[1]

Korpel A. Acousto-optics. 2nd ed. New York: CRC Press, 1996.Google Scholar

[2]

Kippenberg TJ, Vahala KJ. Cavity optomechanics: back-action at the mesoscale. Science 2008;321:1172–6.Google Scholar

[3]

Aspelmeyer M, KippenbergTJ, Marquardt F. Cavity Optomechanics, arXiv:1303.0733.Google Scholar

[4]

Favero I, Karrai K. Optomechanics of deformable optical cavities. Nat Photon 2009;3:201–5.CrossrefGoogle Scholar

[5]

Eichenfield M, Camacho R, Chan J, Vahala KJ, Painter O. A picogram- and nanometre-scale photonic-crystal optomechanical cavity. Nature 2009;459:550–5.Google Scholar

[6]

Eichenfield M, Chan J, Camacho RM, Vahala KJ, Painter O. Optomechanical crystals. Nature 2009;462:78–82.Google Scholar

[7]

Chan J, Mayer Alegre TP, Safavi-Naeini AH, Hill JT, Krause A, Gröblacher S, Aspelmeyer M, Painter O. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 2011;478:89–92.Google Scholar

[8]

Safavi-Naeini AH, Mayer Alegre TP, Chan J, Eichenfield M, Winger M, Lin Q, Hill JT, Chang DE, Painter O. Electromagnetically induced transparency and slow light with optomechanics. Nature 2011;472:69–73.CrossrefGoogle Scholar

[9]

Weis S, Rivière R, Deléglise S, Gavartin E, Arcizet O, Schliesser A, Kippenberg TJ. Optomechanically induced transparency. Science 2010;300:1520–3.CrossrefGoogle Scholar

[10]

Gavartin E, Braive R, Sagnes I, Arcizet O, Beveratos A, Kippenberg TJ, Robert-Philip I. Optomechanical coupling in a two-dimensional photonic crystal defect cavity. Phys Rev Lett 2011;106:203902.CrossrefGoogle Scholar

[11]

Rolland Q, Oudich M, El-Jallal S, Dupont S, Pennec Y, Gazalet J, Kastelik JC, Leveque G, Djafari-Rouhani B. Acousto-optic couplings in two-dimensional phoxonic crystal cavities. Appl Phys Lett 2012;101:061109.CrossrefGoogle Scholar

[12]

Pennec Y, Djafari-Rouhani B, El-Boudouti EH, Li C, El-Hassouani Y, Vasseur J, Papanikolaou N, Benchabane S, Laude V, Martinez A. Simultaneous existence of phononic and photonic band gaps in periodic crystal slabs. Opt Express 2010;18:14301–10.CrossrefGoogle Scholar

[13]

Mohammadi S, Eftekhar AA, Khelif A, Adibi A. Simultaneous two-dimensional phononic and photonic band gaps in opto-mechanical crystal slabs. Opt Express 2010;18:9164–72.CrossrefGoogle Scholar

[14]

Laude V. Beugnot JC, Benchabane S, Pennec Y, Djafari-Rouhani B, Papanikolaou N, Escalante JM, Martinez A. Simultaneous guidance of slow photons and slow acoustic phonons in silicon phoxonic crystal slabs. Opt Express 2011;19:9690–8.CrossrefGoogle Scholar

[15]

Rakich PT, Reinke C, Camacho R, Davids P, Wang Z. Giant Enhancement of stimulated brillouin scattering in the subwavelength limit. Phys Rev X 2012;2:011008.Google Scholar

[16]

Tomes M, Carmon T. Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates. Phys Rev Lett 2009;102:113201.Google Scholar

[17]

DholakiaK, Čižmár T. Shaping the future of manipulation. Nat Photon 2011;5:335.CrossrefGoogle Scholar

[18]

Joannopoulos JD, Villeneuve PR, Fan S. Photonic crystals: putting a new twist on light. Nature 1997;386:143–9.Google Scholar

[19]

Pennec Y, Vasseur J, Djafari-Rouhani B, Dobrzynski L, Deymier PA. Two-dimensional phononic crystals: examples and applications. Surf Sci Rep 2010;65:229–91.CrossrefGoogle Scholar

[20]

Maldovan M. Sound and heat revolutions in phononics. Nature 2013;503:209–17.Google Scholar

[21]

Maldovan M, Thomas E. Simultaneous localization of photons and phonons in two-dimensional periodic structures. Appl Phys Lett 2006;88:251907.CrossrefGoogle Scholar

[22]

Escalante JM, Martínez A, Laude V. Design of single-mode waveguides for enhanced light-sound interaction in honeycomb-lattice silicon slab. J Appl Phys 2014;115:064302.CrossrefGoogle Scholar

[23]

Nunnenkamp A, Børkje K, Girvin SM. Single photon optomechanics. Phys Rev Lett 2011;107;063602.CrossrefGoogle Scholar

[24]

Li Y, Zheng J, Gao J, Shu J, Aras MS, Wong CW. Design of dispersive optomechanical coupling and cooling in ultrahigh-Q/V slot-type photonic crystal cavities. Opt Express 2010;18:23844–56.CrossrefGoogle Scholar

[25]

Zhu Z, Gauthier DJ, Boyd RW. Stored light in an optical fiber via stimulated Brillouin scattering. Science 2007;318:1748–50.CrossrefGoogle Scholar

[26]

Bochmann J, Vainsencher A, Awschalom DD, Cleland AN. Nanomechanical coupling between microwave and optical photons. Nat Phys 2013;9:712–6.CrossrefGoogle Scholar

[27]

Sadat-Saleh S, Benchabane S,Baida FI, Bernal MP, Laude V. Tailoring simultaneous photonic and phononic band gaps. J Appl Phys 2009;106:074912.CrossrefGoogle Scholar

[28]

Fan L, Sun X, Xiong C, Schuck C, Tang HX. Aluminum nitride piezo-acousto-photonic crystal nanocavity with high quality factors. Appl Phys Lett 2013;102:153507.CrossrefGoogle Scholar

[29]

Benchabane S, Gaiffe O, Ulliac G, Salut R, Achaoui Y, Laude V. Observation of surface-guided waves in holey hypersonic phononic crystal. Appl Phys Lett 2011;98:171908.CrossrefGoogle Scholar

[30]

Fuhrmann DA, Thon SM, Kim H, Bouwmeester D, Petroff PM, Wixforth A, Krenner HJ. Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons. Nat Photon 2011;5:605–9.CrossrefGoogle Scholar

[31]

Psarobas IE, Papanikolaou N, Stefanou N, Djafari-Rouhani B, Bonello B, Laude V. Enhanced acousto-optic interactions in a one-dimensional phoxonic cavity. Phys Rev B 2010;82:174303.CrossrefGoogle Scholar

[32]

Gomis-Bresco J, Navarro-Urrios D, Oudich M, El-Jallal S, Griol A, Puerto D, Chavez E, Pennec Y, Djafari-Rouhani B, Alzina F, Martínez A, Sotomayor Torres CM. A 1D Optomechanical crystal with a complete phononic band gap. Nat Commun 2014;5:4452.Google Scholar

[33]

Safavi-Naeini AH, Hill JT, Meenehan S, Chan J, Groeblacher S, Painter O. Two-dimensional phononic-photonic bandgap optomechanical crystal cavity. Phys Rev Lett 2014;112:153603.CrossrefGoogle Scholar

[34]

Sainidou R, Stefanou N, Modinos A. Formation of absolute frequency gaps in three-dimensional solid phononic crystals. Phys Rev B 2002;66:212301.CrossrefGoogle Scholar

[35]

Trigo M, Bruchhausen A, Fainstein A, Jusserand B, Thierry-Mieg V. Confinement of acoustical vibrations in a semiconductor planar phonon cavity. Phys Rev Lett 2002;89:227402.CrossrefGoogle Scholar

[36]

Russell P. Photonic crystal fibers. Science 2003;299:358–62.Google Scholar

[37]

Russell PStJ, Marin E, Diez A, Guenneau S, Movchan AB. Sonic band gaps in PCF preforms: enhancing the interaction of sound and light. Opt Express 2003;20:2555–60.CrossrefGoogle Scholar

[38]

Laude V, Khelif A, Benchabane S, Wilm M, Sylvestre T, Kibler B, Mussot A, Dudley JM, Maillotte H. Phononic band-gap guidance of acoustic modes in photonic crystal fibers. Phys Rev B 2005;71:045107.CrossrefGoogle Scholar

[39]

Foresi JS, Villeneuve PR, Ferrera J, Thoen ER, Steinmeyer G, Fan S, Joannopoulos JD, Kimerling LC, Smith HI, Ippen EP. Photonic-bandgap microcavities in optical waveguides. Nature 1997:390:143–5.Google Scholar

[40]

Johnson SG, Fan S, Villeneuve PR, Joannopoulos JD, Kolodziejski LA. Guided modes in photonic crystal slabs. Phys Rev B 1999;60:5751.CrossrefGoogle Scholar

[41]

Akahane Y, Asano T, Song BS, Noda S. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 2003;425:944–7.Google Scholar

[42]

Notomi M, Yamada K, Shinya A, Takahashi J, Takahashi C, Yokohama I. Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs. Phys Rev Lett 2001;87:253902.CrossrefGoogle Scholar

[43]

Hsu FC, Lee CI, Hsu JC, Huang TC, Wang CH, Chang P. Acoustic band gaps in phononic crystal strip waveguides. Appl Phys Lett 2010;96:051902.CrossrefGoogle Scholar

[44]

Chan J, Safavi-Naeini AH, Hill JT, Meenehan S, Painter O. Optimized optomechanical crystal cavity with acoustic radiation shield. Appl Phys Lett 2012;101:081115.CrossrefGoogle Scholar

[45]

Pennec Y, Djafari-Rouhani B, Li C, Escalante JM, Martinez A, Benchabane S, Laude V, Papanikolaou N. Band gaps and cavity modes in dual phononic and photonic strip waveguides. AIP Advances 2011;1:041901.CrossrefGoogle Scholar

[46]

Safavi-Naeini AH, Painter O. Design of optomechanical cavities and waveguides on a simultaneous bandgap phononic-photonic crystal slab. Opt Express 2010;18:14926–43.CrossrefGoogle Scholar

[47]

El Hassouani Y, Li C, Pennec Y, El Boudouti EH, Larabi H, Akjouj A, Bou Matar O, Laude V, Papanikolaou N, Martinez A, Djafari-Rouhani B. Dual phononic and photonic band gaps in a periodic array of pillars deposited on a thin plate. Phys Rev B 2010;82:155405.CrossrefGoogle Scholar

[48]

Papanikolaou N, Psarobas IE, Stefanou N. Absolute spectral gaps for infrared light and hypersound in three-dimensional metallodielectric phoxonic crystals. Appl Phys Lett 2010;96:231917.CrossrefGoogle Scholar

[49]

Ma TX, Wang YS, Wang YF, Su XX. Three-dimensional dielectric phoxonic crystals with network topology. Opt Express 2013;21:2727–32.CrossrefGoogle Scholar

[50]

Akimov AV, Tanaka Y, Pevtsov AB, Kaplan SF, Golubev VG, Tamura S, Yakovlev DR, Bayer M. Hypersonic Modulation of light in three-dimensional photonic and phononic band-gap materials. Phys Rev Lett 2008;101:033902.CrossrefGoogle Scholar

[51]

Royer D, Dieulesaint E. Elastic waves in solids. New York, Wiley, 1999.Google Scholar

[52]

Xu J, Stroud R. Acousto-optic devices: principles, design, and applications. New York, Wiley, 1992.Google Scholar

[53]

Laude V. General solution of the coupled-wave equations of acousto-optics. J Opt Soc Am A 2003;20:2307–14.CrossrefGoogle Scholar

[54]

Chiao RY, Townes C, Stoicheff BP. Stimulated Brillouin Scattering and Coherent Generation of Intense Hypersonic Waves. Phys Rev Lett 1964;12:592.CrossrefGoogle Scholar

[55]

Eichenfeld M, Chan J, Safavi-Naeini AH, Vahala KJ, Painter O. Modeling dispersive coupling and losses of localized optical and mechanical modes in optomechanical crystals. Opt Express 2009;17:20078–98.CrossrefGoogle Scholar

[56]

Johnson SG, Ibanescu M, Skorobogatiy MA, Weisberg O, Joannopoulos JD, Fink Y. Perturbation theory for Maxwell’s equations with shifting material boundaries. Phys Rev E 2002;65:066611.CrossrefGoogle Scholar

[57]

Povinelli M, Johnson SG, Loncar M, Ibanescu M, Smythe E, Capasso F, Joannopoulos JD. High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery-mode resonators. Opt Express 2005;13:8286–95.CrossrefGoogle Scholar

[58]

Povinelli M, Loncar M, Ibanescu M, Smythe E, Johnson SG, Capasso F, Joannopoulos JD. Evanescent-wave bonding between optical waveguides. Opt Lett 2005;3042–4.CrossrefGoogle Scholar

[59]

Gorodetsky ML, Schliesser A, Anetsberger A, Deleglise S, Kippenberg TJ. Determination of the vacuum optomechanical coupling rate using frequency noise calibration. Opt Express 2010;18:23236–46.CrossrefGoogle Scholar

[60]

Agrawal GP. Nonlinear fiber optics. San Diego, Academic Press, 2001.Google Scholar

[61]

Boyd RW. Nonlinear optics, 3rd ed. San Diego, Academic Press, 2008.Google Scholar

[62]

Nelson DF. Electric, optic, and acoustic interactions in dielectrics. New York: John Wiley & Sons, 1979.Google Scholar

[63]

Dainese P, Russell P, Joly N, Knight J, Wiederhecker G, Fragnito H, Laude V, Khelif A. Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres. Nat Phys 2006;2:388–92.CrossrefGoogle Scholar

[64]

El-Jallal S, Oudich M, Pennec Y, Djafari-Rouhani B, Makhoute A, Rolland Q, Dupont S, Gazalet J. Optomechanic interactions in two-dimensional Si and GaAs phoXonic cavities. J Phys Cond Matter 2014;26**:**015005.Google Scholar

[65]

El-Jallal S, Oudich M, Pennec Y, Djafari-Rouhani B, Laude V, Beugnot JC, Martínez A, Escalante JM, Makhoute A. Analysis of optomechanical coupling in two-dimensional square lattice phoxonic crystal slab cavities. Phys Rev B 2013;88;205410.Google Scholar

[66]

Papanikolaou N, Psarobas IE, Stefanou N, Djafari-Rouhani B, Bonello B, Laude V. Light modulation in phoxonic nanocavities. Microelectron Eng 2011;90:155–8.Google Scholar

[67]

Almpanis E, Papanikolaou N, Gantzounis G, Stefanou N. Tuning the spontaneous light emission in phoxonic cavities. J Opt Soc Am B 2012;29:2567–74.CrossrefGoogle Scholar

[68]

Gantzounis G, Papanikolaou N, Stefanou N. Nonlinear interactions between high-Q optical and acoustic modes in dielectric particles. Phys Rev B 2011;83:214301.CrossrefGoogle Scholar

[69]

Rakich PT, Davids P, Wang Z. Tailoring optical forces in waveguides through radiation pressure and electrostrictive forces. Opt Express 2010;18:14439–53.CrossrefGoogle Scholar

[70]

Laude V, Beugnot JC. Generation of phonons from electrostriction in small-core optical waveguides. AIP Advances 2013;3:042109.CrossrefGoogle Scholar

[71]

Shin H, Qiu W, Jarecki R, Cox JA, Olsson RH, Starbuck A, Wang Z, Rakich PT. Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides. Nat Commun 2013;4:1944.Google Scholar

[72]

Pant R, Poulton CG, Choi DY, McFarlane H, Hile S, Li E, Thévenaz L, Luther-Davies B, Madden SJ, Eggleton BJ. On-chip stimulated Brillouin scattering. Opt Express 2011;19:8285–90.CrossrefGoogle Scholar

[73]

Eggleton BJ, Poulton CG, Pant R. Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits. Adv Opt Photon 2013;5:536–87.CrossrefGoogle Scholar

[74]

Poulton CG, Pant R, Eggleton BJ. Acoustic confinement and stimulated Brillouin scattering in integrated optical waveguides. J Opt Soc Am B 2013;30:2657–64.CrossrefGoogle Scholar

[75]

Thévenaz L. Slow and fast light in optical fibres. Nat Photon 2008;2:474–81.CrossrefGoogle Scholar

[76]

Soljacic M, Joannopoulos JD. Enhancement of nonlinear effects using photonic crystals. Nat Mat 2004;3:211–9.CrossrefGoogle Scholar

[77]

Pennec Y, Djafari-Rouhani B, El Boudouti EH, Li C, El Hassouani Y, Vasseur JO, Papanikolaou N, Benchabane S, Laude V, Martinez A. Band gaps and waveguiding in phoxonic silicon crystal slabs. Chinese J Phys 2011;49:100–10.Google Scholar

[78]

Beugnot JC, Laude V. Electrostriction and guidance of acoustic phonons in optical fibers. Phys Rev B 2012;86:224304.CrossrefGoogle Scholar

[79]

Moiseyenko RP, Laude V. Material loss influence on the complex band structure and group velocity in phononic crystals. Phys Rev B 2011;83:064301.CrossrefGoogle Scholar

[80]

Gigan S, Böhm HR, Paternostro M, Langer G, Hertzberg JB, Schwab KC, Bäuerle D, Aspelmeyer M, Seilinger A. Self-cooling of a micromirror by radiation pressure. Nature 2006;444:67.Google Scholar

[81]

Bahl G, Tomes M, Marquardt F, Carmon T. Observation of spontaneous Brillouin cooling. Nat Phys 2012;8:203–207.CrossrefGoogle Scholar

[82]

Höghberger Metzger C, Karrai K. Cavity cooling of a microlever. Nature 2004;432:1002.Google Scholar

[83]

Arcizet O, Cohadon PF, Briant T, Pinard M, Heidmann A. Radiation-pressure cooling and optomechanical instability of a micromirror. Nature 2006;444:71.Google Scholar

[84]

Thompson JD, Zwickl BM, Jayich AM, Marquardt F, Girvin SM, Harrir JGE. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 2008;452:72.Google Scholar

[85]

Schliesser A, Riviere R, Anetsberger G, Arcizet O, Kippenberg TJ. Resolved sideband cooling of a micromechanical oscillator. Nat Phys 2008;4:415.CrossrefGoogle Scholar

[86]

Teufel JD, Donner T, Li D, Harlow JW, Allman MS, Cicak K, Sirois AJ, Whittaker JD, Lehnert KW, Simmonds RW. Sideband cooling of micromechanical motion to the quantum ground state. Nature 2011;475:359.CrossrefGoogle Scholar

[87]

Genes C, Vitali D, Tombesi P, Gigan S. Aspelmeyer M. Ground-state cooling of a micromechanical oscillator: comparing cold damping and cavity-assisted cooling schemes. Phys Rev A 2008;77:033804.CrossrefGoogle Scholar

[88]

Hill TF, Safavi-Naeini AH, Chan J, Painter O. Coherent optical wavelength conversion via cavity optomechanics. Nat Commun 2012;3:1196.CrossrefGoogle Scholar

[89]

Sünner T, Stichel T, Kwon SH, Schlereth TW, Höfling S, Kamp M, Forchel A. Photonic crystal cavity based gas sensor. Appl Phys Lett 2008;92:261112.CrossrefGoogle Scholar

[90]

Di Falco A, O’Faolain L, Krauss TF. Chemical sensing in slotted photonic crystal heterostructure cavities. Appl Phys Lett 2009;94:063503.CrossrefGoogle Scholar

[91]

Chaste J, Eichler A, Moser J, Ceballos G, Rurali R, Bachtold A. A nanomechanical mass sensor with yoctogram resolution. Nat Nanotechnol 2012;7:301–4.CrossrefGoogle Scholar

[92]

Li M, Tang HX, Roukes ML. Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high frequency applications. Nat Nanotechnol 2007;2: 114–20.CrossrefGoogle Scholar

[93]

Bagheri M, Poot M, Li M, Pernice WPH, Tang HX. Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation. Nat. Nanotechnol 2011;6:726–32.CrossrefGoogle Scholar

[94]

Ke M, Zubtsov M, Lucklum R. Sub-wavelength phononic crystal liquid sensor. J Appl Phys 2011;110:026101.CrossrefGoogle Scholar

[95]

Schneider T, Junker M, Lauterbach KU. Theoretical and experimental investigation of Brillouin scattering for the generation of millimeter waves. J Opt Soc Amer B 2006;23: 1012–9.CrossrefGoogle Scholar

[96]

Bahl G, Kim KH, Lee W, Liu J, Fan X, Carmon T. Brillouin cavity optomechanics with microfluidic devices. Nat Commun 2013;4:1994.Google Scholar

[97]

Okawachi Y, Bigelow MS, Sharping JE, Zhu Z, Schweinsberg A, Gauthier DJ, Boyd RW, Gaeta AL. Tunable all-optical delays via Brillouin slow light in an optical fiber. Phys Rev Lett 2005;94:153902.CrossrefGoogle Scholar

[98]

Rodgers BC, Russell TH, Roh WB. Laser beam combining and cleanup by stimulated Brillouin scattering in a multimode optical fiber. Opt Lett 2999;24:1124–6.Google Scholar

[99]

Li J, Lee H, Chen T, Vahala KJ. Characterization of a high coherence, Brillouin microcavity laser on silicon. Opt Express 2012;20:20170–80.CrossrefGoogle Scholar

[100]

Kalosha VP, Li W, Wang F, Chen L, Bao X. Frequency-shifted light storage via stimulated Brillouin scattering in optical fibers. Opt Lett 2008;33:2848–50.CrossrefGoogle Scholar

[101]

Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML. Plasmonics for extreme light concentration and manipulation. Nat Mater 2010;9:193–204.CrossrefGoogle Scholar

[102]

Lorente-Crespo M, Wang L, Ortuño R, Garcia-Meca C, Ekinci Y, Martinez A. magnetic hot spots in closely spaced thick gold nanorings. Nano Lett 2013;13:2654–61.CrossrefGoogle Scholar

[103]

Kelf TA, Tanaka Y, Matsuda O, Larsson EM, Sutherland DS, Wright OB. Ultrafast vibrations of gold nanorings. Nano Lett 2011;11:3893–8.CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.