Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Nanophotonics

Editor-in-Chief: Sorger, Volker

12 Issues per year


CiteScore 2017: 6.57

IMPACT FACTOR 2017: 6.014
5-year IMPACT FACTOR: 7.020


In co-publication with Science Wise Publishing

Open Access
Online
ISSN
2192-8614
See all formats and pricing
More options …
Volume 4, Issue 1

Issues

Nanowire Lasers

C. Couteau
  • Corresponding author
  • CINTRA CNRS-NTU-Thales, UMI 3288, Nanyang Technological University, Singapore. Centre for Disruptive Photonic Technologies (CDPT), Nanyang Technological University, Singapore. Laboratory for Nanotechnology, Instrumentation and Optics, Charles Delaunay Institute, CNRS UMR 6281, University of Technology of Troyes, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ A. Larrue
  • Corresponding author
  • CINTRA CNRS-NTU-Thales, UMI 3288, Nanyang Technological University, Singapore. III-V Lab, Thales Research Technology (TRT), Palaiseau, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ C. Wilhelm
  • Corresponding author
  • CINTRA CNRS-NTU-Thales, UMI 3288, Nanyang Technological University, Singapore
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ C. Soci
  • Corresponding author
  • CINTRA CNRS-NTU-Thales, UMI 3288, Nanyang Technological University, Singapore. Centre for Disruptive Photonic Technologies (CDPT), Nanyang Technological University, Singapore
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-05-20 | DOI: https://doi.org/10.1515/nanoph-2015-0005

Abstract:

We review principles and trends in the use of semiconductor nanowires as gain media for stimulated emission and lasing. Semiconductor nanowires have recently been widely studied for use in integrated optoelectronic devices, such as light-emitting diodes (LEDs), solar cells, and transistors. Intensive research has also been conducted in the use of nanowires for subwavelength laser systems that take advantage of their quasione- dimensional (1D) nature, flexibility in material choice and combination, and intrinsic optoelectronic properties. First, we provide an overview on using quasi-1D nanowire systems to realize subwavelength lasers with efficient, directional, and low-threshold emission. We then describe the state of the art for nanowire lasers in terms of materials, geometry, andwavelength tunability.Next,we present the basics of lasing in semiconductor nanowires, define the key parameters for stimulated emission, and introduce the properties of nanowires. We then review advanced nanowire laser designs from the literature. Finally, we present interesting perspectives for low-threshold nanoscale light sources and optical interconnects. We intend to illustrate the potential of nanolasers inmany applications, such as nanophotonic devices that integrate electronics and photonics for next-generation optoelectronic devices. For instance, these building blocks for nanoscale photonics can be used for data storage and biomedical applications when coupled to on-chip characterization tools. These nanoscale monochromatic laser light sources promise breakthroughs in nanophotonics, as they can operate at room temperature, can potentially be electrically driven, and can yield a better understanding of intrinsic nanomaterial properties and surface-state effects in lowdimensional semiconductor systems.

References

  • [1] S. Adachi, Handbook of physical properties of semiconductors, Kluwer Acad. Publ. (2004). Google Scholar

  • [2] R. Agarwal, C.J. Barrelet and C.M. Lieber, Lasing in single cadmiumsulfide nanowire optical cavities, Nano Lett. 5, 917 (2005). CrossrefGoogle Scholar

  • [3] L.C. Andreani, G. Panzarini and J.M. Gérard, Strong-coupling regime for quantum boxes in pillar microcavities: Theory, Phys. Rev. B 60, 13276 (1999). CrossrefGoogle Scholar

  • [4] S. Arafin, X. Liu and Z. Mi, Review of recent progress of III-nitride nanowire lasers, J. Nanophot. 7, 074599 (2013). CrossrefGoogle Scholar

  • [5] K.B. Arnardottir, O. Kyriienko, M.E. Portnoi and I.A. Shelykh, One-dimensional Van Hove polaritons, Phys. Rev. B 87, 125408 (2013). CrossrefGoogle Scholar

  • [6] C.J. Barrelet, J. Bao, M. Loncar, H.G. Park, F. Capasso and C.M. Lieber, Hybrid single-nanowire photonic crystal and microresonator structures, Nano Lett. 6, 11 (2006). CrossrefGoogle Scholar

  • [7] D.J. Bergman and M.I. Stockman, Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems, Phys. Rev. Lett. 90, 027402 (2003). CrossrefGoogle Scholar

  • [8] M.G.A. Bernard and G. Duraffourg, Laser Conditions in Semiconductors, Phys. Stat. Sol. b 1, 699 (1961). CrossrefGoogle Scholar

  • [9] P. Berini and I. De Leon, Surface plasmon–polariton amplifiers and lasers, Nat. Photonics 6, 16 (2012). Google Scholar

  • [10] Y. Bian, Z. Zheng, X. Zhao, L. Liu, J. Liu, J. Zhu and T. Zhou, Nanowire based hybrid plasmonic structures for low-threshold lasing at the subwavelength scale, Opt. Comm. 287, 245 (2013). CrossrefGoogle Scholar

  • [11] M.D. Birowosuto, A. Yokoo, H. Taniyama, E. Kuramochi, M. Takiguchi and M. Notomi, Design for ultrahigh-Q positioncontrolled nanocavities of single semiconductor nanowires in two-dimensional photonic crystals, J. Appl. Phys. 112, 113106 (2012). CrossrefGoogle Scholar

  • [12] M.D. Birowosuto, A. Yokoo, G. Zhang, K. Tateno, E. Kuramochi, H. Taniyama, M. Takiguchi and M. Notomi, Movable high-Q nanoresontators realized by semiconductor nanowires on a Si photonic crystal platform, Nat. Mat. 13, 279 (2014). CrossrefGoogle Scholar

  • [13] B. Cao, Y. Jiang, W. Wang, L. Wang, M. Niu, W. Zheng, Y. Li and S.T. Lee, Synthesis and lasing properties of highly ordered CdS nanowire arrays, Adv. Func. Mat. 17, 1501 (2007). Google Scholar

  • [14] L. Chen and E. Towe, Nanowire lasers with distributed-Braggreflector mirrors, Appl. Phys. Lett. 89, 053125 (2006). CrossrefGoogle Scholar

  • [15] R. Chen, T.T.D. Tran, K.W. Ng, W.S. Ko, L.C. Chuang, F.G. Sedgwick and C. Chang-Hasnain, Nanolasers grown on silicon, Nat. Photonics 5, 170-175 (2011). CrossrefGoogle Scholar

  • [16] A.H. Chin, S. Vaddiraju, A.V. Maslov, C.Z. Ning, M.K. Sunkara and M. Meyyappan, Near-infrared semiconductor subwavelength-wire lasers, Appl. Phys. Lett. 88, 163115 (2006). CrossrefGoogle Scholar

  • [17] S. Chu, G.Wang,W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren and J. Liu, Electrically pumped waveguide lasing from ZnO nanowires, Nat. Nanotechnology 6, 506 (2011). CrossrefGoogle Scholar

  • [18] J. Claudon, J. Bleuse, N. Singh Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.M. Gérard, A highly efficient single-photon source based on a quantum dot in a photonic nanowire, Nat. Photonics 4, 174 (2010). Google Scholar

  • [19] A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng and P. Bhattacharya, Room Temperature Ultralow Threshold GaN Nanowire Polariton Laser, Phys. Rev. Lett. 107, 66405 (2011). CrossrefGoogle Scholar

  • [20] N.P. Dasgupta, J. Sun, C. Liu, S. Brittman, S.C. Andrews, J. Lim, H. Gao, R. Yan and P. Yang, 25th anniversary article: semiconductor nanowires – synthesis, characterization, and applications, Adv. Mat. 26, 2137 (2013). Google Scholar

  • [21] J.X. Ding, J.A. Zapien, W.W. Chen, Y. Lifshitz, S.T. Lee, and X.M. Meng, Lasing in ZnS nanowires grown on anodic aluminium oxide templates, Appl. Phys. Lett. 85, 2361 (2004). CrossrefGoogle Scholar

  • [22] Y. Ding, Q. Yang, X. Guo, S. Wang, F. Gu, J. Fu, Q. Wan, J. Cheng and L. Tong, Nanowires/microfiber hybrid structure multicolor laser, Opt. Exp. 17, 21813 (2009). CrossrefGoogle Scholar

  • [23] K. Domen, K. Kondo, A. Kuramata and T. Tanahashi, Gain analysis for surface emission by optical pumping of wurtzite GaN, Appl. Phys. Lett. 69, 94 (1996). CrossrefGoogle Scholar

  • [24] X. Duan, Y. Huang, R. Agarwal and C.M. Lieber, Single-nanowire electrically driven lasers, Nature 421, 241 (2003). Google Scholar

  • [25] J. Fallert, F. Stelzl, H. Zhou, A. Reiser, K. Thonke, R. Sauer, C. Klingshirn and H. Kalt, Lasing dynamics in single ZnO nanorods, Opt. Exp. 16, 1125 (2008). CrossrefGoogle Scholar

  • [26] G. Feng, C. Yang and S. Zhou, Nanocrystalline Cr2+-doped ZnSe nanowires lasers, Nano Lett. 13, 272 (2013). CrossrefGoogle Scholar

  • [27] I. Friedler, C. Sauvan, J.P. Hugonin, P. Lalanne, J. Claudon and J.M. Gérard, Solid-state single photon sources: the nanowire antenna, Opt. Exp. 17, 2095 (2009). CrossrefGoogle Scholar

  • [28] A.S. Gadallah, K. Nomenyo, C. Couteau, D.J. Rogers and G. Lérondel, Stimulated emission from ZnO thin films with high optical gain and low loss, Appl. Phys. Lett. 102, 171105 (2013). CrossrefGoogle Scholar

  • [29] H. Gao, A. Fua, S.C. Andrews and P. Yang, Cleaved-coupled nanowire lasers, Proc. Nat. Ac. Sci. 110, 865 (2013). CrossrefGoogle Scholar

  • [30] Q. Gao, D. Saxena, F. Wang, L. Fu, S. Pokkapati, Y. Guo, L. Li, J. Wong-Leung, P. Caroff, H.H. Tan and C. Jagadish, Selective-area epitaxy of pure wurtzite InP nanowires: high quantumeflciency and room-temperature lasing, Nanolett. 14, 5206 (2014). CrossrefGoogle Scholar

  • [31] D.J. Gargas, M.E. Toimil-Molares and P. Yang, Imaging single ZnO vertical nanowire laser cavities using UV-laser scanning confocal microscopy, J. Am. Chem. Soc. 131, 2125 (2009). CrossrefGoogle Scholar

  • [32] S. Gradečak, F. Qian, Y. Li, H.G. Park and C.M. Lieber, GaN nanowire laserswith lowlasing thresholds, Appl. Phys. Lett. 87, 173111 (2005). CrossrefGoogle Scholar

  • [33] A. Greytak, C.J. Barrelet, Y. Li and C.M. Lieber, Semiconductor nanowire laser and nanowire waveguide electro-optic modulator, Appl. Phys. Lett. 87, 151103 (2005). CrossrefGoogle Scholar

  • [34] N.S. Han, H.S. Shim, S. Lee, S.M. Park, M.Y. Choi and J.K. Song, Light-matter interaction and polarization of single ZnO nanowire lasers, Phys. Chem. Chem. Phys. 14, 10556 (2012). CrossrefGoogle Scholar

  • [35] A.L. Henneghien, B. Gayral, Y. Désières and J.M. Gérard, Simulation of waveguiding and emitting properties of semiconductor nanowires with hexagonal or circular sections, J. Opt. Soc. Am. B 26, 2396 (2009). CrossrefGoogle Scholar

  • [36] J. Heo, W. Guo and P. Bhattacharya, Monolithic single GaN nanowire laser with photonic crystal microcavity on silicon, Appl. Phys. Lett. 98, 021110 (2011). CrossrefGoogle Scholar

  • [37] M.T. Hill, Y.S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P.J. Van Veldhoven, F.W.M. Van Otten, T.J. Eijkemans, J.P. Turkiewicz, H. De Waardt, E.J. Geluk, S.H. Kwon, Y.H. Lee, R. Noetzel and M.K. Smit, Lasing in metallic-coated nanocavities, Nat. Photonics 1, 589 (2007). CrossrefGoogle Scholar

  • [38] S. Hirano, N. Takeuchi, S. Shimada, K. Masuya, K. Ibe, H. Tsunakawa and M. Kuwabara, Room-temperature nanowire ultraviolet lasers: an aqueous pathway for zinc oxide nanowires with low defect density, J. Appl. Phys. 98, 094305 (2005). CrossrefGoogle Scholar

  • [39] C.E. Hofmann, F.J. Garcia de Abajo and H.A. Atwater, Enhancing the radiative rate in III-V semiconductor plasmonic core-shell nanowire resontators, Nano Lett. 11, 372 (2011). CrossrefGoogle Scholar

  • [40] R. Hostein, R. Braive, L. Le Gratiet, A. Talneau, G. Beaudoin, I. Robert-Philip, I. Sagnes and A. Beveratos, Demonstration of coherent emission from high-beta photonic crystal nanolasers at room temperature, Opt. Lett. 35, 1154 (2010). CrossrefGoogle Scholar

  • [41] Y. Hou, P. Renwick, B. Liu, J. Bai and T.Wang, Room temperature plasmonic lasing in a continuous wave operation mode from an InGaN/GaN single nanorod with a low threshold, Sci. Rep. 4, 5014 (2014). Google Scholar

  • [42] M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, Room-temperature ultraviolet nanowire lasers, Nature 292, 1897 (2001). Google Scholar

  • [43] B. Hua, J. Motohisa, Y. Kobayashi, S. Hara and T. Kukui, Single GaAs/GaAsP coaxial core-shell nanowire lasers, Nano Lett. 9, 112 (2009). CrossrefGoogle Scholar

  • [44] J.C. Johnson, H. Yan, R.D. Schaller, L.H. Haber, R.J. Saykally and P. Yang, Single nanowire lasers, J. Phys. Chem. B 105, 11387 (2001). CrossrefGoogle Scholar

  • [45] J.C. Johnson, H.J. Choi, K.P. Knutsen, R.D. Schaller, P. Yang and R.J. Saykally, Single gallium nitride nanowire lasers, Nat. Materials 1, 106 (2002). CrossrefGoogle Scholar

  • [46] J.C. Johnson, H. Yan, P. Yang and R.J. Saykally, Optical cavity effects in ZnO nanowire lasers and waveguides, J. Phys. Chem. B 107, 8816 (2003). CrossrefGoogle Scholar

  • [47] J.C. Johnson, K.P. Knutsen, H. Yan, M. Law, Y. Zhang, P. Yang and R.J. Saykally, Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers, Nanolett. 4, 197 (2004). CrossrefGoogle Scholar

  • [48] T.J. Kempa, R.W. Day, S.K. Kim, H.G. Park and C.M. Lieber, Semiconductor nanowires: a platform for exploring limits and concepts for nano-enabled solar cells, Energy Environ. Sci. 6, 719 (2013). CrossrefGoogle Scholar

  • [49] M. Khajavikhan, A. Simic, M. Katz, J.H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin and Y. Fainman, Thresholdless nanoscale coaxial lasers, Nature 482, 204 (2012). Google Scholar

  • [50] C. F. Klingshirn, ZnO: materials, physics and applications, ChemPhysChem 8, 782 (2007). CrossrefGoogle Scholar

  • [51] C. F. Klingshirn, Semiconductor Optics, Springer 4th Edition (2012). Google Scholar

  • [52] A. Larrue, C. Wilhelm, G. Vest, S. Combrié, A. de Rossi and C. Soci, Monolithic integration of III-V nanowire with photonic crystal microcavity for vertical light emission, Opt. Exp. 20, 7758 (2012). CrossrefGoogle Scholar

  • [53] K. Leosson, Optical amplification of surface plasmon polaritons: review, J. Nanophoton. 6, 61801 (2012). CrossrefGoogle Scholar

  • [54] Q. Li, J.B. Wright, W.W. Chow, T.S. Luk, I. Brener, L.F. Fester and G.T.Wang, Single-mode GaN nanowire lasers, Opt. Exp. 20, 17873 (2012). CrossrefGoogle Scholar

  • [55] J. Li, C. Meng, Y. Liu, X. Wu, Y. Lu, Y. Ye, L. Dai, L. Tong, X. Liu and Q. Yang, Wavelength tunable CdSe nanowire lasers based on the absorption-emission-absorption process, Adv. Mat. 25, 833 (2013). CrossrefGoogle Scholar

  • [56] K. Li, H. Sun, F. Ren, K.W. Ng, T.T.D. Tran, R. Chen and C.J. Chang- Hasnain, Tailoring the optical characteristics of microsized InP nanoneedles directly grown on silicon, Nanolett. 14, 183 (2014). CrossrefGoogle Scholar

  • [57] X. Liu, Q. Zhang, Q. Xiong and T.C. Sum, Tailoring the lasing modes in semiconductor nanowire cavities using intrinsic selfabsorption, Nano Lett. 13, 1080 (2013). CrossrefGoogle Scholar

  • [58] Z. Liu, L. Yin, H. Ning, Z. Yang, L. Tong and C.Z. Ning, Dynamical color-controllable lasing with extremely wide tuning range from red to green in a single alloy nanowire using nanoscale manipulation, Nano Lett. 13, 4945 (2013). CrossrefGoogle Scholar

  • [59] C.Y. Luan, Y.K. Liu, Y. Jiang, J.S. Jie, I. Bello, S.T. Lee and J.A. Zapien, Composition tuning of room-temperature nanolasers, Vacuum 86, 737 (2012). CrossrefGoogle Scholar

  • [60] R.M. Ma, X.L. Wei, L. Dai, S.F. Liu, T. Chen, S. Yue, Z. Li, Q. Chen and G.G. Qin, Light coupling and modulation in coupled nanowire ring-Fabry-Pérot cavity, Nano Lett. 9, 2697 (2009). CrossrefGoogle Scholar

  • [61] Y.Ma, X. Guo, X.Wu, L. Dai and L. Tong, Semiconductor nanowire lasers, Adv. Opt. Phot. 5, 216 (2013). CrossrefGoogle Scholar

  • [62] R.M. Ma, R.F. Oulton, V.J. Sorger and X. Zhang, Surface plasmon–polaritonamplifiers and lasersPlasmon lasers: coherent light source at molecular scales, Laser Photonics Rev. 7, 1 (2013). CrossrefGoogle Scholar

  • [63] A.V. Maslov and C.Z. Ning, Composition tuning of roomtemperature nanolasers, Appl. Phys. Lett. 83, 1237 (2003). CrossrefGoogle Scholar

  • [64] A.V. Maslov and C.Z. Ning, Modal properties of semiconductor nanowires for laser applications, Proc. SPIE 5349, Physics and Simulation of electronic devices XII (2004). Google Scholar

  • [65] A.V.Maslov and C.Z. Ning, Far-field emission of a semiconductor nanowire laser, Opt. Lett. 29, 572 (2004). CrossrefGoogle Scholar

  • [66] A.V. Maslov and C.Z. Ning, Modal gain in a semiconductor nanowire laser with anisotropic bandstructure, IEEE J. Quant. Elec. 40, 1389 (2004). CrossrefGoogle Scholar

  • [67] A.V. Maslov and C.Z. Ning, Size reduction of a semiconductor nanowire laser by using metal coating, Proc. SPIE 6468, Physics and Simulation of electronic devices XV (2007). Google Scholar

  • [68] A.V. Maslov and C.Z. Ning, GaN nanowire lasers, Nitride Semiconductor Devices: Principles and Simulation, Wiley-VCH publisher, J. Piprek (Ed.) (2007). Google Scholar

  • [69] B. Mayer, D. Rudolph, J. Schnell, S. Morkoetter, J. Winnerl, J. Treu, K. Mueller, G. Bracher, G. Abstreiter, G. Koblmueller and J.J. Finley, Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature, Nature Comm. 4, 2931 (2013). Google Scholar

  • [70] C.Z. Ning, Semiconductor Lasers, Phys. Stat. Sol. b 247, 774 (2010). Google Scholar

  • [71] C.Z. Ning, Semiconductor Nanowire Lasers, Semiconductors and Semimetals, Academic Press 86, 455 (2012). Google Scholar

  • [72] T. Nobis and M. Grundmann, Low order whispering gallery modes in hexagonal nanocavities, Phys. Rev. A 72, 063806 (2005). CrossrefGoogle Scholar

  • [73] M.A. Noginov, G. Zhu, A.M. Belgrave, R. Bakker, V.M. Shalaev, E.E. Narimanov, S. Stout, E. Herz, T. Suteewong and U.Wiesner, Demonstration of a spaser-based nanolaser, Nature 460, 1110 (2009). Google Scholar

  • [74] D. O’Carroll, I. Leiberwirth and G. Redmond, Microcavity effect and optically pumped lasing in single conjugated polymer nanowires, Nat. Nanotechnology 2, 180 (2007). CrossrefGoogle Scholar

  • [75] M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin and Y. Fainman, Room-temperature subwavelength metallo-dielectric lasers, Nat. Photonics 4, 395 (2010). CrossrefGoogle Scholar

  • [76] A. Pan, S. Wang, R. Liu, C. Li and B. Zou, Thermal stability and lasing of CdS nanowires coated by amorphous silica, Small 11, 1058 (2005). CrossrefGoogle Scholar

  • [77] A. Pan, W. Zhou, E.S.P. Leong, R. Liu, A.H. Chin, B. Zou and C.Z. Ning, Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip, Nano Lett. 9, 784 (2009). CrossrefGoogle Scholar

  • [78] C. Pan, L. Dong, G. Zhu, S. Niu, R. Yu, Q. Yang, Y. Liu and Z.L.Wang, High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array, Nat. Photonics 7, 752 (2013). CrossrefGoogle Scholar

  • [79] H.G. Park, F. Qian, C.J. Barrelet and Y. Li, Microstadium singlenanowire laser, Appl. Phys. Lett. 91, 251115 (2007). CrossrefGoogle Scholar

  • [80] H. Park and K.B. Crozier, Multispectral imaging with vertical silicon nanowires, Sci. Rep. 3, 2460 (2013). Google Scholar

  • [81] P.J. Pauzauskie, D.J. Sirbuly and P. Yang, Semiconductor Nanowire Ring Resonator Laser, Phys. Rev. Lett. 96, 143903 (2006). CrossrefGoogle Scholar

  • [82] L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo and F. Priolo, Optical gain in silicon nanocrystals, Nature 408, 440 (2000). Google Scholar

  • [83] Qin et al., Tuning a terahertz wire laser, Nature Phot. 3, 732 (2009). Google Scholar

  • [84] F. Qian, Y. Li, S. Gradec caronak, H.G. Park, Y. Dong, Y. Ding, Z.L. Wang and C.M. Lieber, Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers, Nat. Materials 7, 701 (2008). CrossrefGoogle Scholar

  • [85] R. Roeder, D. Ploss, A. Kriesch, R. Buschlinger, S. Geburt, U. Peschel and C. Ronning, Polarization features of optically pumped CdS nanowire lasers, J. Phys. D 47, 394012 (2014). Google Scholar

  • [86] C. Wilhelm, A. Larrue, X. Dai, D. Migas, C. Soci, Anisotropic photonic properties of III-V nanowires in the zinc-blende and wurtzite phase, Nanoscale 4, 1446 (2012). CrossrefGoogle Scholar

  • [87] D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H.H. Tan and C. Jagadish, Optically pumped room-temperature GaAs nanowire lasers, Nature Phot. 7, 963 (2013). CrossrefGoogle Scholar

  • [88] A.C. Scofield, J.N. Shapiro, A. Lin, A.D.Williams, P.S. Wong, B.L. Liang and D.L. Huffaker, Bottom-up photonic crystal cavities formed by patterned III-V nanopillars, Nano Lett. 11, 2242 (2011). CrossrefGoogle Scholar

  • [89] A.C. Scofield, S.H. Kim, J.N. Shapiro, A. Lin, B.L. Liang, A. Scherer and D.L. Huffaker, All PhC bottom-up laser bottomup photonic crystal lasers, Nano Lett. 11, 5387 (2011). CrossrefGoogle Scholar

  • [90] M.K. Seo, J.K. Yang, K.Y. Jeong, H.G. Park, F. Qian, H.S. Ee, Y.S. No and Y.H. Lee, Modal characteristics in a single-nanowire cavity with a triangular cross section, Nano Lett. 8, 4534 (2008). CrossrefGoogle Scholar

  • [91] B.S. Song, S. Noda, T. Asano and Y. Akahane, Ultra-high-Q photonic double-heterostructure nanocavity, Nat. Materials 4, 207 (2005). CrossrefGoogle Scholar

  • [92] M.I. Stockman, Nanoplasmonics: past, present, and glimpse into future, Opt. Exp. 19, 22029 (2009). Google Scholar

  • [93] G.K. Svendsen, H. Weman and J. Skaar, Model for reflection and transmission matrices of nanowire end facets, J. Appl. Phys. 109, 103101 (2011). CrossrefGoogle Scholar

  • [94] D. Vanmaekelbergh and L.K. van Vugt, ZnO nanowire lasers, Nanoscale 3, 2783 (2011). CrossrefGoogle Scholar

  • [95] L.K. van Vugt, S. Rühle and D. Vanmaekelbergh, Phase correlated nondirectional laser emission from the end facets of a ZnO nanowire, Nano Lett. 6, 2707 (2006). CrossrefGoogle Scholar

  • [96] M.A.M. Versteegh, D. Vanmaekelberg and J.I. Dijkhuis, Roomtemperature laser emission of ZnO nanowires explained by many-body theory, Phys. Rev. Lett. 108, 157402 (2012). CrossrefGoogle Scholar

  • [97] E. Verhagen, S. Deléglise, S. Weis, A. Schliesser and T.J. Kippenberg, Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode, Nature 482, 63 (2012). Google Scholar

  • [98] M.Q. Wang, Y.Z. Huang, Q. Chen and Z.P. Cai, Design of a novel micro-laser formed by monolithic integration of a III-V pillarwith a silicon photonic crystal cavity, IEEE J. Quant. Elec. 42, 146 (2006). CrossrefGoogle Scholar

  • [99] G. Wang, M. Leys, R. Loo, O Richard, H. Bender, G. Brammertz, N.Waldron,W.E.Wang, J. Dekoster, M. Caymax, M. Seefeldt and M. Heyns, Selective area growth of InP and defect elimination on Si (001) Substrates, J. Electrochem. Soc. 158, H645-H65 (2011). CrossrefGoogle Scholar

  • [100] Z.Wang, B. Tian and D. Van Thourhout, Design of a novel microlaser formed by monolithic integration of a III-V pillar with a silicon photonic crystal cavity, J. Light. Tech. 31, 1475 (2013). CrossrefGoogle Scholar

  • [101] Z. Wang, B. Tian, M. Paladugu, M. Pantouvaki, N. Le Thomas, C. Merckling, W. Guo, J. Dekoster, J. Van Campenhout, P. Absil and D. Van Thourhout, Polytypic InP nanolaser monolithically integrated on (001) silicon, Nanolett. 13, 5063 (2013). Google Scholar

  • [102] W. Wei, Y. Liu, X. Zhang, Z. Wang and X. Ren, Evanescentwave pumped room-temperature single-mode GaAs/AlGaAs core-shell nanowire lasers, Appl. Phys. Lett. 104, 223103 (2014). CrossrefGoogle Scholar

  • [103] D.Wiesmann, I. Brener, L. Pfeiffer, M.A. Khan and C.J. Sun, Gain spectra and stimulated emission in epitaxial (In,Al) GaN thin films, Appl. Phys. Lett. 69, 3384 (1996). CrossrefGoogle Scholar

  • [104] J.B. Wright, S. Campione, S. Liu, J.A. Martinez, H. Xu, T.S. Luk, Q. Li, G.T. Wang, B.S. Swartzentruber, L.F. Lester and I. Brener, Distributed feedback gallium nitride nanowire lasers, Appl. Phys. Lett. 104, 041107 (2014). CrossrefGoogle Scholar

  • [105] Y. Wu, H. Yan, M. Huang, B. Messer, J.H. Song and P. Yang, Inorganic Semiconductor Nanowires: Rational Growth, Assembly, and Novel Properties, Chem. Eur. J. 8, 1261 (2002). Google Scholar

  • [106] Y.Wu, H. Yan, M. Huang, B. Messer, J.H. Song and P. Yang, Plasmonic green nanolaser based on a metal-oxide-semiconductor structure, Chem. Eur. J. 8, 1261 (2002). Google Scholar

  • [107] X. Wu, Y. Xiao, C. Meng, X. Zhang, S. Yu, Y. Wang, C. Yang, X. Guo, C.Z. Ning and L. Tong, Hybrid photon-plasmon nanowire lasers, Nanolett. 13, 5654 (2013). CrossrefGoogle Scholar

  • [108] Y. Xiao, C. Meng, P. Wang, Y. Ye, H. Yu, S. Wang, F. Gu, L. Dai and L. Tong, Single-Nanowire Single-Mode Laser, Nano Lett. 11, 1122 (2011). CrossrefGoogle Scholar

  • [109] T. Xu, S. Yang, S.V. Nair and H.E. Ruda, Nanowire-array-based photonic crystal cavity by finite-difference time-domain calculations, Phys. Rev. B 75, 125104 (2007). CrossrefGoogle Scholar

  • [110] H. Xu, J.B. Wright, T.S. Luk, J.J. Figiel, K. Cross, L.F. Lester, G. Balakrishnan, G.T.Wang, I. Brener and Q. Li, Single-mode lasing of GaN nanowire-pairs, Appl. Phys. Lett. 101, 113106 (2012). CrossrefGoogle Scholar

  • [111] H. Xu, J.B.Wright, A. Hurtado, Q. Li, T.S. Luk, J.J. Figiel, K. Cross, G. Balakrishnan, L.F. Lester, I. Brener and G.T. Wang, Gold substrate-induced single-mode lasing of GaN nanowires, Appl. Phys. Lett. 101, 221114 (2012). CrossrefGoogle Scholar

  • [112] P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He and H.J. Choi, Controlled frowth of ZnO nanowires and their optical properties, Adv. Funct.Mat. 12, 323 (2002). CrossrefGoogle Scholar

  • [113] H. Yan, R. He, J. Johnson, M. Law, R. Saykally and P. Yang, Dendritic Nanowire Ultraviolet Laser Array, J. Am. Chem. Soc. 125, 4728 (2003). CrossrefGoogle Scholar

  • [114] H. Yan, J. Johnson, M. Law, R. He, K. Knutsen, J.R. McKinney, J. Pham, R. Saykally and P. Yang, ZnO nanoribbon microcavity lasers, Adv. Mat. 15, 1907 (2003). CrossrefGoogle Scholar

  • [115] Q. Yang, X. Jiang, X. Guo, Y. Chen and L. Tong, Hybrid structure laser based on semiconductor nanowires and a silica microfiber knot cavity, Appl. Phys. Lett. 94, 101108 (2009). CrossrefGoogle Scholar

  • [116] W. Yang, Y. Ma, Y. Wang, C. Meng, X. Wu, Y. Ye, L. Dai, L. Tong, X. Liu and Q. Yang, Bending effects on lasing action of semiconductor nanowires, Opt. Exp. 21, 2024 (2013). CrossrefGoogle Scholar

  • [117] Z. Yang, D.Wang, C. Meng, Z.Wu, Y.Wang, Y.Ma, L. Dai, X. Liu, T. Hasan, X. Liu and Q. Yang, Broadly defining lasing wavelengths in single bandgap-graded semiconductor nanowires, Nanolett. 14, 3153 (2014). CrossrefGoogle Scholar

  • [118] Y. Ye, Y.Ma, S. Yue, L. Dai, H. Meng, Z. Li, L. Tong and G. Qin, Lasing of CdSe/SiO2 nanocables synthesized by the facile chemical vapor deposition method, Nanoscale 3, 3072 (2011). Google Scholar

  • [119] V.V. Zalamai, V.V. Ursaki, C. Klingshirn, H. Kalt, G.A. Emelchenko and A.N. Redkin, Lasing with guided modes in ZnO nanorods and naowires, Appl. Phys. B 97, 817 (2009). CrossrefGoogle Scholar

  • [120] J.A. Zapien, Y. Jiang, X.M. Meng, W. Chen, F.C.K. Au, Y. Lifshitz and S.T. Lee, Room-temperature single nanoribbon lasers, Appl. Phys. Lett. 84, 1189 (2004). CrossrefGoogle Scholar

  • [121] M.I. Stockman, Spaser, Plasmonic Amplification, and Loss Compensation. Chapter 1 in "Active Plasmonics and Tuneable Plasmonic Metamaterials", 1st Ed. by A.V. Zayats and S.A.Maier, John Wiley & Sons (2013). Google Scholar

  • [122] Y. Zhang, R.E. Russo and S.S. Mao, Quantum eflciency of ZnO nanowire lasers, Appl. Phys. Lett. 87, 043106 (2005). CrossrefGoogle Scholar

  • [123] C.F. Zhang, Z.W. Dong, G.J. You, S.X. Qian and H. Deng, Multiphoton route to ZnO nanowire lasers, Opt. Lett.31, 3345 (2006). CrossrefGoogle Scholar

  • [124] Y. Zhang and M. Loncar, Ultra-high quality factor optical resonators based on semiconductor nanowires, Opt. Exp. 16, 17400 (2008). CrossrefGoogle Scholar

  • [125] C. Zhang, F. Zhang, T. Xia, N. Kumar, J. Hahm, J. Liu, Z.L. Wang and J. Xu, Low-threshold two-photon pumped ZnO nanowire lasers, Opt. Exp. 17, 7893 (2009). CrossrefGoogle Scholar

  • [126] J.Y. Zhang, Q.F. Zhang, T.S. Deng and J.L. Wu, Electrically driven ultraviolet lasing behavior from phosphorus-doped p- ZnO nanonail array/n-Si heterojunction, Appl. Phys. Lett. 95, 211107 (2009). CrossrefGoogle Scholar

  • [127] Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T.C. Sum, C.M. Lieber and Q. Xiong, A room temperature low-threshold ultraviolet plasmonic nanolaser, Nat. Comm. 5, 4953 (2014). CrossrefGoogle Scholar

  • [128] Zhou et al., Lasing Mechanism of ZnO Nanowires/Nanobelts at Room Temperature, J. Phys. Chem. B 110, 12865 (2006). CrossrefGoogle Scholar

  • [129] H. Zhou, M.Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn and H. Kalt, Ordered uniform-sized ZnOnanolasers arrays, Appl. Phys. Lett. 91, 181112 (2007). CrossrefGoogle Scholar

  • [130] L. Zhu, Modal properties of hybrid plasmonic waveguides for nanolaser applications, IEEE Phot. Tech. Lett. 22, 535 (2010). CrossrefGoogle Scholar

  • [131] M.A. Zimmler, J. Bao, F. Capasso, S. Müller and C. Ronning, Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation, Appl. Phys. Lett. 93, 051101 (2008). CrossrefGoogle Scholar

  • [132] M.A. Zimmler, F. Capasso, S. Müller and C. Ronning, Optically pumped nanowire lasers: invited review, Semicond. Sci. Technol. 25, 024001 (2010). CrossrefGoogle Scholar

About the article

Published Online: 2015-05-20


Citation Information: Nanophotonics, Volume 4, Issue 1, Pages 90–107, ISSN (Online) 2192-8614, ISSN (Print) 2192-8606, DOI: https://doi.org/10.1515/nanoph-2015-0005.

Export Citation

© 2015 C. Couteau et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Wei Wei, Xin Yan, Bing Shen, Jian Qin, and Xia Zhang
Nanoscale Research Letters, 2018, Volume 13, Number 1
[2]
João Valente, Tillmann Godde, Yunyan Zhang, David J. Mowbray, and Huiyun Liu
Nano Letters, 2018
[3]
Hamzeh Telfah, Abdelqader Jamhawi, Meghan B. Teunis, Rajesh Sardar, and Jinjun Liu
The Journal of Physical Chemistry C, 2017
[4]
D S Oliveira, M Zavarize, L H G Tizei, M Walls, C A Ospina, F Iikawa, D Ugarte, and M A Cotta
Nanotechnology, 2017, Volume 28, Number 50, Page 505604
[5]
Ran Ditcovski and Tal Ellenbogen
Optics Express, 2017, Volume 25, Number 24, Page 30115
[6]
Cun-Zheng Ning, Letian Dou, and Peidong Yang
Nature Reviews Materials, 2017, Volume 2, Page 17070
[7]
Wei Tian, Yidan Wang, Liang Chen, and Liang Li
Small, 2017, Page 1701848
[8]
Ying Yu, Jing Wang, Yu-Ming Wei, Zhang-Kai Zhou, Hai-Qiao Ni, Zhi-Chuan Niu, Xue-Hua Wang, and Si-Yuan Yu
Nanotechnology, 2017, Volume 28, Number 39, Page 395701
[9]
Masanobu Izaki, Masakazu Kobayashi, Tsutomu Shinagawa, Takayuki Koyama, Kentaro Uesugi, and Akihisa Takeuchi
physica status solidi (a), 2017, Page 1700285
[10]
Yue Yang, Hua Zong, Chuang Ma, Tiantian Wei, Junchao Li, Jiang Zhang, Mo Li, Caofeng Pan, and Xiaodong Hu
Optics Express, 2017, Volume 25, Number 18, Page 21025
[11]
Yunyan Zhang, H. Aruni Fonseka, Martin Aagesen, James A. Gott, Ana M. Sanchez, Jiang Wu, Dongyoung Kim, Pamela Jurczak, Suguo Huo, and Huiyun Liu
Nano Letters, 2017, Volume 17, Number 8, Page 4946
[12]
Eero Koivusalo, Teemu Hakkarainen, and Mircea Guina
Nanoscale Research Letters, 2017, Volume 12, Number 1
[13]
Xin Yan, Wei Wei, Fengling Tang, Xi Wang, Luying Li, Xia Zhang, and Xiaomin Ren
Applied Physics Letters, 2017, Volume 110, Number 6, Page 061104
[14]
Qinglin Zhang, Huawei Liu, Pengfei Guo, Dan Li, Peng Fan, Weihao Zheng, Xiaoli Zhu, Ying Jiang, Hong Zhou, Wei Hu, Xiujuan Zhuang, Hongjun Liu, Xiangfeng Duan, and Anlian Pan
Nano Energy, 2017, Volume 32, Page 28
[15]
Lin Tian, Lorenzo di Mario, Valentina Zannier, Daniele Catone, Stefano Colonna, Patrick O’Keeffe, Stefano Turchini, Nicola Zema, Silvia Rubini, and Faustino Martelli
Physical Review B, 2016, Volume 94, Number 16
[16]
Caroline Lindberg, Alexander Whiticar, Kimberly A. Dick, Niklas Sköld, Jesper Nygård, and Jessica Bolinsson
Nano Letters, 2016, Volume 16, Number 4, Page 2181
[17]
Samuel W. Eaton, Minliang Lai, Natalie A. Gibson, Andrew B. Wong, Letian Dou, Jie Ma, Lin-Wang Wang, Stephen R. Leone, and Peidong Yang
Proceedings of the National Academy of Sciences, 2016, Volume 113, Number 8, Page 1993

Comments (0)

Please log in or register to comment.
Log in