[1]

Brongersma ML, Kik PG, editors. Surface plasmon nanophotonics. Dordrecht: Springer, 2007.Google Scholar

[2]

Maier SA. Plasmonics: fundamentals and applications. New York: Springer, 2007.Google Scholar

[3]

Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 2007;311:189–93.Google Scholar

[4]

Tong L, Sumetsky M. Subwavelength and nanometer diameter optical fibers. Zhejiang: Springer, 2010.Google Scholar

[5]

Brambilla G, Xu F, Horak P, Jung Y, Koizumi F, Sessions NP, Koukharenko E, Feng X, Murugan GS, Wilkinson JS, Richardson DJ. Optical fiber nanowires and microwires: fabrication and applications. Adv Opt Photonics 2009;1:107–61.CrossrefGoogle Scholar

[6]

Brambilla G, Finazzi V, Richardson DJ. Ultra-low-loss optical fiber nanotapers. Opt Exp 2004;12:2258–63.CrossrefGoogle Scholar

[7]

Leon-Saval SG, Birks TA, Wadsworth WJ, Russell PStJ, Mason MW. Supercontinuum generation in submicron fibre waveguides. Opt Exp 2004;12:2864–9.CrossrefGoogle Scholar

[8]

Sumetsky M, Dulashko Y, Hale A. Fabrication and study of bent and coiled free silica nanowires: self-coupling microloop optical interferometer. Opt Exp 2004;12:3521–31.CrossrefGoogle Scholar

[9]

Tong LM, Lou JY, Gattass RR, He SL, Chen XW, Liu L, Mazur E. Assem-bly of silica nanowires on silica aerogels for microphotonics devices. Nano Lett 2005;5:259–62.CrossrefGoogle Scholar

[10]

Kien FL, Balykin VI, Hakuta K. Angular momentum of light in an optical nanofiber. Phys Rev A 2006;73:053823.CrossrefGoogle Scholar

[11]

Yalla R, Kien FL, Morinaga M, Hakuta K. Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber. Phys Rev Lett 2012;109:063602.PubMedCrossrefGoogle Scholar

[12]

Spillane SM, Pati GS, Salit K, Hall M, Kumar P, Beausoleil RG, Shahriar MS. Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical microfiber embedded in a hot rubidium vapor. Phys Rev Lett 2008;100:233602.CrossrefGoogle Scholar

[13]

Reitz D, Sayrin C, Mitsch R, Schneeweiss P, Rauschenbeutel A. Coherence properties of nanofiber-trapped cesium atoms. Phys Rev Lett 2013;110:243603.CrossrefGoogle Scholar

[14]

Sumetsky M, Dulashko Y, Fini JM, Hale A, Nicholson JW. Probing optical microfiber nonuniformities at nanoscale. Opt Lett 2006;31:2393–5.PubMedCrossrefGoogle Scholar

[15]

Sumetsky M. Optical fiber microcoil resonator. Opt Exp 2004;12:2303–16.CrossrefGoogle Scholar

[16]

Sumetsky M, Dulashko Y, Fini JM, Hale A. Optical microfiber loop resonator. Appl Phys Lett 2005;86:161108.CrossrefGoogle Scholar

[17]

Sumetsky M, Dulashko Y, Fini JM, Hale A, DiGiovanni DJ. The microfiber loop resonator: theory, experiment, and application. J Lightwave Technol 2006;24(1):242–50.CrossrefGoogle Scholar

[18]

Jiang XS, Tong LM, Vienne G, Guo X, Tsao A, Yang Q, Yang DR. Demonstration of optical microfiber knot resonators. Appl Phys Lett 2006;88:223501.CrossrefGoogle Scholar

[19]

Sumetsky M. Basic elements for microfiber photonics: micro/nanofibers and micro-fiber coil resonators. J Lightwave Technol 2008;26:21–7.CrossrefGoogle Scholar

[20]

Li YH, Tong LM. Mach–Zehnder interferometers assembled with optical microfibers or nanofibers. Opt Lett 2008;33:303–5.CrossrefPubMedGoogle Scholar

[21]

Polynkin P, Polynkin A, Peyghambarian N, Mansuripur M. Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels. Opt Lett 2005;30:1273–5.PubMedCrossrefGoogle Scholar

[22]

Villatoro J, Monzón-Hernández D. Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers. Opt Exp 2005;13:5087–92.CrossrefGoogle Scholar

[23]

Warken F, Vetsch E, Meschede D, Sokolowski M, Rauschenbeutel A. Ultra-sensitive surface absorption spectroscopy using sub-wavelength diameter optical fibers. Opt Exp 2007;15:11952–8.CrossrefGoogle Scholar

[24]

Sumetsky M. How thin can a microfiber be and still guide light? Opt Lett 2006;31(7):870–2.CrossrefPubMedGoogle Scholar

[25]

Sumetsky M. How thin can a microfiber be and still guide light? Errata. Opt Lett 2006;31:3577–8.CrossrefGoogle Scholar

[26]

Sumetsky M. Optics of tunneling from adiabatic nanotapers. Opt Lett 2006;31:3420–2.CrossrefPubMedGoogle Scholar

[27]

Sumetsky M, Dulashko Y, Domachuk P, Eggleton BJ. Thinnest optical waveguide: experimental test. Opt Lett 2007;32:754–6.PubMedCrossrefGoogle Scholar

[28]

Snyder AW, Love JD. Optical waveguide theory. New York: Chapman and Hall, 1983.Google Scholar

[29]

Chen HW, Li YT, Pan CL, Kuo JL, Lu JY, Chen LJ, Sun CK. Investigation on spectral loss characteristics of subwavelength terahertz fibers. Opt Lett 2007;32:1017–9.PubMedCrossrefGoogle Scholar

[30]

Sumetsky M. Localization of light in an optical fiber with nanoscale radius variation. In CLEO/Europe and EQEC 2011 Conference Digest. Postdeadline paper PDA_8.Google Scholar

[31]

Sumetsky M, Fini JM. Surface nanoscale axial photonics. Opt Exp 2011;19:26470–85.CrossrefGoogle Scholar

[32]

Sumetsky M, DiGiovanni DJ, Dulashko Y, Fini JM, Liu X, Monberg EM, Taunay TF. Surface nanoscale axial photonics: robust fabrication of high-quality-factor microresonators. Opt Lett 2011;36:4824–6.PubMedCrossrefGoogle Scholar

[33]

Sumetsky M, Abedin K, DiGiovanni DJ, Dulashko Y, Fini JM, Liu X, Monberg EM. Coupled high Q-factor surface nanoscale axial photonics (SNAP) microresonators. Opt Lett 2012;37: 990–2.CrossrefPubMedGoogle Scholar

[34]

Sumetsky M, DiGiovanni DJ, Dulashko Y, Liu X, Monberg EM, Taunay TF. Photo-induced SNAP: fabrication, trimming, and tuning of microresonator chains. Opt Exp 2012;20: 10684–91.CrossrefGoogle Scholar

[35]

Sumetsky M. Theory of SNAP devices: basic equations and comparison with the experiment. Opt Exp 2012;20:22537–54.CrossrefGoogle Scholar

[36]

Sumetsky M, Dulashko Y. SNAP: fabrication of long coupled microresonator chains with sub-angstrom precision. Opt Exp 2012;20:27896–901.CrossrefGoogle Scholar

[37]

Sumetsky M. Delay of light in an optical bottle resonator with nanoscale radius variation: dispersionless, broadband, and low-loss. Phys Rev Lett (in press).Google Scholar

[38]

Sumetsky M. Whispering gallery modes in a microfiber coil with an *n*-fold helical symmetry: classical dynamics, stochasticity, long period gratings, and wave parametric resonance. Opt Exp 2010;18:2413–25.CrossrefGoogle Scholar

[39]

Xia FN, Sekaric L, Vlasov Y. Ultracompact optical buffers on a silicon chip. Nat Photon 2007;1:65–71.CrossrefGoogle Scholar

[40]

Notomi M, Kuramochi E, Tanabe T. Large-scale arrays of ultrahigh-Q coupled nanocavities. Nat Photon 2008;2:741–7.CrossrefGoogle Scholar

[41]

Notomi M. Manipulating light with strongly modulated photonic crystals. Rep Prog Phys 2010;73:096501.CrossrefGoogle Scholar

[42]

Bogaerts W, De Heyn P, Van Vaerenbergh T, DeVos K, Selvaraja SK, Claes T, Dumon P, Bienstman P, Van Thourhout D, Baets R. Silicon microring resonators. Laser Photonics Rev 2012;6:47–73.CrossrefGoogle Scholar

[43]

Morichetti F, Ferrari C, Canciamilla A, Melloni A. The first decade of coupled resonator optical waveguides: bringing slow light to applications. Laser Photonics Rev 2012;6:74–96.CrossrefGoogle Scholar

[44]

Cooper ML, Gupta G, Schneider MA, Green WMJ, Assefa S, Xia F, Vlasov YA, Mookherjea S. Statistics of light transport in 235-ring silicon coupled-resonator optical waveguides. Opt Exp 2010;18:26505–16.CrossrefGoogle Scholar

[45]

Schulz SA, O’Faolain L, Beggs DM, White TP, Melloni A, Krauss TF. Dispersion engineered slow light in photonic crystals: a comparison. J Opt 2010;12:104004.CrossrefGoogle Scholar

[46]

Landau LD, Lifshitz EM. Quantum mechanics. Amsterdam: Pergamon Press, 1977.Google Scholar

[47]

Sumetsky M. Whispering-gallery-bottle microcavities: the three-dimensional etalon. Opt Lett 2004;29:8–10.CrossrefPubMedGoogle Scholar

[48]

Tool AQ, Tilton LW, Saunders JB. Changes caused in the refractivity and density of glass by annealing. J Res Natl Bur Std 1947;38:519–26.CrossrefGoogle Scholar

[49]

Bach H, Neuroth N, editors. The properties of optical glass. Berlin: Springer Verlag, 1995.Google Scholar

[50]

Yablon AD, Yan MF, Wisk P, DiMarcello FV, Fleming JW, Reed WA, Monberg EM, DiGiovanni DJ, Jasapara J. Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity. Appl Phys Lett 2004;84:19–21.CrossrefGoogle Scholar

[51]

Limberger HG, Fonjallaz PY, Salathé RP, Cochet F. Compaction- and photoelastic-induced index changes in fiber Bragg gratings. Appl Phys Lett 1996;68:3069–71.CrossrefGoogle Scholar

[52]

Birks TA, Knight JC, Dimmick TE. High-resolution measurement of the fiber diameter variations using whispering gallery modes and no optical alignment. IEEE Photon Technol Lett 2000;12:182–3.CrossrefGoogle Scholar

[53]

Sumetsky M, Dulashko Y. Radius variation of optical fibers with angstrom accuracy. Opt Lett 2010;35:4006–8.CrossrefPubMedGoogle Scholar

[54]

Sumetsky M. A SNAP coupled microresonator delay line. Opt Exp 2013;21:15268–79.CrossrefGoogle Scholar

[55]

Kashyap R. Fiber bragg gratings. San Diego: Academic Press; 1999.Google Scholar

[56]

Smithgall DH, Watkins LS, Frazee RE Jr. High-speed noncontact fiber-diameter measurement using forward light scattering. Appl Opt 1977;16:2395–402.CrossrefPubMedGoogle Scholar

[57]

Jasapara J, Monberg E, DiMarcello F, Nicholson JW. Accurate noncontact optical fiber diameter measurement with spectral interferometry. Opt Lett 2003;28:601–3.PubMedCrossrefGoogle Scholar

[58]

Warken F, Giessen H. Fast profile measurement of micrometer-sized tapered fibers with better than 50-nm accuracy. Opt Lett 2004;29:1727–9.Google Scholar

## Comments (0)