[1]

Ritchie RH. Plasma losses by fast electrons in thin films. Phys Rev
Lett 1957;106:874–81.Google Scholar

[2]

Fleischmann M, Hendra PJ, McQuillan AJ. Raman spectra of pyridine
adsorbed at a silver electrode. Chem Phys Lett
1974;26:163–6.CrossrefGoogle Scholar

[3]

Jeanmaire DL, van Duyne RP. Surface raman electrochemistry part I:
heterocyclic, aromatic and aliphatic amines adsorbed on the anodized silver
electrode. J Electroanal Chem 1977;84:1–20.CrossrefGoogle Scholar

[4]

Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA. Extraordinary
optical transmission through sub-wavelength hole arrays. Nature
1998;391:667–9.CrossrefGoogle Scholar

[5]

Brongersma ML, Kik PG. Surface plasmon nanophotonics. New York:
Springer, 2010.Google Scholar

[6]

Engheta N, Ziolkowski RW. Metamaterials: physics and engineering
explorations. Hoboken, NJ: Wiley & Sons, 2006.Google Scholar

[7]

Caldwell JD, Glembocki OJ, Bezares FJ, Bassim ND, Rendell RW,
Feygelson M, Ukaegbu M, Kasica R, Shirey L, Hosten C. Plasmonic nanopillar
arrays for large-area, high enhancement surface-enhanced raman scattering
sensors. ACS Nano 2011;5:4046–55.CrossrefGoogle Scholar

[8]

Caldwell JD, Glembocki OJ, Bezares FJ, Kariniemi MI, Niinistö
JT, Hatanpää TT. Large-area plasmonic hot-spot arrays: Sub-2 nm
interpillar spacings with plasma enhanced atomic layer deposition of Ag on
periodic arrays of Si nanopillars. Opt Express 2011;19:26056.Google Scholar

[9]

Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld
MS. Single molecule detection using surface-enhanced Raman scattering. Phys Rev
Lett 1997;78:1667.CrossrefGoogle Scholar

[10]

Nie S, Emory SR. Probing single molecules and single nanoparticles
by surface-enhanced Raman scattering. Science 1997;275:1101.Google Scholar

[11]

Atwater HA, Polman A. Plasmonics for improved photovoltaic devices.
Nat Mater 2010;9:205–13.CrossrefGoogle Scholar

[12]

Aubry A, Lei DY, Fernandez-Dominguez AI, Sonnefraud Y, Maier SA,
Pendry JB. Plasmonic light-harvesting devices over the whole visible spectrum.
Nano Lett 2010;10:2574–9.CrossrefGoogle Scholar

[13]

Mooney JM, Silverman J. The theory of hot-electron photoemission in
Schottky-barrier IR detectors. IEEE T Electron Dev
1985;32:33–9.CrossrefGoogle Scholar

[14]

Clavero C. Plasmon-induced hot-electron generation at
nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices.
Nature Photon 2014;8:95–103.CrossrefGoogle Scholar

[15]

Sobhani A, Knight MW, Wang Y, Brown LV, Fang Z, Nordlander P, Halas
NJ. Narrowband photodetection in the near-infrared with a plasmon-induced hot
electron device. Nat Commun 2013;4:1643.CrossrefGoogle Scholar

[16]

Goykhman I, Desiatov B, Khurgin JB, Shappir J, Levy U. Locally
Oxidized Silicon Surface-Plasmon Schottky Detector for Telecom Regime. Nano Lett
2011;11:2219–24.CrossrefGoogle Scholar

[17]

Khurgin JB, Boltasseva A. Reflecting upon the losses in plasmonics
and metamaterials. MRS Bull 2012;37:768–79.CrossrefGoogle Scholar

[18]

Khurgin JB, Sun G. In search of the elusive lossless metal. Appl
Phys Lett 2010;96:181102.CrossrefGoogle Scholar

[19]

Khurgin JB, Sun G. Scaling of losses with size and wavelength in
nanoplasmonics and metamaterials. Appl Phys Lett
2011;99:211106.CrossrefGoogle Scholar

[20]

Hillenbrand R, Taubner T, Keilmann F. Phonon-enhanced light-matter
interaction at the nanometre scale. Nature
2002;418:159–62.CrossrefGoogle Scholar

[21]

Boltasseva A, Atwater HA. Low-loss plasmonic metamaterials. Science
(Wash.) 2011;331:290–1.CrossrefGoogle Scholar

[22]

West PR, Ishii S, Naik GV, Emani NK, Shalaev VM, Boltasseva A.
Searching for better plasmonic materials. Laser Photon Rev
2010;4:795–808.CrossrefGoogle Scholar

[23]

Caldwell JD, Glembocki OJ, Sharac N, Giannini V, Bezares FJ, Long
JP, Owrutsky JC, Vurgaftman I, Tischler JG, Wheeler VD, Bassim ND, Shirey LM,
Kasica R, Maier SA. Low-loss, extreme sub-diffraction photon confinement via
silicon carbide surface phonon polariton nanopillar resonators. Nano Lett
2013;13:3690–7.CrossrefGoogle Scholar

[24]

Feurer T, Stoyanov NS, Ward DW, Vaughan JC, Statz ER, Nelson KA.
Terahertz polaritonics. Ann Rev Mater Res
2007;37:317–50.CrossrefGoogle Scholar

[25]

Hillenbrand, R. Towards Phonon Photonics: Scattering-type near-field
optical microscopy reveals phonon-enhanced near-field interaction.
Ultramicroscopy 2004;100:421–7.CrossrefGoogle Scholar

[26]

Guler U, Ndukaife JC, Naik GV, Agwu Nnanna AG, Kildishev AV, Shalaev
VM, Boltasseva A. Local heating with lithographically fabricated plasmonic
titanium nitride nanoparticles. Nano Lett
2013;13:6078–83.CrossrefGoogle Scholar

[27]

Naik GV, Schroeder JL, Ni X, Kildishev AV, Sands TD, Boltassev A.
Titanium nitride as a plasmonic material for visible and near-infrared
wavelengths. Opt Mater Express 2012;2:478–89.CrossrefGoogle Scholar

[28]

Blaber MG, Arnold MD, Ford MJ. A review of the optical properties of
alloys and intermetallics for plasmonics. J Phys: Condens Matter
2010;22:143201.CrossrefGoogle Scholar

[29]

Escarra MD, Thongrattanasiri S, Charles WO, Hoffman AJ, Podolskiy
VA, Gmachl C. Enhanced bandwidth and reduced dispersion through stacking
multiple optical metamaterials. Opt Express
2011;19:14990–8.CrossrefGoogle Scholar

[30]

Kim H, Osofsky M, Prokes SM, Glembocki OJ, Pique A. Optimization of
Al-doped ZnO films for low-loss plasmonic materials at telecommunications
wavelengths. Appl Phys Lett 2013;102:171103.CrossrefGoogle Scholar

[31]

Kim J, Naik GV, Emani NK, Guler U, Boltasseva A. Plasmonic
resonances in nanostructured transparent conducting oxide films. IEEE J Sel Top
Quant Electron 2013;19:4601907.Google Scholar

[32]

Kim J, Naik GV, Shalaev VM, Gavrilenko AV, Dondapati K, Gavrilenko
VI, Prokes SM, Glembocki OJ, Boltasseva A. Optical properties of gallium-doped
zinc oxide-a low-loss plasmonic material: first principles theory and
experiment. Phys Rev X 2014;3:041037.Google Scholar

[33]

Sachet E, Maria J-P. Mid-IR Plasmonics with n-type CdO. 2014,
Private communication.Google Scholar

[34]

Maier SA. Graphene plasmonics all eyes on flatland. Nat Phys
2012;8:581–2.CrossrefGoogle Scholar

[35]

Grigorenko AN, Polini M, Novoselov KS. Graphene plasmonics. Nature
Photon 2012;6:749–58.CrossrefGoogle Scholar

[36]

Chen J, Badioli M, Alonso-Gonzalez P, Thongrattanasiri S, Huth F,
Osmond J, Spasenovic M, Centeno A, Pesquera A, Godignon P, Elorza AZ, Camara N,
Garcia de Abajo FJ, Hillenbrand R, Koppens FHL. Optical nano-imaging of
gate-tunable graphene plasmons. Nature 2012;487:77–81.Google Scholar

[37]

Koppens FHL Chang DE, Garcia de Abajo FJ. Graphene plasmonics: a
platform for strong light-matter interactions. Nano Lett
2011;11:3370–7.CrossrefGoogle Scholar

[38]

Fei Z, Rodin AS, Andreev GO, Bao W, McLeod AS, Wagner M, Zhang LM,
Zhao Z, Thiemens M, Dominguez G, Fogler MM, Castro Neto AH, Lau CN, Keilmann F,
Basov DN. Gate-tuning of graphene plasmons revealed by infrared nano-imaging.
Nature 2012;487:82–5.Google Scholar

[39]

Vakil A, Engheta N. Transformation optics using graphene. Science
(Wash.) 2011;332:1291–4.CrossrefGoogle Scholar

[40]

Basov DN, Fogler MM, Lanzara A, Wang F, Zhang Y. Colloquium:
graphene spectroscopy. RvMP 2014;86:959–94.Google Scholar

[41]

Scharte M, Porath R, Ohms T, Aeschlimann M, Krenn JR, Ditlbacher H,
Aussenegg FR, Liebsch A. Do Mie plasmons have a longer lifetime on resonance
than off resonance? Appl Phys B 2001;73:305–10.CrossrefGoogle Scholar

[42]

Kreibig U, Vollmer M. Optical properties of metal clusters. Berlin:
Springer, 2010.Google Scholar

[43]

Bosman M, Ye E, Tan SF, Nijhuis CA, Yang JKW, Marty R, Mlayah A,
Arbouet A, Girard C, Han M-Y. Surface plasmon damping quantified with an
electron nanoprobe. Sci Rep 2013;3:1312.Google Scholar

[44]

Wells SM, Merkulov IA, Kravchenko II, Lavrik NV, Sepaniak MJ.
Silicon nanopillars for field-enhanced surface spectroscopy. ACS Nano
2012;6:2948–59.CrossrefGoogle Scholar

[45]

Bezares FJ, Long JP, Glembocki OJ, Guo J, Rendell RW, Kasica R,
Shirey L, Owrutsky JC, Caldwell JD. Mie resonance-enhanced light absorption in
periodic silicon nanopillar arrays. Opt Express
2013;21:27587–601.CrossrefGoogle Scholar

[46]

Spinelli P, Verschuuren MA, Polman A. Broadband omnidirectional
antireflection coating based on subwavelength surface Mie resonators. Nat Commun
2012;3:692.CrossrefGoogle Scholar

[47]

Zhao Q, Zhou J, Zhang F, Lippens D. Mie Resonance-based dielectric
metamaterials. mater. Today 2009;12:60–9.Google Scholar

[48]

Moitra P, Yang Y, Anderson Z, Kravchenko II, Briggs D, Valentine, J.
Realization of an All-dielectric Zero-index Optical Metamaterial. Nature
Photonics 2013;7:791–5.CrossrefGoogle Scholar

[49]

Valentine J, Li J, Zentgraf T, Bartal G, Zhang X. An optical cloak
made of dielectrics. Nature Materials 2009;8:568–71.CrossrefGoogle Scholar

[50]

Ginn JC, Brener I, Peters DW, Wendt JR, Stevens JO, Hines PF,
Basilio LI, Warne LK, Ihlefeld JF, Clem PG, Sinclair MB. Realizing optical
magnetism from dielectric metamaterials. Phys Rev Lett
2012;108:097402.CrossrefGoogle Scholar

[51]

Schuller JA, Taubner T, Brongersma ML. Optical antenna thermal
emitters. Nature Photon 2009;3:658–61.CrossrefGoogle Scholar

[52]

Geick R, Perry CH, Rupprecht G. Normal modes in hexagonal boron
nitride. Phys Rev B 1966;146:543–7.CrossrefGoogle Scholar

[53]

Caldwell JD, Kretinin A, Chen Y, Giannini V, Fogler MM, Francescato
Y, Ellis CT, Tischler JG, Woods CR, Giles AJ, Hong M, Watanabe K, Taniguchi T,
Maier SA, Novoselov KS. Sub-diffractional, volume-confined polaritons in the
natural hyperbolic material hexagonal boron nitride. 2014;arXiv:1404.0494 (in
press).Google Scholar

[54]

Dai S, Fei Z, Ma Q, Rodin AS, Wagner M, McLeod AS, Liu MK, Gannett
W, Regan W, Watanabe K, Taniguchi T, Thiemens M, Dominguez G, Castro Neto AH,
Zettl A, Keilmann F, Jarillo-Herrero P, Fogler MM, Basov DN. Tunable phonon
polaritons in atomically thin van der Waals crystals of boron nitride. Science
(Wash.) 2014;343:1125–9.CrossrefGoogle Scholar

[55]

Cai Y, Zhang LM, Zeng Q, Cheng L, Xu Y. Infrared reflectance
spectrum of BN calculated from first principles. Solid State Commun
2007;141:262–6.CrossrefGoogle Scholar

[56]

Pitman KM, Speck AK, Hofmeister AM, Corman AB. Optical properties
and applications of silicon carbide in astrophysics. In: Mukherjee M, ed.
Silicon carbide-materials, processing and applications in electronic devices.
ed. Rijeka, Croatia: InTech, 2011.Google Scholar

[57]

Tiwald TE, Woolam JA, Zollner S, Christiansen J, Gregory RB,
Wetteroth T, Wilson SR, Powell AR. Carrier concentration and lattice absorption
in bulk and epitaxial silicon carbide determined using infrared ellipsometry.
Phys Rev B 1999;60:11464–74.CrossrefGoogle Scholar

[58]

Haraguchi M, Fukui M, Muto S. Experimental observation of
attenuated-total-reflection spectra of a GaAs/AlAs superlattice. Phys Rev B
1990;41:1254–7.CrossrefGoogle Scholar

[59]

Moore WJ, Holm RT. Infrared dielectric constant of GaAs. J Appl Phys
1996;80:6939–42.CrossrefGoogle Scholar

[60]

Yu PY, Cardona M. Fundamentals of semiconductors: physics and
materials properties. New York, NY: Springer, 1999.Google Scholar

[61]

Passerat de Silans T, Maurin I, Chaves de Souza Segundo P, Saltiel
S, Gorza M-P, Ducloy M, Bloch D, Meneses D, Echegut P. Temperature dependence of
the dielectric permittivity of CaF_{2}, BaF_{2} and
Al_{2} O_{3}: application to the prediction of a
temperature-dependence van der Waals surface interaction exerted onto a
neighbouring Cs(8P_{3/2}) atom. J Phys: Condens Matter
2009;21:255902.CrossrefGoogle Scholar

[62]

Adachi S. The reststrahlen region. Optical properties of crystalline
and amorphous semiconductors: materials and fundamental principles. ed. New
York, NY: Springer Science+Business Media, LLC, 1999,
33–61.Google Scholar

[63]

Bohren CF, Huffman DR. Absorption and scattering of light by small
particles. Weinheim, Germany, John Wiley & Sons, Inc., 2004,
331–44.Google Scholar

[64]

Wang T, Li P, Hauer B, Chigrin DN, Taubner T. Optical properties of
single infrared resonant circular microcavities for surface phonon polaritons.
Nano Lett 2013;13:5051–5.CrossrefGoogle Scholar

[65]

Nagpal P, Lindquist NC, Oh S-H, Norris DJ. Ultrasmooth patterned
metals for plasmonics and metamaterials. Science (Wash.)
2009;325:594–7.CrossrefGoogle Scholar

[66]

Lu Y-J, Kim J-Y, Chen H-Y, Wu C, Dabidian N, Sanders CE, Wang C-Y,
Lu M-Y, Li B-H, Qiu X, Chang W-H, Chen L-J, Shvets G, Shih C-H, Gwo S. Plasmonic
nanolaser using epitaxially grown silver film. Science (Wash.)
2012;337:450–3.CrossrefGoogle Scholar

[67]

Kariniemi M, Niinisto J, Hatanpaa T, Kemell M, Sajavaara T, Ritala
M, Leskelä M. Plasma-enhanced atomic layer deposition of silver thin
films. Chem Mater 2011;23:2901–7.CrossrefGoogle Scholar

[68]

Prokes SM, Glembocki OJ, Cleveland E, Caldwell1 JD, Foos E,
Niinistö J, Ritala M. Spoof-like plasmonic behavior of plasma enhanced
atomic layer deposition grown Ag thin films. Appl Phys Lett
2012;100:053106.CrossrefGoogle Scholar

[69]

Caldwell JD, Stahlbush RE, Mahadik NA. Mitigating defects within
silicon carbide epitaxy. J Electrochem Soc
2012;159:R46–51.Google Scholar

[70]

Skowronski M, Ha S. Degradation of hexagonal silicon-carbide-based
bipolar devices. J Appl Phys 2006;99:011101.CrossrefGoogle Scholar

[71]

Stevenson R. The world’s best gallium nitride. IEEES
2010;47:40–5.Google Scholar

[72]

Eddy CR, Nepal N, Hite JK, Mastro MA. Perspectives on future
directions in III-N semiconductor research. J Vac Sci Technol A
2013;31:058501.CrossrefGoogle Scholar

[73]

Silveirinha MG, Engheta N. Tunneling of electromagnetic energy
through sub-wavelength channels and bends using epsilon-near-zero (ENZ)
materials. Phys Rev Lett 2006;97:157403.CrossrefGoogle Scholar

[74]

Li P, Taubner T. Multi-wavelength superlensing with layered
phonon-resonant dielectrics. Opt Express 2012;20:A11787.CrossrefGoogle Scholar

[75]

Rephaeli E, Raman A, Fan S. Ultrabroadband photonic structures to
achieve high-performance daytime radiative cooling. Nano Lett
2013;13:1457–61.Google Scholar

[76]

Geim AK, Grigorieva IV. Van der Waals heterostructures. Nature
2013;499:419–25.CrossrefGoogle Scholar

[77]

Sun J, Litchinitser NM, Zhou J. Indefinite by nature: from
ultraviolet to terahertz. ACS Photon 2014;1:293–303.CrossrefGoogle Scholar

[78]

Drachev VP, Podolskiy VA, Kildishev AV. Hyperbolic metamaterials:
new physics behind a classical problem. Opt Express
2013;21:15048–64.CrossrefGoogle Scholar

[79]

Guo Y, Newman W, Cortes CL, Jacob Z. Applications of hyperbolic
metamaterial substrates. Adv Opto Electron 2012;2012:452502.Google Scholar

[80]

Jacob Z, Kim J-Y, Naik GV, Boltasseva A, Narimanov EE, Shalaev VM.
Engineering photonic density of states using metamaterials. ApPPL
2010;100:215–8.Google Scholar

[81]

Korobkin D, Neuner B, Fietz C, Jegenyes N, Ferro G, Shvets G.
Measurements of the negative refractive index of sub-diffraction waves
propagating in an indefinite permittivity medium. Opt Express
2010;18:22734–46.CrossrefGoogle Scholar

[82]

Enoch S, Bonud N. Plasmonics: from basics to advanced topics.
Springer Series in Optical Sciences 2012;167.Google Scholar

[83]

Giannini V, Fernandez-Dominguez AI, Heck SC, Maier SA. Plasmonic
nanoantennas: fundamentals and their use in controlling the radiative properties
of nanoemitters. Chem Rev 2011;111:3888–912.CrossrefGoogle Scholar

[84]

Gramotnev DK, Bozhevolnyi SI. Plasmonics beyond the diffraction
limit. Nature Photon 2010;4:83–91.CrossrefGoogle Scholar

[85]

Hayashi S, Okamoto T. Plasmonics: visit the past to know the future.
JPhD 2012;45:433001.Google Scholar

[86]

Maier SA. Plasmonics: fundamentals and applications. Berlin:
Springer, 2007.Google Scholar

[87]

Rendell RW, Scalapino DJ, Mulschlegel B. Role of local plasmon modes
in light emission from small particle tunnel junctions. Phys Rev Lett
1978;41:1746.CrossrefGoogle Scholar

[88]

Rendell RW, Scalapino DJ. Surface plasmons confined by
microstructures on tunnel junctions. Phys Rev B 1981;24:3276.CrossrefGoogle Scholar

[89]

Palik ED. Handbook of optical constants of solids. Orlando:
Elsevier, 1985.Google Scholar

[90]

Johnson PB, Christy RW. Optical constants of the noble metals. Phys
Rev B 1972;6:4370.CrossrefGoogle Scholar

[91]

Chen Y, Francescato Y, Caldwell JD, Giannini V, Maß TWW,
Glembocki OJ, Bezares FJ, Taubner T, Kasica R, Hong M, Maier SA. Spectral tuning
of localized surface phonon polariton resonators for low-loss mid-IR
applications. ACS Photon 2014;1:718–24.CrossrefGoogle Scholar

[92]

Huber AJ, Deutsch B, Novotny L, Hillenbrand R. Focusing of surface
phonon polaritons. Appl Phys Lett 2008;92:203104.CrossrefGoogle Scholar

[93]

Ng SS, Hassan Z, Abu Hassan H. Surface phonon polariton of wurtzite
GaN thin film grown on c-plane sapphire substrate. Solid State Commun
2008;145:535–8.CrossrefGoogle Scholar

[94]

Lahiri B, Holland G, Aksyuk V, Centrone A. Nanoscale imaging of
plasmonic hot spots and dark modes with the photothermal-induced resonance
technique. Nano Lett 2013;13:3218–24.CrossrefGoogle Scholar

[95]

Schuller JA, Zia R, Taubner T, Brongersma ML. Dielectric
metamaterials based on electric and magnetic resonances of silicon carbide
particles. Phys Rev Lett 2007;99:107401.CrossrefGoogle Scholar

[96]

Ruppin R, Englman R. Optical phonons of small crystals. Rep Prog
Phys 1970;33:149–96.CrossrefGoogle Scholar

[97]

Wang F, Shen YR. General properties of local plasmons in metal
nanostructures. Phys Rev Lett 2006;97:206806.CrossrefGoogle Scholar

[98]

Khurgin JB, Sun G. Enhancement of optical properties of nanoscaled
objects by metal nanoparticles. J Opt Soc Am B
2009;26:B83–95.Google Scholar

[99]

Simpkins BS, Long JP, Glembocki OJ, Guo J, Caldwell JD, Owrutsky JC.
Pitch-dependent resonances and coupling regimes in nanoantenna arrays. Opt
Express 2012;20:27725–39.CrossrefGoogle Scholar

[100]

Stockman MI, Pandey LN, George TF. Inhomogeneous localization of
polar eigenmodes in fractals. Phys Rev B: Condens Matter
1996;53:2183.CrossrefGoogle Scholar

[101]

Kottman JP, Martin OJF. Plasmon resonant coupling in metallic
nanowires. Opt Express 2001;8:655.CrossrefGoogle Scholar

[102]

Khanikaev AB, Wu C, Shvets G. Fano-resonant metamaterials and their
applications. Nanophotonics 2013;2:247–64.Google Scholar

[103]

Luk’yanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P,
Giessen H, Chong CT. The fano resonance in plasmonic nanostructures and
metamaterials. Nat Mater 2010;9:707–15.CrossrefGoogle Scholar

[104]

Adato R, Yanik AA, Amsden JJ, Kaplan DL, Omenetto FG, Honge MK,
Erramilli S, Altug H. Ultra-sensitive vibrational spectroscopy of protein
monolayers with plasmonic nanoantenna arrays. Proc Natl Acad Sci USA
2009;106:19227–32.CrossrefGoogle Scholar

[105]

Kullock R, Grafstrom S, Evans PR, Pollard RJ, Eng LM. Metallic
nanorod arrays: negative refraction and optical properties explained by retarded
dipolar interactions. J Opt Soc Am B: Opt Phys
2001;27:1819–27.Google Scholar

[106]

Kravets VG, Schedin F, Grigorenko AN. Extremely narrow plasmon
resonances based on diffraction coupling of localized plasmons in arrays of
metallic nanoparticles. Phys Rev Lett 2008;101:087403.CrossrefGoogle Scholar

[107]

Kravets VG, Schedin F, Kabashin AV, Grigorenko AN. Sensitivity of
collective plasmon modes of gold nanoresonators to local environment. Opt Lett
2010;35:956–8.CrossrefGoogle Scholar

[108]

Ciraci C, Hill RT, Mock JJ, Urzhumov Y,
Fernández-Domínguez AI, Maier SA, Pendry JB, Chilkoti A, Smith DR.
Probing the ultimate limits of plasmonic enhancement. Science (Wash.)
2012;337:1072–4.CrossrefGoogle Scholar

[109]

Ordal MA, Long LL, Bell RJ, Bell SE, Bell RR, Alexander, Jr. RW,
Ward CA. Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt,
Ag, Ti, and W in the infrared and far infrared. Appl Opt
1983;22:1099–120.CrossrefGoogle Scholar

[110]

Rakic AD. Algorithm for the determination of intrinsic optical
constants of metal films: application to aluminum. Appl Opt
1995;34:4755–67.CrossrefGoogle Scholar

[111]

Schubert M, Rheinlander B, Franke E, Neumann H, Tiwald TE, Woolam
JA, Hahn J, Richter F. Infrared optical properties of mixed-phase thin films
studied by spectroscopic ellipsometry using boron nitride as an example. Phys
Rev B 1997;56:13306–13.CrossrefGoogle Scholar

[112]

Moore WJ, Holm RT, Yang MJ, Freitas JA. Infrared dielectric constant
of cubic SiC. J Appl Phys 1995;78:7255–8.CrossrefGoogle Scholar

[113]

Kazan M, Pereira S, Correia MR, Masri P. Directional dependence of
AlN intrinsic complex dielectric function, optical phonon lifetimes and decay
channels measured by polarized infrared reflectivity. J Appl Phys
2009;106:023523.CrossrefGoogle Scholar

[114]

Schubert M, Tiwald TE, Herzinger CM. Infrared dielectric anisotropy
and phonon modes of sapphire. Phys Rev B
2000;61:8187–201.CrossrefGoogle Scholar

[115]

Kasic A, Schubert M, Einfeldt S, Hommel D, Tiwald TE. Free-carrier
and phonon properties of n- and p-type hexagonal GaN films measured by infrared
ellipsometry. Phys Rev B 2000;62:7365–77.CrossrefGoogle Scholar

[116]

Ashkenov N, Mbenkum BN, Bundesmann C, Riede V, Lorenz M, Spemann D,
Kaidashev EM, Kasic A, Schubert M, Grundmann M, Wagner G, Neumann H, Darakchieva
V, Arwin H, Monemar B. Infrared dielectric functions and phonon modes of
high-quality ZnO films. J Appl Phys 2003;93:126–33.CrossrefGoogle Scholar

[117]

Jahne E, Roseler A, Ploog K. Infrared reflectance and ellipsometric
studies of GaAs/AlAs superlattices. Superlattices Microstruct
1991;9:219–22.CrossrefGoogle Scholar

[118]

Adams DC, Inampudi S, Ribaudo T, Slocum D, Vangala S, Kuhta NA,
Goodhue WD, Podolskiy VA, Wasserman D. Funneling light through a subwavelength
aperture with epsilon near zero materials. Phys Rev Lett
2011;107:133901.CrossrefGoogle Scholar

[119]

Hoffman AJ, Alekseyev L, Howard SS, Franz KJ, Wasserman D, Podolskiy
VA, Narimanov EE, Sivco DL, Gmach C. Negative refraction in semiconductor
metamaterials. Nat Mater 2007;6:946–50.CrossrefGoogle Scholar

[120]

Naik GV, Shalaev VM, Boltasseva A. Alternative plasmonic materials:
beyond gold and silver. Adv Mater 2013;25: 3264–94.CrossrefGoogle Scholar

[121]

Harima H, Nakashima S-I, Uemura T. Raman scattering from anisotropic
LO-phonon-plasmon-coupled mode in n-type 4H- and 6H-SiC. J Appl Phys
1995;78:1996.CrossrefGoogle Scholar

[122]

Caldwell JD, Glembocki OJ, Prokes SM, Glaser ER, Hobart KD, Hansen
DM, Chung GY, Bolotnikov AV, Sudarshan TS. Free carrier distribution profiling
of 4H-SiC substrates using a commercial optical scanner. J Appl Phys
2007;101:093506.CrossrefGoogle Scholar

[123]

Mutschke H, Anderson AC, Clement D, Henning T, Peiter G. Infrared
properties of SiC particles. Astron Astrophys
1999;345:187–202.Google Scholar

[124]

Greffet J-J, Carminati R, Joulain K, Mulet JP, Mainguy S, Chen Y.
Coherent emission of light by thermal sources. Nature
2002;416:61–4.CrossrefGoogle Scholar

[125]

Anderson MS. Enhanced infrared absorption with dielectric
nanoparticles. Appl Phys Lett 2003;83:2964–6.CrossrefGoogle Scholar

[126]

Berini P. Figures of merit for surface plasmon waveguides. Opt
Express 2006;14:13030–42.CrossrefGoogle Scholar

[127]

Oulton RF, Sorger VJ, Genov DA, Pile DFP, Zhang X. A hybrid
plasmonic waveguide for subwavelength confinement and long-range propagation.
Nature Photon 2008;2:496.CrossrefGoogle Scholar

[128]

Bennett HE, Bennett JM. Optical properties and electronic structure
of metals and alloys. Amsterdam: North-Holland, 1966.Google Scholar

[129]

Holmstrom SA, Stievater TH, Pruessner MW, Park D, Rabinovich WR,
Khurgin JB, Richardson CJK, Kanakaraju S, Calhoun LC, Ghodssi R. Guided-mode
phonon-polaritons in suspended waveguides. Phys Rev B
2012;86:165120.CrossrefGoogle Scholar

[130]

Urzhumov Y, Korobkin D, Neuner B, Zorman C, Shvets G. Optical
properties of sub-wavelength hole arrays in SiC membranes. JOptA
2007;9:S322–3.Google Scholar

[131]

Li D, Lawandy NM, Zia R. Surface phonon-polariton enhanced optical
forces in silicon carbide nanostructures. Opt Express
2013;21:20900–10.CrossrefGoogle Scholar

[132]

Nilsson G, Nelin G. Study of homology between silicon and germanium
by thermal-neutron spectrometry. Phys Rev B
1972;6:3777–86.CrossrefGoogle Scholar

[133]

Feldman DW, Parker JH, Choyke WJ, Patrick L. Phonon dispersion
curves by Raman scattering in SiC polytypes 3C, 4H, 6H, 15R, and 21R. Phys Rev B
1968;173:787–93.Google Scholar

[134]

Baroni S, Gironcoli S, A. Dal Corso and Giannozzi P. Phonons and
related crystal properties from density-functional perturbation theory. RvMP
2001;73:515–62.Google Scholar

[135]

Ziman JM. Electrons and phonons. London: Oxford University Press,
1960.Google Scholar

[136]

Ashcroft NW, Mermin ND. Solid state physics. USA: Brooks/Cole,
1976.Google Scholar

[137]

Kittel C. Introduction to solid state physics. Hoboken: John Wiley
and Sons, In.c, 1996.Google Scholar

[138]

Warren JL, Yarnell JL, Dolling G, Cowley RA. Lattice dynamics of
diamond. Phys Rev B 1967;158:805–8.CrossrefGoogle Scholar

[139]

Sanjurjo JA, E. Lopez-Cruz, Vogl P, Cardona M. Dependence on volume
of the phonon frequencies and their effective charges of several III-V
semiconductors. Phys Rev B 1983;28:4579–84.CrossrefGoogle Scholar

[140]

Reich S, Ferrari AC, Arenal R, Loiseau A, Bello I, Robertson J.
Resonant raman scattering in cubic and hexagonal boron nitride. Phys Rev B
2005;71:205201.CrossrefGoogle Scholar

[141]

Deinzer G, Schmitt M, Mayer AP, Strauch D. Intrinsic lifetimes and
anharmonic frequency shifts of long-wavelength optical phonons in polar
crystals. Phys Rev B 2004;69:014304.CrossrefGoogle Scholar

[142]

Broido DA, Malorny M, Birner G, Mingo N, Steward DA. Intrinsic
lattice thermal conductivity of semiconductors from first principles. Appl Phys
Lett 2007;91:231922.CrossrefGoogle Scholar

[143]

Ecsedy DJ, Klemens PG. Thermal resistivity of dielectric crystals
due to 4-phonon processes and optical modes. Phys Rev B
1977;15:5957–62.Google Scholar

[144]

Lindsay L, Broido DA. Three-phonon phase space and lattice thermal
conductivity in semiconductors. J Phys: Condens Matter
2008;20:165209.CrossrefGoogle Scholar

[145]

Menendez J, Cardona M. Temperature-dependence of the 1st-Order
Raman-Scattering by Phonons in Si, Ge, and A-Sn Anharmonic Effects. Phys Rev B
1984;29:2051–9.CrossrefGoogle Scholar

[146]

Kuhl J, Bron WE. Temperature-dependence of longitudinal optical
phonon lifetimes in GaP. Solid State Commun
1984;49:935–8.CrossrefGoogle Scholar

[147]

Vallee F, Bogani F. Coherent time-resolved investigation of
LO-phonon dynamics in GaAs. Phys Rev B 1991;43:12049–52.CrossrefGoogle Scholar

[148]

Vallee F. Time-resolved investigation of coherent LO-phonon
relaxation in III-V semiconductors. Phys Rev B
1994;49:2460–8.CrossrefGoogle Scholar

[149]

Anand S, Verma P, Jain KP, Abbi SC. Temperature dependence of
optical phonon lifetimes in ZnSe. PhyB 1996;226:331–7.Google Scholar

[150]

Irmer G, Wenzel M, Monecke J. The temperature dependence of the LO
(Gamma) and TO (Gamma) phonons in GaAs and InP. PSSBR
1996;195:85–95.Google Scholar

[151]

Bergman L, Alexson D, Murphy PL, Nemanich RJ, Dutta M, Stroscio MA,
Balkas C, Shin H, Davis RF. Raman analysis of phonon lifetimes in AlN and GaN of
wurtzite structure. Phys Rev B 1999;59:12977–82.CrossrefGoogle Scholar

[152]

Kuball M, Hayes JM, Shi Y, Edgar JH. Phonon lifetimes in bulk AlN
and their temperature dependence. Appl Phys Lett
2000;77:1958–60.CrossrefGoogle Scholar

[153]

Pomeroy JW, Kuball M, Lu H, Schaff WJ, Wang X, Yoshikawa A. Phonon
lifetimes and phonon decay in InN. Appl Phys Lett
2005;86:223501.CrossrefGoogle Scholar

[154]

Song DY, Holtz M, Chandolu A, Nikishin SA, Mokhov EN, Makarov Y,
Helava H. Optical phonon decay in bulk aluminum nitride. Appl Phys Lett
2006;89:021901.CrossrefGoogle Scholar

[155]

Dyson A, Ridley BK. Phonon-plasmon coupled-mode lifetime in
semiconductors. J Appl Phys 2008;103:114507.CrossrefGoogle Scholar

[156]

Debernardi A, Baroni S, Molinari E. Anharmonic phonon lifetimes in
semiconductors from density-functional perturbation-theory. Phys Rev Lett
1995;75:1819–22.CrossrefGoogle Scholar

[157]

Debernardi A. Phonon linewidth in III-V semiconductors from
density-functional perturbation theory. Phys Rev B
1998;57:12847–58.CrossrefGoogle Scholar

[158]

Bonini N, Lazzeri M, Marzari N, Mauri F. Phonon anharmonicities in
graphite and graphene. Phys Rev Lett 2007;99:176802.CrossrefGoogle Scholar

[159]

Lindsay L, Broido DA, Reinecke TL. Ab-initio thermal transport in
compound semiconductors. Phys Rev B 2013;87:165201.CrossrefGoogle Scholar

[160]

Lindsay L, Broido DA, Reinecke TL. Phonon-isotope scattering and
thermal conductivity in materials with a large isotope effect: A
first-principles study. Phys Rev B 2013;88:144306.CrossrefGoogle Scholar

[161]

Huber AJ, Ocelic N, Taubner T, Hillenbrand R. Nanoscale resolved
infrared probing of crystal structure and of plasmon-phonon coupling. Nano Lett
2006;6:774–8.CrossrefGoogle Scholar

[162]

Ocelic N, Hillenbrand R. Subwavelength-scale tailoring of surface
phonon polaritons by focused ion-beam implantation. Nat Mater
2004;3:606–9.CrossrefGoogle Scholar

[163]

Sridhara SG, Carlsson FHC, Bergman JP, Janzen E. Luminescence from
stacking faults in 4H-SiC. Appl Phys Lett 2001;79:3944.CrossrefGoogle Scholar

[164]

Stahlbush RE, Fatemi M, Fedison JB, Arthur SD, Rowland LB, Wang S.
Stacking-fault formation and propagation in 4H-SiC PiN diodes. J Electron Mater
2002;31:370.CrossrefGoogle Scholar

[165]

Caldwell JD, Klein PB, Twigg ME, Stahlbush RE. Observation of a
multilayer planar in-grown stacking fault in 4H-SiC p-i-n diodes. Appl Phys Lett
2006;89:103519.CrossrefGoogle Scholar

[166]

Caldwell JD, Liu KX, Tadjer MJ, Glembocki OJ, Stahlbush RE, Hobart
KD, Kub F. Thermal annealing and propagation of shockley stacking faults in
4H-SiC PiN diodes. J Electron Mater 2007;36:318.CrossrefGoogle Scholar

[167]

Caldwell JD, Stahlbush RE, Glembocki OJ, Ancona MG, Hobart KD. On
the driving force for recombination-induced stacking fault motion in 4H-SiC. J
Appl Phys 2010;108:044503.CrossrefGoogle Scholar

[168]

Caldwell JD, Stahlbush RE, Hobart KD, Glembocki OJ, Liu KX. Reversal
of forward voltage drift in 4H-SIC p-i-n diodes via low temperature annealing.
Appl Phys Lett 2007;90:143519.CrossrefGoogle Scholar

[169]

Galeckas A, Linnros J, Pirouz P. Recombination-induced stacking
faults: evidence for a general mechanism in hexagonal SiC. Phys Rev Lett
2006;96:025502.CrossrefGoogle Scholar

[170]

Ha S, Skowronski M, Sumakeris JJ, Paisley MJ, Das MK. Driving force
of stacking-fault formation in SiC P-i-N diodes. Phys Rev Lett
2004;92:175504.CrossrefGoogle Scholar

[171]

Iwata HP, Lindefelt U, Oberg S, Briddon PR. Stacking faults in
silicon carbide. Physica B 2003;340:165–70.CrossrefGoogle Scholar

[172]

Maximenko SI, Freitas JA, Klein PB, Shrivastava A, Sudarshan TS.
Cathodoluminesence study of the properties of stacking faults in 4H-SiC
homoepitaxial layers. Appl Phys Lett 2009;94:092101.Google Scholar

[173]

Bergman JP, Lendenmann H, Nilsson PA, Lindefelt U, Skytt P. Crystal
defects as source of anomalous forward voltage increase of 4H-SiC diodes. Mater
Sci Forum 2001;353–356:299–302.Google Scholar

[174]

Neuner B, Korobkin D, Fietz C, Carole D, Ferro G, Shvets G.
Midinfrared index sensing of pL-scale analytes based on surface phonon
polaritons in silicon carbide. J Phys Chem C
2010;114:7489–91.CrossrefGoogle Scholar

[175]

Taubner T, Korobkin D, Urzhumov Y, Shvets G, Hillenbrand R.
Near-field microscopy through a SiC superlens. Science (Wash.)
2006;313:1595.CrossrefGoogle Scholar

[176]

Neuner B, Wu C, Eyck GT, Sinclair M, Brener I, Shvets G. Efficient
infrared thermal emitters based on low-albedo polaritonic meta-surfaces. Appl
Phys Lett 2013;102:211111.CrossrefGoogle Scholar

[177]

Poddubny A, Iorsh I, Belov P, Kivshar Y. Hyperbolic metamaterials.
Nature Photon 2013;7:958–67.Google Scholar

[178]

Yang X, Yao J, Rho J, Xiaobo Y, Zhang X. Experimental realization of
three-dimensional indefinite cavities at the nanoscale with anomalous scaling
laws. Nature Photon 2012;6:450–3.CrossrefGoogle Scholar

[179]

Liu Z, Lee H, Xiong Y, Sun C, Zhang X. Far-field optical hyperlens
magnifying sub-diffraction limited objects. Science
2007;315:1686.CrossrefGoogle Scholar

[180]

Smith DR. How to build a superlens. Science
2005;308:502–3.CrossrefGoogle Scholar

[181]

Engheta N. Circuits with light at nanoscales: optical nanocircuits
inspired by metamaterials. Science (Wash.)
2007;317:1698–702.CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.