[1]

Tünnermann A, Schreiber T, Limpert J. Fiber lasers and amplifiers: an ultrafast performance evolution. Appl Opt 2010;49:F71–8.CrossrefGoogle Scholar

[2]

Eidam T, Rothhardt J, Stutzki F, Jansen F, Hädrich S, Carstens H, Jauregui C, Limpert J, Tünnermann A. Fiber chirped-pulse amplification system emitting 3.8 GW peak power. Opt Exp 2011;19:255–60.Google Scholar

[3]

Stutzki F, Jansen F, Liem A, Jauregui C, Limpert J, Tünnermann A. 26 mJ, 130 W Q-switched fiber-laser system with near-diffraction-limited beam quality. Opt Lett 2012;37:1073.Google Scholar

[4]

Eidam T, Wirth C, Jauregui C, Stutzki F, Jansen F, Otto H, Schmidt O, Schreiber T, Limpert J, Tünnermann A. Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers. Opt Exp 2011;19:13218–24.CrossrefGoogle Scholar

[5]

Zeringue C, Dajani I, Naderi S, Moore G, Robin C. A theoretical study of transient stimulated Brillouin scattering in optical fibers seeded with phase-modulated light. Opt Exp 2012;20:21196–213.CrossrefGoogle Scholar

[6]

Henry L, Shay T, Hult D, Rowland K. Enhancement of output power from narrow linewidth amplifiers via two-tone effect – high power experimental results. Opt Exp 2010;18:23939–47.CrossrefGoogle Scholar

[7]

Li M, Chen X, Wang J, Gray S, Liu A, Demeritt J, Ruffin A, Crowley A, Walton D, Zenteno L. Al/Ge co-doped large mode area fiber with high SBS threshold. Opt Exp 2007;15:8290–9.CrossrefGoogle Scholar

[8]

Robin C, Dajani I, Zeringue C, Ward B, Lanari A. Gain-tailored SBS suppressing photonic crystal fibers for high power applications. Proc. SPIE 8237, Fiber Lasers IX: Technology, Systems, and Applications, 82371D, 2012.Google Scholar

[9]

Jauregui C, Eidam T, Limpert J, Tünnermann A. Impact of modal interference on the beam quality of high-power fiber amplifiers. Opt Exp 2011;19:3258–71.CrossrefGoogle Scholar

[10]

Smith AV, Smith JJ. Mode instability in high power fiber amplifiers. Opt Exp 2011;19:10180–92.CrossrefGoogle Scholar

[11]

Hansen KR, Alkeskjold TT, Broeng J, Lægsgaard J. Thermally induced mode coupling in rare-earth doped fiber amplifiers. Opt Lett 2012;37:2382–4.PubMedCrossrefGoogle Scholar

[12]

Ward B, Robin C, Dajani I. Origin of thermal modal instabilities in large mode area fiber amplifiers. Opt Exp 2012;20:11407–22.CrossrefGoogle Scholar

[13]

Hansen KR, Alkeskjold TT, Broeng J, Lægsgaard J. Thermo-optical effects in high-power Ytterbium-doped fiber amplifiers. Opt Exp 2011;19:23965–80.CrossrefGoogle Scholar

[14]

Brooks CD, Teodoro FD. Multimegawatt peak-power, single-transverse-mode operation of a 100 μm core diameter, Yb-doped rodlike photonic crystal fiber amplifier. Appl Phys Lett 2006;89:111119.CrossrefGoogle Scholar

[15]

Di Teodoro F, Morais J, McComb T, Hemmat M, Cheung E, Weber M, Moyer R. SBS-managed high-peak-power nanosecond-pulse fiber-based master oscillator power amplifier. Opt Lett 2013;38:2162–4.Web of SciencePubMedCrossrefGoogle Scholar

[16]

Stutzki F, Jansen F, Eidam T, Steinmetz A, Jauregui C, Limpert J, Tünnermann A. High average power large-pitch fiber amplifier with robust single-mode operation. Opt Lett 2011;36:689–91.PubMedWeb of ScienceCrossrefGoogle Scholar

[17]

Laurila M, Jørgensen MM, Hansen KR, Alkeskjold TT, Broeng J, Lægsgaard J. Distributed mode filtering rod fiber amplifier delivering 292 W with improved mode stability. Opt Exp 2012;20:5742–53.Google Scholar

[18]

Sangla D, Saby J, Cocquelin B, Salin F. High power picosecond fiber laser emitting 50 W at 343 nm at 80 MHz. Proc. SPIE 8237, Fiber Lasers IX: Technology, Systems, and Applications, 82371D, 2012.Google Scholar

[19]

Röser F, Eidam T, Rothhardt J, Schmidt O, Schimpf DN, Limpert J, Tünnermann A. Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system. Opt Lett 2007;32:3495–7.Web of SciencePubMedCrossrefGoogle Scholar

[20]

Zaouter Y, Guichard F, Daniault L, Hanna M, Morrin F, Hönninger C, Mottay E, Druon F, Georges P. Femtosecond fiber chirped- and divided-pulse amplification system. Opt Lett 2013;38:106–8.PubMedCrossrefWeb of ScienceGoogle Scholar

[21]

Klenke A, Breitkopf S, Kienel M, Gottschall T, Eidam T, Hädrich S, Rothhardt J, Limpert J, Tünnermann A. 530 W, 1.3 mJ, four-channel coherently combined femtosecond fiber chirped-pulse amplification system. Opt Lett 2013;38:2283.Web of ScienceGoogle Scholar

[22]

www.nktphotonics.com.

[23]

Alkeskjold TT, Laurila M, Scolari L, Broeng J. Single-mode ytterbium-doped large-mode-area photonic bandgap rod fiber amplifier. Opt Exp 2011;19:7398–409.CrossrefGoogle Scholar

[24]

Laurila M, Barankov R, Jørgensen M, Alkeskjold T, Broeng J, Lægsgaard J, Ramachandran S. Cross-correlated imaging of single-mode photonic crystal rod fiber with distributed mode filtering. Opt Exp 2013;21:9215–29.CrossrefGoogle Scholar

[25]

Jansen F, Stutzki F, Otto H, Baumgartl M, Jauregui C, Limpert J, Tünnermann A. The influence of index-depressions in core-pumped Yb-doped large pitch fibers. Opt Exp 2010;18:26834–42.CrossrefGoogle Scholar

[26]

Dong L, McKay H, Fu L, Ohta M, Marcinkevicius A, Suzuki S, Fermann M. Ytterbium-doped all glass leakage channel fibers with highly fluorine-doped silica pump cladding. Opt Exp 2009;17:8962–9.CrossrefGoogle Scholar

[27]

Galvanauskas A, Cheng MY, Hou KC, Liao KH. High peak power pulse amplification in large core Yb-doped fiber amplifiers. IEEE J Sel Top Quantum Elect 2007;13:559–66.CrossrefWeb of ScienceGoogle Scholar

[28]

Ramachandran S, Fini JM, Mermelstein M, Nicholson JW, Ghalmi S, Yan ME. Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers. Laser Photonics Rev 2008;2:429–48.Web of ScienceCrossrefGoogle Scholar

[29]

Nicholson JW, Fini JM, DeSantolo AM, Monberg E, DiMarcello F, Fleming J, Headley C, DiGiovanni DJ, Ghalmi S, Ramachandran S. A higher-order-mode erbium-doped-fiber amplifier. Opt Exp 2010;18:17651–7.CrossrefGoogle Scholar

[30]

Koplow JP, Kliner DAV, Goldberg L. Single-mode operation of a coiled multimode fiber amplifier. Opt Lett 2000;25:442–4.PubMedCrossrefGoogle Scholar

[31]

Fini J. Bend-resistant design of conventional and microstructure fibers with very large mode area. Opt Exp 2006;14:69–81.CrossrefGoogle Scholar

[32]

Petersen S, Alkeskjold T, Poli F, Coscelli E, Jørgensen M, Laurila M, Lægsgaard J, Broeng J. Hybrid Ytterbium-doped large-mode-area photonic crystal fiber amplifier for long wavelengths. Opt Exp 2012;20:6010–20.CrossrefGoogle Scholar

[33]

Nicholson J, Yablon A, Ramachandran S, Ghalmi S. Spatially and spectrally resolved imaging of modal content in large-mode-area fibers. Opt Exp 2008;16:7233–43.CrossrefGoogle Scholar

[34]

Laurila M, Alkeskjold TT, Lægsgaard J, Broeng J. Modal analysis of a large-mode area photonic crystal fiber amplifier using spectral-resolved imaging. Opt Eng 2011;50:111604.Google Scholar

[35]

TIA-455-80-C: FOTP-80 IEC-60793-1-44 Optical Fibres – Part 1-44: Measurement Methods and Test Procedures – Cut-off Wavelength.Google Scholar

[36]

Sipes DL, Tafoya JD, Schulz DS, Ward BG, Carlson CG. A 967 W single mode all-fiber PM Yb PCF fiber amplifier. Proc. SPIE 7914, Fiber Lasers IX: Technology, Systems, and Applications, PD, 2011.Google Scholar

[37]

Jørgensen MM, Petersen SR, Laurila M, Lægsgaard J, Alkeskjold TT. Optimizing single mode robustness of the distributed modal filtering rod fiber amplifier. Opt Exp 2012;20:7263–73.CrossrefGoogle Scholar

[38]

Johansen MM, Hansen KR, Laurila M, Alkeskjold TT, Lægsgaard J. Estimating modal instability threshold for photonic crystal rod fiber amplifiers. Opt Exp 2013;21:15409–17.CrossrefGoogle Scholar

[39]

Schimpf D, Barankov R, Ramachandran S. Cross-correlated (C2) imaging of fiber and waveguide modes. Opt Exp 2011;19:13008–19.CrossrefGoogle Scholar

[40]

Jansen F, Stutzki F, Otto H-J, Eidam T, Liem A, Jauregui C, Limpert J, Tünnermann A. Thermally induced waveguide changes in active fibers. Opt Exp 2012;20:3997–4008.CrossrefGoogle Scholar

[41]

Brown DC, Hoffman HJ. Thermal, stress and thermo-optic effects in high average power double-clad silica fiber lasers. IEEE J Quantum Electron 2001;37:207–17.CrossrefGoogle Scholar

[42]

Coscelli E, Poli F, Alkeskjold TT, Jørgensen MM, Leick L, Broeng J, Cucinotta A, Selleri S. Thermal effects on the single mode regime of distributed modal filtering rod fiber. IEEE J Lightwave Technol 2012;30:3494–9.Web of ScienceCrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.