[1]

Bloembergen N. Nonlinear Optics. London: World Scientific, 1996.Google Scholar

[2]

Yuen-Ron S. The Principles of Nonlinear Optics. Hoboken, New Jersey: Wiley-Interscience, 2002.Google Scholar

[3]

Robert B. Nonlinear Optics (3rd ed.). Amsterdam, Boston: Academic Press, 2008.Google Scholar

[4]

Franken P, Hill A, Peters C, Weinreich G. Generation of optical harmonics. Phys Rev Lett 1961;7:118–9.CrossrefGoogle Scholar

[5]

Terhune RW, Maker PD, Savage CM. Optical harmonic generation in calcite. Phys Rev Lett 1962;8:404–6.CrossrefGoogle Scholar

[6]

Kaiser W, Garrett CGB. Two-photon excitation in CaF2:Eu2+. Phys Rev Lett 1961;7:229–32.CrossrefGoogle Scholar

[7]

Eckhardt G, Hellwarth RW, McClung FJ, Schwarz SE, Weiner D, Woodbury EJ. Stimulated raman scattering from organic liquids. Phys Rev Lett 1962;9:455–7.CrossrefGoogle Scholar

[8]

Giordmaine JA. Mixing of light beams in crystals. Phys Rev Lett 1962;8:19–20.CrossrefGoogle Scholar

[9]

Maker PD, Terhune RW, Nisenoff M, Savage CM. Effects of dispersion and focusing on the production of optical harmonics. Phys Rev Lett 1962;8:21–22.CrossrefGoogle Scholar

[10]

Delone NB, Kraĭnov VP. Fundamentals of nonlinear optics of atomic gases. New York: Wiley, 1987Google Scholar

[11]

Nikogosyan DN. Nonlinear optical crystals: a complete survey. Springer, Berlin 2005.Google Scholar

[12]

Govind A. Nonlinear fiber optics (4th ed.). San Diego, California: Academic Press, 2007.Google Scholar

[13]

Russell PSTJ, Birks TA, Lloyd-Lucas FD. Photonic Bloch waves and photonic band gaps. In ‘Confined electrons and photons: New physics and applications’. New York: Plenum Press, 1995.Google Scholar

[14]

Dudley JM, Genty G, Coen S. Supercontinuum generation in photonic crystal fiber. Rev Mod Phys 2006;78:1135–1184.CrossrefGoogle Scholar

[15]

Dudley JM, Taylor JR. Ten years of nonlinear optics in photonic crystal fibre. Nature Photonics 2009;3:85–90.CrossrefGoogle Scholar

[16]

Soref RA. Silicon-based optoelectronics. Proceedings of the IEEE 1993;81:1687–1706.CrossrefGoogle Scholar

[17]

Kimerling LC. Silicon for photonics. Proc. SPIE 3002. 1997;192.Google Scholar

[18]

Kimerling LC. Silicon materials engineering for the next millennium. Sol St Phen 1999;70:131–142.CrossrefGoogle Scholar

[19]

Pavesi L, Lockwood DJ, editors. Silicon Photonics. New York: Springer, 2004.Google Scholar

[20]

Reed GT, Knights AP. Silicon photonics: an introduction. Wiley, Hoboken, NJ, 2004.Google Scholar

[21]

Lipson M. Guiding, modulating and emitting light on silicon - challenges and opportunities. IEEE J Lightwave Technol 2005; 23:4222.CrossrefGoogle Scholar

[22]

Soref RA. The past, present, and future of silicon photonics. IEEE J Sel Top Quantum Electron 2006;12:1678–87.CrossrefGoogle Scholar

[23]

Jalali B, Paniccia M, Reed G. Silicon photonics. IEEE Microwave Magazine 2006;7:58–68.CrossrefGoogle Scholar

[24]

Jalali B, Fathpour S. Silicon photonics. J Lightwave Technol. 2006; 24:4600–15.CrossrefGoogle Scholar

[25]

Kirchain R, Kimerling L. A roadmap for nanophotonics. Nature Photonics 2007;1:303–5.CrossrefGoogle Scholar

[26]

Dekker R, Usechak N, Först M, Driessen A. Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides. J Phys D: Appl Phys 2007;40:R249–71.CrossrefGoogle Scholar

[27]

Lin Q, Painter OJ, Agrawal GP. Nonlinear optical phenomena in silicon waveguides: Modeling and applications. Opt Express 2007;15:16604–44.CrossrefGoogle Scholar

[28]

Tsang HK, Liu Y. Nonlinear optical properties of silicon waveguides. Semicond Sci Technol 2008; 23:064007.CrossrefGoogle Scholar

[29]

Osgood RM, Jr., Panoiu NC, Dadap JI, Liu X, Chen X, Hsieh I-W, Dulkeith E, Green WM, Vlasov YA. Engineering nonlinearities in nanoscalse optical systems: Physics and applications in dispersion-engineered silicon nonaphotonics wires. Adv Opt Photon 2009;1:162–235.CrossrefGoogle Scholar

[30]

Leuthold J, Koos C, Freude W. Nonlinear silicon photonics. Nature Photonics 2010;4:535–44.CrossrefGoogle Scholar

[31]

Ikeda K, Shen Y, Fainman Y. Enhanced optical nonlinearity in amorphous silicon and its application to waveguide devices. Opt Express 2007;15:17761–71.CrossrefGoogle Scholar

[32]

Shoji Y, Ogasawara T, Kamei T, Sakakibara Y, Suda S, Kintaka K, Kawashima H, Okano M, Hasama T, Ishikawa H, Mori M. Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide. Opt Express 2010;18:5668–73.CrossrefGoogle Scholar

[33]

Narayanan K, Preble SF. Optical nonlinearities in hydrogenated-amorphous silicon waveguides. Opt Express 2010;18:8998–9005.CrossrefGoogle Scholar

[34]

Grillet C, Carletti L, Monat C, Grosse P, Ben Bakir B, Menezo S, Fedeli JM, Moss DJ. Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability. Opt Express 2012;20:22609–15.CrossrefGoogle Scholar

[35]

Matres J, Ballesteros GC, Gautier P, Fédéli J-M, Martí J, Oton CJ. High nonlinear figure-of-merit amorphous silicon waveguides. Opt Express 2013;21:3932–40.CrossrefGoogle Scholar

[36]

Hernández S, Pellegrino P, Martínez A, Lebour Y, Garrido B, Spano R, Cazzanelli M, Daldosso N, Pavesi L, Jordana E, Fedeli JM. Linear and nonlinear optical properties of Si nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition. J Appl Phys 2008;103: 064309.CrossrefGoogle Scholar

[37]

Yuan Z, Anopchenko A, Daldosso N, Guider R, Navarro-Urrios D, Pitanti A, Spano R, Pavesi L. Silicon Nanocrystals as an Enabling Material for Silicon Photonics. Proc IEEE 2009;97:1250–68.CrossrefGoogle Scholar

[38]

Spano R, Daldosso N, Cazzanelli M, Ferraioli L, Tartara L, Yu J, Degiorgio V, Giordana E, Fedeli JM, Pavesi L. Bound electronic and free carrier nonlinearities in Silicon nanocrystals at 1550 nm. Opt Express 2009;17:3941–50.CrossrefGoogle Scholar

[39]

Rukhlenko ID, Zhu W, Premaratne M, Agrawal GP. Effective third-order susceptibility of silicon-nanocrystal-doped silica. Opt Express 2012;20:26275–84.CrossrefGoogle Scholar

[40]

López-Suárez A, Torres-Torres C, Rangel-Rojo R, Reyes-Esqueda JA, Santana G, Alonso JC, Ortiz A, Oliver A. Modification of the nonlinear optical absorption and optical Kerr response exhibited by nc-Si embedded in a silicon-nitride film. Opt Express 2009;17:10056–68.CrossrefGoogle Scholar

[41]

Minissale S, Yerci S, Dal Negro L. Nonlinear optical properties of low temperature annealed silicon-rich oxide and silicon-rich nitride materials for silicon photonics. Appl Phys Lett 2012;100:021109.CrossrefGoogle Scholar

[42]

Yamada H, Shirane M, Chu T, Yokoyama H, Ishida S, Arakawa Y. Nonlinear-optic silicon-nanowire waveguides. Japanese J Appl Phys 2005;44:6541–5.CrossrefGoogle Scholar

[43]

Almeida VR, Xu QF, Barrios CA, Lipson M. Guiding and confining light in void nanostructure. Opt Lett 2004;29:1209–11.CrossrefGoogle Scholar

[44]

Xu Q, Almeida VR, Panepucci RR, Lipson M. Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material. Opt Lett 2004;29:1626–8.CrossrefGoogle Scholar

[45]

Baehr-Jones T, Hochberg M, Walker C, Scherer A. High-Q optical resonators in silicon-on-insulator based slot waveguides. Appl Phys Lett 2005;86:081101.CrossrefGoogle Scholar

[46]

Sun R, Dong P, Feng N-N, Hong C-Y, Michel J, Lipson M, Kimerling L. Horizontal single and multiple slot waveguides: optical transmission at λ=1550 nm. Opt Express 2007;15:17967–72.Google Scholar

[47]

Fujisawa T, Koshiba M. Guided modes of nonlinear slot waveguides. IEEE Photon Technol Lett 2006;18:1530–32.CrossrefGoogle Scholar

[48]

Sanchis P, Blasco J, Martínez A, Martí J. Design of silicon-based slot waveguide configurations for optimum nonlinear performance. J Lightwave Technol 2007;25:1298–1305.CrossrefGoogle Scholar

[49]

Koos C, Jacome L, Poulton C, Leuthold J, Freude W. Nonlinear silicon-on-insulator waveguides for all-optical signal processing. Opt Express 2007;15:5976–90.CrossrefGoogle Scholar

[50]

Muellner P, Wellenzohn M, Hainberger R. Nonlinearity of optimized silicon photonic slot waveguides. Opt Express 2009;17:9282–7.CrossrefGoogle Scholar

[51]

Spano R, Galan JV, Sanchis P, Martinez A, Martí J, Pavesi L. Group velocity dispersion in horizontal slot waveguides filled by Si nanocrystals. International Conf. on Group IV Photonics 2008;314–6.Google Scholar

[52]

Zheng Z, Iqbal M, Liu J. Dispersion characteristics of SOI-based slot optical waveguides. Opt Commun 2008;281:5151–5.CrossrefGoogle Scholar

[53]

Zhang L, Yue Y, Y. Xiao-Li, Wang J, Beausoleil RG, Willner AE. Flat and low dispersion in highly nonlinear slot waveguides. Opt Express 2010;18:13187–93.CrossrefGoogle Scholar

[54]

Mas S, Caraquitena J, Galán JV, Sanchis P, Martí J. Tailoring the dispersion behavior of silicon nanophotonic slot waveguides. Opt Express 2010;18:20839–44.CrossrefGoogle Scholar

[55]

De Leonardis F, Passaro VMN. Dispersion engineered silicon nanocrystal slot waveguides for soliton ultrafast optical processing. Adv Opt Electron 2011;2011:Article ID 751498, 9 pages.Google Scholar

[56]

Liu Q, Gao S, Li Z, Xie Y, He S. Dispersion engineering of a silicon-nanocrystal-based slot waveguide for broadband wavelength conversion. Appl Opt 2011;50:1260–5.CrossrefGoogle Scholar

[57]

Ryu H, Kim J, Jhon YM, Lee S, Park N. Effect of index contrasts in the wide spectral-range control of slot waveguide dispersion. Opt Express 2012;20:13189–94.CrossrefGoogle Scholar

[58]

Nolte PW, Bohley C, Schilling J. Tuning of zero group velocity dispersion in infiltrated vertical silicon slot waveguides. Opt Express 2013;21:1741–50.CrossrefGoogle Scholar

[59]

Zhang L, Yue Y, Beausoleil RG, Willner AE. Flattened dispersion in silicon slot waveguides. Opt Express 2010;18:20529–34.CrossrefGoogle Scholar

[60]

Zhang L, Lin Q, Yue Y, Yan Y, Beausoleil RG, Willner AE. Silicon waveguide with four zero-dispersion wavelengths and its application in on-chip octave-spanning supercontinuum generation. Opt Express 2012;20:1685–90.CrossrefGoogle Scholar

[61]

Zhu M, Liu H, Li X, Huang N, Sun Q, Wen J, Wang Z. Ultrabroadband flat dispersion tailoring of dual-slot silicon waveguides. Opt Express 2012;20:15899–907.CrossrefGoogle Scholar

[62]

Wang S, Hu J, Guo H, Zeng X. Optical Cherenkov radiation in an As2S3 slot waveguide with four zero-dispersion wavelengths. Opt Express 2013;21:3067–72.Google Scholar

[63]

Roy S, Biancalana F. Formation of quartic solitons and a localized continuum in silicon-based slot waveguides. Phys Rev A 2013;87:025801.CrossrefGoogle Scholar

[64]

Monat C, de Sterke M, Eggleton BJ. Slow light enhanced nonlinear optics in periodic structures. J Opt 2010;12:104003.CrossrefGoogle Scholar

[65]

Boyd RW. Material slow light and structural slow light: similarities and differences for nonlinear optics [Invited]. J Opt Soc Am B 2011;28:A38–44.CrossrefGoogle Scholar

[66]

Bao C, Hou J, Wu H, Zhou X, Cassan E, Gao X, Zhang D. Low dispersion slow light in slot waveguide grating. IEEE Photon. Technol Lett 2011;23:1700–2.CrossrefGoogle Scholar

[67]

Claps R, Dimitropoulos D, Raghunathan V, Han Y, Jalali B. Observation of stimulated Raman amplification in silicon waveguides. Opt Express 2003;11:1731–9.CrossrefGoogle Scholar

[68]

Espinola RL, Dadap JI, Osgood RM, Jr., McNab SJ, Vlasov YA. Raman amplification in ultrasmall silicon-on-insulator wire waveguides. Opt Express 2004;12:3713–8.CrossrefGoogle Scholar

[69]

Xu Q, Almeida VR, Lipson M. Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides. Opt Express 2004;12:4437–42.CrossrefGoogle Scholar

[70]

Liu A, Rong H, Paniccia M, Cohen O, Hak D. Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering. Opt Express 2004;12:4261–8.CrossrefGoogle Scholar

[71]

Rong H, Liu A, Nicolaescu R, Paniccia M, Cohen O, Hak D. Raman gain and nonlinear optical absorption measurement in a low-loss silicon waveguide. Appl Phys Lett 2004;85:2196–8.CrossrefGoogle Scholar

[72]

Liang TK, Tsang HK. Efficient Raman amplification in silicon-on-insulator waveguides. Appl Phys Lett 2004;85:3343–5.CrossrefGoogle Scholar

[73]

Boyraz O, Jalali B. Demonstration of a silicon Raman laser. Opt Express 2004;12:5269–73.CrossrefGoogle Scholar

[74]

Krause M, Renner H, Brinkmeyer E. Analysis of Raman lasing characteristics in silicon-on-insulator waveguides. Opt Express 2004;12:5703–10.CrossrefGoogle Scholar

[75]

Xu Q, Almeida VR, Lipson M. Demonstration of high Raman gain in a submicrometer-size silicon-on-insulator waveguide. Opt Lett 2005;30:35–7.CrossrefGoogle Scholar

[76]

Rong H, Liu A, Jones R, Cohen O, Hak D, Nicolaescu R, Fang A, Paniccia M. An all-silicon Raman laser. Nature 2005;433:292–4.CrossrefGoogle Scholar

[77]

Rong H, Jones R, Liu A, Cohen O, Hak D, Fang A, Paniccia M. A continuous-wave Raman silicon laser. Nature 2005;433:725–8.CrossrefGoogle Scholar

[78]

Chen X, Panoiu NC, Osgood RM, Jr. Theory of Raman-mediated pulsed amplification in silicon-wire waveguides. IEEE J Quantum Electron 2006;42:160–70.CrossrefGoogle Scholar

[79]

Rong H, Kuo Y-H, Xu S, Cohen O, Raday O, Paniccia M. Recent development on silicon-based Raman lasers and amplifiers. Proc SPIE 6389, 638904-1-9, 2006.Google Scholar

[80]

Okawachi Y, Foster MA, Sharping JE, Gaeta AL, Xu Q, Lipson M. All-optical slow-light on a photonic chip. Opt Express 2006;14:2317–22.CrossrefGoogle Scholar

[81]

Jalali B, Raghunathan V, Dimitropoulos D, Boyraz O. Raman-based silicon photonics. IEEE J Sel Top Quantum Electron 2006;12:412–21.CrossrefGoogle Scholar

[82]

Rong H, Xu S, Kuo Y, Sih V, Cohen O, Raday O, Paniccia M. Low-threshold continuous-wave Raman silicon laser. Nature Photon 2007;1:232–7.CrossrefGoogle Scholar

[83]

De Leonardis F, Passaro VMN. Ultrafast Raman pulses in SOI waveguides for nonlinear signal processing. IEEE J Sel Top Quant 2008;14:739–51.CrossrefGoogle Scholar

[84]

Tsang HK, Wong CS, Liang TK, Day IE, Roberts SW, Harpin A, Drake J, Asghari M. Optical dispersion, two-photon absorption, and self-phase modulation in silicon waveguides at 1.5 μm wavelength. Appl Phys Lett 2002;80:416–8.Google Scholar

[85]

Boyraz O, Indukuri T, Jalali B. Self-phase-modulation induced spectral broadening in silicon waveguides. Opt Express 2004;12:829–34.CrossrefGoogle Scholar

[86]

Rieger GW, Virk KS, Yong JF. Nonlinear propagation of ultrafast 1.5 μm pulses in high-index-contrast silicon-on-insulator waveguides. Appl Phys Lett 2004;84:900–2.Google Scholar

[87]

Dulkeith E, Vlasov YA, Chen X, Panoiu NC, Osgood RM. Jr. Self-phase-modulation in submicron silicon-on-insulator photonic wires. Opt Express 2006;14:5524–34.CrossrefGoogle Scholar

[88]

Hsieh I-W, Chen X, Dadap JI, Panoiu NC, Osgood RM, Jr., McNab SJ, Vlasov YA. Ultrafast-pulse self-phase modulation and third-order dispersion in Si photonic wire-waveguides. Opt Express 2006;14:12380–7.CrossrefGoogle Scholar

[89]

Hsieh I-W, Chen X, Dadap JI, Panoiu NC, Osgood RM, Jr., McNab SJ, Vlasov YA. Cross phase modulation-induced spectral and temporal effects on co-propagating femtosecond pulses in silicon photonic wires. Opt Express 2007;15:1135–46.CrossrefGoogle Scholar

[90]

Zhang J, Lin Q, Piredda G, Boyd RW, Agrawal GP, Fauchet PM. Optical solitons in a silicon waveguide. Opt Express 2007;15:7682–8.CrossrefGoogle Scholar

[91]

Salem R, Foster MA, Turner AC, Geraghty DF, Lipson M, Gaeta AL. All-optical regeneration on a silicon chip. Opt Express 2007;15:7802–9.CrossrefGoogle Scholar

[92]

Claps R, Raghunathan V, Dimitropoulos D, Jalali B. Anti-Sotkes Raman conversion in silicon waveguides. Opt Express 2003;11:2862–72.CrossrefGoogle Scholar

[93]

Espinola RL, Dadap JI, Osgood RM, Jr., McNab SJ, Vlasov YA. C-band wavelength conversion in silicon photonic wire waveguides. Opt Express 2005;13:4341–9.CrossrefGoogle Scholar

[94]

Fukuda H, Yamada K, Shoji T, Takahashi M, Tsuchizawa T, Watanabe T, Takahashi J, Itabashi S. Four-wave mixing in silicon wire waveguides. Opt Express 2005;13:4629–37.CrossrefGoogle Scholar

[95]

Rong H, Kuo Y, Liu A, Paniccia M, Cohen O. High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides. Opt Express 2006;14:1182–8.Google Scholar

[96]

Lin Q, Zhang J, Fauchet PM, Agrawal GP. Ultrabroadband parametric generation and wavelength conversion in silicon waveguides. Opt Express 2006;14:4786–99.CrossrefGoogle Scholar

[97]

Foster MA, Turner AC, Sharping JE, Schmidt BS, Lipson M, Gaeta AL. Broad-band optical parametric gain on a silicon photonic chip. Nature 2006;441:960–3.CrossrefGoogle Scholar

[98]

Yamada K, Fukuda H, Tsuchizawa T, Watanabe T, Shoji T, Itabashi S. All-optical efficient wavelength conversion using silicon photonic wire waveguide. IEEE Photon Technol Lett 2006;18:1046–8.CrossrefGoogle Scholar

[99]

Kuo Y, Rong H, Sih V, Xu S, Paniccia M, Cohen O. Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides. Opt Express 2006;14:11721–6.CrossrefGoogle Scholar

[100]

Foster MA, Turner AC, Salem R, Lipson M, Gaeta AL. Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides. Opt Express 2007;15:12949–58.CrossrefGoogle Scholar

[101]

Dai Y, Chen X, Okawachi Y, Turner-Foster AC, Foster MA, Lipson M, Gaeta AL, Xu C. 1 μs tunable delay using parametric mixing and optical phase conjugation in Si waveguides. Opt Express 2009;17:7004–10.CrossrefGoogle Scholar

[102]

De Leonardis F, Passaro VMN. Efficient wavelength conversion in optimized SOI waveguides via pulsed four wave mixing. IEEE J Lightwave Technol 2011;29:3523–35.CrossrefGoogle Scholar

[103]

Yin L, Lin Q, Agrawal GP. Soliton fission and supercontinuum generation in silicon waveguides. Opt Lett 2007;32:391–3.CrossrefGoogle Scholar

[104]

Koonath P, Solli DR, Jalali B. Continuum generation and carving on a silicon chip. Appl Phys Lett 2007;91:061111.CrossrefGoogle Scholar

[105]

Hsieh I-W, Chen X, Liu X, Dadap JI, Panoiu NC, C-Chou Y, Xia F, Green WM, Vlasov YA, Osgood RM. Jr. Supercontinuum generation in silicon photonic wires. Opt Express 2007;15:15242–8.CrossrefGoogle Scholar

[106]

Kuyken B, Liu X, Osgood RM, Jr., Baets R, Roelkens G, Green WMJ. Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides. Opt Express 2011;19:20172–81.CrossrefGoogle Scholar

[107]

DeVore PTS, Solli DR, Ropers C, Koonath P, Jalali B. Stimulated supercontinuum generation extends broadening limits in silicon. Appl Phys Lett 2012;100:101111.CrossrefGoogle Scholar

[108]

Zhang L, Lin Q, Yue Y, Yan Y, Beausoleil RG, Agarwal A, Kimerling LC, Michel J, Wilner AE. On-chip octave-spanning supercontinuum in nanostructured silicon waveguides using ultralow pulse energy. IEEE J Sel Top Quant 2012;18:1799–806.CrossrefGoogle Scholar

[109]

Claps R, Raghunathan V, Dimitropoulos D, Jalali B. Influence of nonlinear absorption on Raman amplification in silicon waveguides. Opt Express 2004;12:2774–80.CrossrefGoogle Scholar

[110]

Yin L, Agrawal GP. Impact of two-photon absorption on self-phase modulation in silicon waveguides. Opt Lett 2007;32:2031–3.CrossrefGoogle Scholar

[111]

Ikeda K, Saperstein RE, Alic N, Fainman Y. Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides. Opt Express 2008;16:12987–94.CrossrefGoogle Scholar

[112]

Levy JS, Gondarenko A, Foster MA, Turner-Foster AC, Gaeta AL, Lipson M. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nat Photonics 2010;4:37–40.CrossrefGoogle Scholar

[113]

Tan DTH, Ikeda K, Sun PC, Fainman Y. Group velocity dispersion and self phase modulation in silicon nitride waveguides. Appl Phys Lett 2010;96:061101.CrossrefGoogle Scholar

[114]

Zhang L, Yan Y, Yue Y, Lin Q, Painter O, Beausoleil RG, Willner AE. On-chip two-octave supercontinuum generation by enhancing self-steepening of optical pulses. Opt Exp 2011;19:11584–90.CrossrefGoogle Scholar

[115]

Halir R, Okawachi Y, Levy JS, Foster MA, Lipson M, Gaeta AL. Ultrabroadband supercontinuum generation in a CMOS-compatible platform. Opt Lett 2012;37:1685.CrossrefGoogle Scholar

[116]

Ye J. Frequency comb spectroscopy from mid-infrared to extreme ultraviolet. Conference on Lasers and Electro-Optics (CLEO) 2012 Tutorial, CW1J.4Google Scholar

[117]

Popmintchev T, Chen M-C, Popmintchev D, Arpin P, Brown S, Alisauskas S, Andriukaitis G, Balciunas T, Mucke OD, Pugzlys A, Baltuska A, Shim B, Schrauth SE, Gaeta A, Hernandez-Garcia C, Plaja L, Becker A, Jaron-Becker A, Murnane MM, Kapteyn HC. Bright coherent ultrahigh harmonics in the keV x-ray regime from mid-infrared femtosecond lasers. Science 2012;336:1287–91.CrossrefGoogle Scholar

[118]

Qin GS, Yan X, Kito C, Liao M, Chaudhari C, Suzuki T, Ohishi Y. Ultrabroadband supercontinuum generation from ultraviolet to 6.28 µm in a fluoride fiber. Appl Phys Lett 2009;95: 161103–1–161103-3.Google Scholar

[119]

Soref RA, Emelett SJ, Buchwald WR. Silicon waveguided components for the long-wave infrared region. J Opt A 2006;8:840–8.CrossrefGoogle Scholar

[120]

Soref R. Towards Silicon-based Longwave Integrated Optoelectronics (LIO), SPIE Proceedings 6898 (2008) paper 6898-5, SPIE Photonics West, Silicon Photonics III Conference, San Jose, CA (21 Jan 2008).Google Scholar

[121]

Mashanovich GZ, Milosevic M, Matavulj P, Timotijevic B, Stankovic S, Yang PY, Teo EJ, Breese MBH, Bettiol AA, Reed GT. Silicon photonic waveguides for different wavelength regions. Semiconductor Sci Technol 2008;23:064002.CrossrefGoogle Scholar

[122]

Soref R. Mid-infrared photonics in silicon and germanium. Nat Photonics 2010;4:495–7.CrossrefGoogle Scholar

[123]

Green WMJ, Liu X, Osgood RM, Vlasov YA. Mid-infrared nonlinear optics in silicon photonic wire waveguides. Photonics Society Summer Topical Meeting Series 2010:62–63.Google Scholar

[124]

Milosevic MM, Nedeljkovic M, Masaud T-B, Jaberansary E, Chong HMH, Emerson NG, Reed GT, Mashanovich GZ. Silicon waveguides and devices for the mid-infrared. Appl Phys Lett 2012;101:121105.CrossrefGoogle Scholar

[125]

Soref R. Group IV photonics for the mid infrared, SPIE Photonics West 2013, Proc. of SPIE 2013;8629:paper 862902.Google Scholar

[126]

Crowder JG, Smith SD, Vass A, Keddie J. Infrared methods for gas detection. in Mid-Infrared Semiconductor Optoelectronics. New York: Springer-Verlag, 2006.Google Scholar

[127]

George Socrates. Infrared and Raman Characteristic Group Frequencies: Tables and Charts. 3^{rd} Ed, Chichester: John Wiley & Sons. 2001.Google Scholar

[128]

Longshore R, Raimondi P, Lumpkin M. Selection of detector peak wavelength for optimum infrared system performance. Infrared Phys 1976;16:639–47.CrossrefGoogle Scholar

[129]

Findlay GA, Cutten DR. Comparison of performance of 3–5-and 8–12-µm infrared systems. Appl Opt 1989;28:5029–37.CrossrefGoogle Scholar

[130]

Labadie L, Wallner O. Mid-infrared guided optics: a perspective for astronomical instruments. Opt Express 2009;17:1947–62.CrossrefGoogle Scholar

[131]

Pearl S, Rotenberg N, van Driel HM. Three photon absorption in silicon for 2300–3300 nm. Appl Phys Lett 2008;93:131102.Google Scholar

[132]

Wang Z, Liu H, Huang N, Sun Q, Wen J, Li X. Influence of three-photon absorption on Mid-infrared cross-phase modulation in silicon-on-sapphire waveguides. Opt Express 2013;21:1840–8.CrossrefGoogle Scholar

[133]

Hon NK, Soref RA, Jalali B. The third-order nonlinear optical coefficients of Si, Ge, and Si_{1-x}Ge_{x} in the midwave and longwave infrared. J Appl Phys 2011;110:011301.Google Scholar

[134]

Sheik-Bahae M, Hutchings DC, Hagan DJ, Stryland EWV. Dispersion of bound electric nonlinear refraction in solids. IEEE J Quant Electron 1991;27:1296–1309.CrossrefGoogle Scholar

[135]

Jalali B, Raghunathan V, Shori R, Fathpour S. Prospects for silicon mid-IR Raman lasers. IEEE J Sel Top Quantum Electron 2006;12:1618–27.CrossrefGoogle Scholar

[136]

Raghunathan V, Borlaug D, Rice RR, Jalali B. Demonstration of a mid-infrared silicon Raman amplifier. Opt Express 2007;15:14355–62.CrossrefGoogle Scholar

[137]

Chavez Boggio JM, Windmiller JR, Knutzen M, Jiang R, Bres C, Alic N, Stossel B, Rottwitt K, Radic S. 730-nm optical parametric conversion from near- to short-wave infrared band. Opt Express 2008;16:5435–43.Google Scholar

[138]

Lin Q, Johnson TJ, Perahia R, Michael CP, Painter OJ. A proposal for highly tunable optical parametric oscillation in silicon micro-resonators. Opt Express 2008;16:10596–610.CrossrefGoogle Scholar

[139]

Turner-Foster AC, Foster MA, Salem R, Gaeta AL, Lipson M. Frequency conversion over two-thirds of an octave in silicon nanowaveguides. Opt Express 2010;18:1904–8.CrossrefGoogle Scholar

[140]

Liu X, Osgood RM, Vlasov YA, Green WMJ. Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides. Nat Photonics 2010;4:557–60.CrossrefGoogle Scholar

[141]

Zlatanovic S, Park JS, Moro S, Boggio JMC, Divliansky IB, Alic N, Mookherjea S, Radic S. Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source. Nat Photonics 2010;4:561–4.CrossrefGoogle Scholar

[142]

Tien EK, Huang YW, Gao S, Song Q, Qian F, Kalyoncu SK, Boyraz O. Discrete parametric band conversion in silicon for mid-infrared applications. Opt Exp 2010;18:21981–9.CrossrefGoogle Scholar

[143]

Lau RKW, Ménard M, Okawachi Y, Foster MA, A. C. Turner-Foster, Salem R, Lipson M, Gaeta AL. Continuous-wave mid-infrared frequency conversion in silicon nanowaveguides. Opt Lett 2011;36:1263–5.CrossrefGoogle Scholar

[144]

Roelkens G, Green WMJ, Kuyken B, Liu X, Hattasan N, Gassenq A, Cerutti L, Rodriguez JB, Osgood RM, Tournie E, Baets R. III-V/silicon photonics for short-wave infrared spectroscopy. IEEE J Quant Electron 2012;48:292–8.CrossrefGoogle Scholar

[145]

Alloatti L, Korn D, Weimann C, Koos C, Freude W, Leuthold J. Second-order nonlinear silicon-organic hybrid waveguides. Opt Express 2012;20:20506–15.CrossrefGoogle Scholar

[146]

Harris DC. Durable 3–5 μm transmitting infrared window materials. Infrared Phys Technol 1998;39:185–201.CrossrefGoogle Scholar

[147]

Carlie N, Musgraves JD, Zdyrko B, Luzinov I, Hu J, Singh V, Agarwal A, Kimerling LC, Canciamilla A, Morichetti F, Melloni A, Richardson K. Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges. Opt Express 2010;18:26728–43.CrossrefGoogle Scholar

[148]

Eggleton BJ, B. Luther-Davies, Richardson K. Chalcogenide photonics. Nat Photonics 2011;5:141–8.Google Scholar

[149]

Madden SJ, Vu KT. High-Performance Integrated Optics with Tellurite Glasses: Status and Prospects. Int J Appl Glass Sci 2012;3:289–98.CrossrefGoogle Scholar

[150]

Bindra KS, Bookey HT, Kar AK, Wherrett BS, Liu X, Jha A. Nonlinear optical properties of chalcogenide glasses: observation of multiphoton absorption. App Phys Lett 2001;79:1939–41.CrossrefGoogle Scholar

[151]

Zakery A, Ruan Y, A.Rode V, Samoc M, Luther-Davies B. Low-loss waveguides in ultrafast laser-deposited As2S3 chalcogenide films. J Opt Soc Am B 2003;9:1844–52.Google Scholar

[152]

Lenz G, Zimmermann J, Katsufuji T, M.Lines E, Hwang HY, Spalter S, Slusher RE, Cheong SW, Sanghera JS, Aggarwal ID. Large Kerr effect in bulk Se-based chalcogenide glasses. Opt Lett 2000;25:254–6.CrossrefGoogle Scholar

[153]

Sanghera JS, Shaw LB, Aggarwal ID. Application of chalcogenide glass optical fibers. C.R. Chimie 2002;5:873–83.CrossrefGoogle Scholar

[154]

Palik ED. Handbook of optical constants of solids. San Diego, CA: Academic, 1998.Google Scholar

[155]

Philipp HR. Optical properties of silicon nitride. J Electrochem Soc 1973;120:295–300.CrossrefGoogle Scholar

[156]

Malitson IH. Interspecimen comparison of the refractive index of fused silica. J Opt Soc Am 1965;55:1205–8.CrossrefGoogle Scholar

[157]

Barnes NP, Piltch MS. Temperature-dependent Sellmeier coefficients and nonlinear optics average power limit for germanium. J Opt Soc Am 1979;69:178–80.CrossrefGoogle Scholar

[158]

Rodney WS, Malitson IH, King TA. Refractive index of arsenic trisulfide. J Opt Soc Am 1958;48:633–636.CrossrefGoogle Scholar

[159]

Ellipsometry measurement on the thin film samples by our group.Google Scholar

[160]

Bristow AD, Rotenberg N, van Driel HM. Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm. Appl Phys Lett 2007;90:191104.Google Scholar

[161]

Lin Q, Zhang J, Piredda G, Boyd RW, Fauchet PM, Agrawal GP. Dispersion of silicon nonlinearities in the near infrared region. Appl Phys Lett 2007;91:021111.CrossrefGoogle Scholar

[162]

Mizrahi V, DeLong KW, Stegeman GI, Saifi MA, Andrejco MJ. Two-photon absorption as a limitation to all-optical switching. Opt Lett 1989;14:1140–2.CrossrefGoogle Scholar

[163]

Guider R, N.Daldosso, A.Pitanti, E.Jordana, Fedeli J-M, Pavesi L. NanoSi low loss horizontal slot waveguides coupled to high Q ring resonators. Opt Express 2009;17:20762–70, and its erratum.CrossrefGoogle Scholar

[164]

Ferrera M, Razzari L, Duchesne D, Morandotti R, Yang Z, Liscidini M, Sipe JE, Chu S, Little BE, Moss DJ. Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures. Nat Photonics 2008;2: 737–40.CrossrefGoogle Scholar

[165]

Smektala F, Quemard C, Leneindre L, Lucas J, Barthelemy A, De Angelis C. Chalcogenide glasses with large non-linear refractive indices. J Non-Crystalline Solids 1998;239:139–42.Google Scholar

[166]

Boudebs G, Sanchez F, Troles J, Smektala F. Nonlinear optical properties of chalcogenide glasses- comparison between Mach-Zehnder interferometry and Z-scan techniques. Opt Comm 2001;199:425–33.CrossrefGoogle Scholar

[167]

Asobe M, Suzuki K, Kanamori T, Kubodera K. Nonlinear refractive index measurement in chalcogenide-glass fibers by self-phase modulation. APL 1992;60:1153–4.Google Scholar

[168]

Asobe M, Kanamori T, Kubodera K. Ultrafast all-optical switching using highly nonlinear chalcogenide glass fiber. IEEE Photon Technol Lett 1992;4:362–5.CrossrefGoogle Scholar

[169]

Asobe M, Kanamori T, Kubodera K. Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches. IEEE J Quant Electron 1993;29:2325–33.CrossrefGoogle Scholar

[170]

Ruan Y, Luther-Davies B, Li W, Rode A, Kolev V, Madden S. Large phase shifts in As2S3 waveguides for all-optical processing devices. Opt Lett 2005;30:2605–7.CrossrefGoogle Scholar

[171]

Laniel JM, Hô N, Vallée R, Villeneuve A. Nonlinear-refractive-index measurement in As2S3 channel waveguides by asymmetric self-phase modulation. J Opt Soc Am B 2005;22:437–45.CrossrefGoogle Scholar

[172]

Cerqua-Richardson KA, McKinley JM, Lawrence B, Joshi S, Villeneuve A. Comparison of nonlinear optical properties of sulfide glasses in bulk and thin film form. Opt Mater 1998;10:155–9.CrossrefGoogle Scholar

[173]

Harbold JM, Ilday FÖ, Wise FW, Sanghera JS, Nguyen VQ, Shaw LB, Aggarwal ID. Highly nonlinear As-S-Se glasses for all-optical switching. Opt Lett 2002;27:119–121.CrossrefGoogle Scholar

[174]

Ruan YL, Li WT, Jarvis R, Madsen N, Rode A, Luther-Davies B. Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching. Opt Express 2004;12:5140–5.CrossrefGoogle Scholar

[175]

Slusher RE, Lenz G, Hodelin J, Sanghera J, Shaw LB, Aggarwal ID. Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers. J Opt Soc Am B 2004;21:1146–55.Google Scholar

[176]

Jacobsen R, Andersen K, Borel P, Fage-Pedersen J, Frandsen L, Hansen O, Kristensen M, Lavrinenko A, Moulin G, Ou H, Peucheret C, Zsigri B, Bjarklev A. Strained silicon as a new electro-optic material. Nature 2006;441:199–202.CrossrefGoogle Scholar

[177]

Cazzanelli M, Bianco F, Borga E, Pucker G, Ghulinyan M, Degoli E, Luppi E, Véniard V, Ossicini S, Modotto D, Wabnitz S, Pierobon R, Pavesi L. Second-harmonic generation in silicon waveguides strained by silicon nitride. Nat Mater 2011;11:148–54.CrossrefGoogle Scholar

[178]

Avrutsky I, Soref R. Phase-matched sum frequency generation in strained silicon waveguides using their second-order nonlinear optical susceptibility. Opt Express 2011;19:21707–16.CrossrefGoogle Scholar

[179]

Ghahramani E, Moss DJ, Sipe JE. Second-harmonic generation in odd-period, strained, (Si)n(Ge)n/Si superlattices and at Si/Ge interfaces. Phys Rev Lett 1990;64:2815–8.CrossrefGoogle Scholar

[180]

Levy JS, Foster MA, Gaeta AL, Lipson M. Harmonic generation in silicon nitride ring resonators. Opt Express 2011;19:11415.CrossrefGoogle Scholar

[181]

Zakery A, Elliott SR. Optical nonlinearities in chalcogenide glasses and their applications, Springer Series in Optical Sciences 2007;135.Google Scholar

[182]

Lee KK, Lim DR, Kimerling LC, Shin J, Cerrina F. Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction. Opt Lett 2001;26:1888–90.CrossrefGoogle Scholar

[183]

Cardenas J, Poitras CB, Robinson JT, Preston K, Chen L, Lipson M. Low loss etchless silicon photonic waveguides. Opt Express 2009;17:4752–7.CrossrefGoogle Scholar

[184]

Biberman A, Shaw MJ, Timurdogan E, Wright JB, Watts MR. Ultralow-loss silicon ring resonators. Opt Lett 2012;37:4236–8.CrossrefGoogle Scholar

[185]

Walmsley IA, Waxer L, Dorrer C. The role of dispersion in ultrafast optics. Rev Sci Instrum 2001;72:1–29.CrossrefGoogle Scholar

[186]

Torres JP, M.Hendrych, Valencia A. Angular dispersion: an enabling tool in nonlinear and quantum optics. Adv Opt Photon 2010;2:319–69.CrossrefGoogle Scholar

[187]

Yin LH, Lin Q, Agrawal GP. Dispersion tailoring and soliton propagation in silicon waveguides. Opt Lett 2006;31:1295–7.CrossrefGoogle Scholar

[188]

Dulkeith E, Xia FN, Schares L, Green WMJ, Vlasov YA. Group index and group velocity dispersion in silicon-on-insulator photonic wires. Opt Express 2006;14:3853–63.CrossrefGoogle Scholar

[189]

Turner AC, Manolatou C, Schmidt BS, Lipson M. Tailored anomalous group-velocity dispersion in silicon channel waveguides. Opt Express 2006;14:4357–62.CrossrefGoogle Scholar

[190]

Dadap JI, Panoiu NC, Chen X, I-Hsieh W, Liu X, Chou C-Y, Dulkeith E, McNab SJ, Xia F, Green WMJ, Sekaric L, Vlasov YA, Osgood RM. Jr. Nonlinear-optical phase modification in dispersion-engineered Si photonic wires. Opt Express 2008;16:1280–99.CrossrefGoogle Scholar

[191]

Milosevic MM, Matavulj PS, Yang PY, Bagolini A, Mashanovich GZ. Rib waveguides for mid-infrared silicon photonics. J Opt Soc Am B 2009;26:1760–6.CrossrefGoogle Scholar

[192]

Mashanovich GZ, Milošević MM, Nedeljkovic M, Owens N, Xiong B, Teo EJ, Hu Y. Low loss silicon waveguides for the mid-infrared. Opt Express 2011;19:7112–9.CrossrefGoogle Scholar

[193]

Reimer C, Nedeljkovic M, Stothard DJM, Esnault MOS, Reardon C, O’Faolain L, Dunn M, Mashanovich GZ, Krauss TF. Mid-infrared photonic crystal waveguides in silicon. Opt Express 2012;20:29361–8.CrossrefGoogle Scholar

[194]

Baehr-Jones T, Spott A, Ilic R, Spott A, Penkov B, Asher W, Hochberg M. Silicon-on-sapphire integrated waveguides for the midinfrared. Opt Express 2010;18:12127–35.CrossrefGoogle Scholar

[195]

Li F, Jackson S, Grillet C, Magi E, Hudson D, Madden SJ, Moghe Y, O’Brien C, Read A, Duvall SG, Atanackovic P, Eggleton BJ, Moss D. Low propagation loss silicon-on-sapphire waveguides for the midinfrared. Opt Express 2011;19:15212–20.CrossrefGoogle Scholar

[196]

Yue Y, Zhang L, Huang H, Beausoleil RG, Willner AE. Silicon-on-nitride waveguide with ultralow dispersion over an octave-spanning mid-infared wavelength range. IEEE Photonics J 2012;4:126–32.Google Scholar

[197]

Khan S, Chiles J, Ma J, Fathpour S. Silicon-on-nitride waveguides for mid-and near-infrared integrated photonics. Appl Phys Lett 2013;102:121104.CrossrefGoogle Scholar

[198]

Cheng Z, Chen X, Wong CY, Xu K, Tsang HK. Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator. IEEE Photonics J 2012;4:1510–9.CrossrefGoogle Scholar

[199]

Lin P-T, Singh V, Cai Y, Kimerling LC, Agarwal A. Air-clad silicon pedestal structures for broadband mid-infrared microphotonics. Opt Lett 2013;38:1031–3.CrossrefGoogle Scholar

[200]

Chang YC, Paeder V, Hvozdara L, Hartmann JM, Herzig HP. Low-loss germanium strip waveguides on silicon for the mid-infrared. Opt Lett 2012;37:2883–5.CrossrefGoogle Scholar

[201]

Zhang L, Yue Y, Y. Xiao-Li, R. G. Beausoleil Willner AE. Highly dispersive slot waveguides. Opt Express 2009;17:7095–101.CrossrefGoogle Scholar

[202]

Zhang L, Yue Y, Beausoleil RG, Willner AE. Analysis and engineering of chromatic dispersion in silicon waveguide bends and ring resonators. Opt Express 2011;19:8102–7.CrossrefGoogle Scholar

[203]

Zhang L, Mu J, Singh V, Agarwal A, Kimerling LC, Michel J. Intra-cavity dispersion of microresonators and its engineering for octave-spanning Kerr frequency comb generation. to be published.Google Scholar

[204]

Lin Q, Zhang L. Generalized nonlinear envelope equation with high-order dispersion of nonlinearity. to be published.Google Scholar

[205]

Wang Y, Yue R, Han H, Liao X. Raman study of structural order of a-SiNx:H and its change upon thermal annealing. J Non-Crystalline Solids 2001;291:107–12.Google Scholar

[206]

Brida D, Marangoni M, Manzoni C, De Silvestri S, Cerullo G. Two-optical-cycle pulses in the mid-infrared from an optical parametric amplifier. Opt Lett 2008;33:2901–3.CrossrefGoogle Scholar

[207]

Brida D, Manzoni C, Cirmi G, Marangoni M, Bonora S, Villoresi P, De Silvestri S, Cerullo G. Few-optical-cycle pulses tunable from the visible to the mid-infrared by optical parametric amplifiers. J Opt 2010;12:013001.CrossrefGoogle Scholar

[208]

Kippenberg TJ, Holzwarth R, Diddams SA. Microresonator-based optical frequency combs. Science 2011;332:555–9.CrossrefGoogle Scholar

[209]

Levy JS, Gondarenko A, Foster MA, Turner-Foster AC, Gaeta AL, Lipson M. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nat Photonics 2009;4:37–40.Google Scholar

[210]

Del’Haye P, Herr T, Gavartin E, Gorodetsky ML, Holzwarth R, Kippenberg TJ. Octave spanningtunable frequency comb from a microresonator. Phys Rev Lett 2011;107:063901.CrossrefGoogle Scholar

[211]

Okawachi Y, Saha K, Levy JS, Wen YH, Lipson M, Gaeta AL. Octave-spanning frequency combgeneration in a silicon nitride chip. Opt Lett 2011;36:3398–400.CrossrefGoogle Scholar

[212]

Matsko AB, Savchenkov AA, Liang W, Ilchenko VS, Seidel D, Maleki L. Mode-locked Kerr frequency combs. Opt Lett 2011;36:2845–7.CrossrefGoogle Scholar

[213]

Herr T, Brasch V, Jost JD, Wang CY, Kondratiev NM, Gorodetsky ML, Kippenberg TJ. Temporal solitons in optical microresonators. http://arxiv.org/abs/1211.0733.

[214]

Saha K, Okawachi Y, Shim B, Levy JS, Salem R, Johnson AR, Foster MA, Lamont MR, Lipson M, Gaeta AL. Modelocking and femtosecond pulse generation in chip-based frequency combs. Opt Express 2013;21:1335–43.CrossrefGoogle Scholar

[215]

Coen S, Erkintalo M. Universal scaling laws of Kerr frequency combs. Opt Lett 2013;38:1790–2.CrossrefGoogle Scholar

[216]

Lugiato LA, Lefever R. Spatial dissipative structures in passive optical-systems. Phys Rev Lett 1987;58:2209–11.CrossrefGoogle Scholar

[217]

Haelterman M, Trillo S, Wabnitz S. Dissipative modulation instability in a nonlinear dispersive ring cavity. Opt Commun 1992;91:401–7.CrossrefGoogle Scholar

[218]

Coen S, Randle HG, Sylvestre T, Erkintalo M. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model. Opt Lett 2013;38:37–9.CrossrefGoogle Scholar

[219]

Chembo YK, Menyuk CR. Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators. Phys Rev A 2013;87:053852.CrossrefGoogle Scholar

[220]

Foltynowicz A, Mas1owski P, Ban T, Adler F, Cossel KC, Briles TC, Ye J. Optical frequency comb spectroscopy, Faraday Discussion. 2011;150:23–31.Google Scholar

[221]

Hartl I, Li XD, Chudoba C, Ghanta RK, Ko TH, Fujimoto JG, Ranka JK, Windeler RS, Ultrahigh-resolution optical coherence tomography using continuum generation in an air silica microstructure optical fiber. Opt Lett 2001;26:608–10.CrossrefGoogle Scholar

[222]

Brabec T, Krausz F. Intense few-cycle laser fields: Frontiers of nonlinear optics. Rev Mod Phys 2000;72:545–91.CrossrefGoogle Scholar

[223]

Hu J, Meyer J, Richardson K, Shah L. Feature issue introduction: mid-IR photonic materials. Opt Mater Express 2013;3:1571–5.CrossrefGoogle Scholar

[224]

Private communications with Dr. Jacob Levy in Prof. Lipson’s group and Dr. Johann Riemensberger in Prof. Kippenberg’s group.Google Scholar

[225]

Zhang J, Lin Q, Piredda G, Boyd RW, Agrawal GP, Fauchet PM. Anisotropic nonlinear response of silicon in the near-infrared region. Appl Phys Lett 2007;91:071113.CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.