ge/SiGe quantum well waveguide modulator monotithically integrated with SOI waveguides. Photon Technol Lett 2012;24:461–3.CrossrefGoogle Scholar

[33]

Virgilio M, Grosso G. Quantum-confined Stark effect in Ge/SiGe quantum wells: a tight-binding description. Phys Rev B 2008;77:165315.CrossrefGoogle Scholar

[34]

Bonfanti M, Grilli E, Guzzi M, Virgilio M, Grosso G, Chrastina D, Isella G, von Känel H. Optical transitions in Ge/SiGe multiple quantum wells with Ge-rich barriers. Phys Rev B 2008;78:041407.CrossrefGoogle Scholar

[35]

Virgilio M, Bonfanti M, Chrastina D, Neels A, Isella G, Grilli E, Guzzi M, Grosso G, Sigg H, von Känel H. Polarization-dependent absorption in Ge/SiGe multiple quantum wells: Theory and experiment. Phys Rev B 2009;79: 075323.CrossrefGoogle Scholar

[36]

Paul D. 8-band k.p modeling of the quantum confined Stark effect in Ge quantum wells on Si substrated. Phys Rev B 2008;77:155323.CrossrefGoogle Scholar

[37]

Lever L, Ikonic Z, Valavanis A, Cooper J, Kelsall R. Design of Ge-SiGe quantum-confined Stark Effect Electroabsorption heterostructures for CMOS compatible photonics. J Lightwave Technol 2010;28:3273–81.Google Scholar

[38]

Schaevitz R, Ly-Gagnon D, Roth J, Edwards E, Miller D. Indirect absorption in germanium quantum wells. AIP Advances 2011;1:032164.CrossrefGoogle Scholar

[39]

Schaevitz R, Edwards E, Roth J, Fei E, Rong Y, Wahl P, Kamins T, Harris J, Miller D. Simple electroabsorption calculator for designing 1310 and 1550 nm modulators using germanium quantum wells. IEEE J Quant 2012;48:187–97.Google Scholar

[40]

Kekatpure R, Lentine A. The suitability of SiGe multiple quantum well modulators for short reach DWDM optical interconnect. Opt Express 2013;21:5318–31.CrossrefGoogle Scholar

[41]

Chaisakul P, Marris-Morini D, Isella G, Chrastina D, Le Roux X, Gatti E, Edmond S, Osmond J, Cassan E, Vivien L. Quantum-confined Stark effect measurements in Ge/SiGe quantum well structures. Opt Lett 2010;35:2913–5.CrossrefGoogle Scholar

[42]

Chaisakul P, Marris-Morini D, Rouifed MS, Frigerio J, Isella G, Chrastina D, Coudevylle J-R, Le Roux X, Edmond S, Bouville D, Vivien L. Strong quantum-confined Stark effect from light hole related direct-gap transitions in Ge quantum wells. Appl Phys Lett 2013;102:191107.CrossrefGoogle Scholar

[43]

Rouifed M-S, Chaisakul P, Marris-Morini D, Frigerio J, Isella G, Chrastina D, Edmond S, Le Roux X, Coudevylle J-R, Vivien L. Quantum-confined Stark effect at 1.3 μm in Ge/Si_{0.35}Ge_{0.65} quantum-well structure. Opt Lett 2012;37:3960.Google Scholar

[44]

Chen H-W, Kuo Y-H, Bowers J. High speed hybrid silicon evanescent Mach Zehnder modulator and swith. Opt Express 2008;16:20571–6.CrossrefGoogle Scholar

[45]

Frigerio J, Chaisakul P, Marris-Morini D, Cecchi S, Rouifed MS, Isella G, Vivien L. Electro-refractive effect in Ge/SiGe multiple quantum wells. Appl Phys Lett 2013;102:061102.CrossrefGoogle Scholar

[46]

Marris-Morini D, Vivien L, Rasigade G, Cassan E, Fédéli JM, Le Roux X, Crozat P, Maine S, Lupu A, Halbwax M, Laval S. Recent progress in high speed silicon-based optical modulators. P IEEE 2009;97:1199–215CrossrefGoogle Scholar

[47]

Gatti E, Grilli E, Guzzi M, Chrastina D, Isella G, von Känel H. Room temperature photoluminescence of Ge multiple quantum wells with Ge-rich barriers. Appl Phys Lett 2011;98:031106.CrossrefGoogle Scholar

[48]

Wu P, Dumcenco D, Huang Y, Hsu H, Lai C, Lin T, Chrastina D, Isella G, Gatti E, Tiong K. Above-room-temperature photoluminescence from a strain-compensated Ge/Si_{0.15}Ge_{0.85} multiple-quantum-well structure. Appl Phys Lett 2012;100:141905.Google Scholar

[49]

Chaisakul P, Marris-Morini D, Isella G, Chrastina D, Izard N, Le Roux X, Edmond S, Coudevylle J-R, Vivien L. Room temperature direct gap electroluminescence from Ge/Si_{0.15}Ge_{0.85} multiple quantum well edge emitting diode. Appl Phys Lett 2011;99:141106.Google Scholar

[50]

Giorgioni A, Gatti E, Grilli E, Chernikov A, Chatterjee S, Chrastina D, Isella G, Guzzi M. Photoluminescence decay of direct and indirect transitions in Ge/SiGe multiple quantum wells. J Appl Phys 2012;111:013501.CrossrefGoogle Scholar

[51]

Claussen S, Tasyurek E, Roth J, Miller D. Measurement and modeling of ultrafast carrier dynamics and transport in germanium/silicon-germanium quantum wells. Opt Express 2010;18:25596–607.CrossrefGoogle Scholar

[52]

Lange C, Köster N, Chatterjee S, Sigg H, Chrastina D, Isella G, von Känel H, Schäfer M, Kiran M, Woch S. Ultrafact nonlinear optical response of photoexcited Ge/SiGe quantum wells: Evidence for a femtosecond transient population inversion. Phys Rev B 2009;79:201306.CrossrefGoogle Scholar

[53]

Gallacher K, Vella P, Paul D, Cecchi S, Frigerio J, Chrastina D, Isella G. 1.55 µm direct bandgap electroluminescence from strained n-Ge quantum wells grown on Si substrate. Appl Phys Lett 2012;101:211101.CrossrefGoogle Scholar

[54]

Chaisakul P, Marris-Morini D, Isella G, Chrastina D, Rouifed M-S, Le Roux X, Edmond S, Cassan E, Coudevylle J-R, Vivien L. 10 Gbit/s Ge/SiGe multiple quantum well waveguide photodetector. IEEE Photon Technol Lett 2011;23:1430–2.CrossrefGoogle Scholar

[55]

Ren S, Kamins T, Miller D. Thin dielectric spacer for the monolithic integration of bulk germanium or germanium quantum wells with silicon-on-insulator waveguides. IEEE Photon J 2011;3:739–47.CrossrefGoogle Scholar

[56]

Lever L, Ikonic Z, Kelsall R. Adiabatic mode coupling between SiGe photonic devices and SOI waveguides. Opt Express 2012;20:29500–6.CrossrefGoogle Scholar

[57]

Thomas R, Ikonic Z, Kelsall R. Plasmonic enhances electro-optic stub modulator on a SOI platform. Phot Nano Fund Appl 2011;9:101–7.CrossrefGoogle Scholar

## Comments (0)