[1]
Lee EJH, Balasubramanian K, Weitz RT, Burghard M, Kern K. Contact
and edge effects in graphene devices. Nat Nanotechnol
2008;3:486–90.CrossrefGoogle Scholar
[2]
Park J, Ahn YH, Ruiz-Vargas C. Imaging of photocurrent generation
and collection in single-layer graphene. Nano Lett
2009;9:1742–6.CrossrefGoogle Scholar
[3]
Xia F, Mueller T, Golizadeh-Mojarad R, Freitag M, Lin YM, Tsang J,
Perebeinos V, Avouris P. Photocurrent imaging and efficient photon detection in
a graphene transistor. Nano Lett 2009;9:1039–44.CrossrefGoogle Scholar
[4]
Xu X, Gabor NM, Alden JS, van der Zande AM, McEuen PL.
Photo-thermoelectric effect at a graphene interface junction. Nano Lett
2009;10:562–6.Google Scholar
[5]
Kim R, Perebeinos V, Avouris P. Relaxation of optically excited
carriers in graphene. Phys Rev B 2011;84:75449.CrossrefGoogle Scholar
[6]
Winzer T, Knorr A, Malic E. Carrier multiplication in graphene. Nano
Lett 2010;10:4839–43.CrossrefGoogle Scholar
[7]
Tielrooij KJ, Song JCW, Jensen SA, Centeno A, Pesquera A, Zurutuza
Elorza A, Bonn M, Levitov LS, Koppens FHL. Photoexcitation cascade and multiple
hot-carrier generation in graphene. Nat Phys
2013;l9:248–52.CrossrefGoogle Scholar
[8]
Freitag M, Low T, Xia F, Avouris P. Photoconductivity of biased
graphene. Nat Photon 2013;7:53–9.Google Scholar
[9]
Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T,
Peres NMR, Geim AK. Fine structure constant defines visual transparency of
graphene. Science 2008;320:1308.CrossrefGoogle Scholar
[10]
Mak KF, Ju L, Wang F, Heinz TF. Optical spectroscopy of graphene:
from the far infrared to the ultraviolet. Solid State Commun
2012;152:1341–9.CrossrefGoogle Scholar
[11]
Xia F, Mueller T, Lin Y-m, Valdes-Garcia A, Avouris P. Ultrafast
graphene photodetector. Nat Nanotechnol 2009;4:839–43.CrossrefGoogle Scholar
[12]
Echtermeyer TJ, Britnell L, Jasnos PK, Lombardo A, Gorbachev RV,
Grigorenko AN, Geim AK, Ferrari AC, Novoselov KS. Strong plasmonic enhancement
of photovoltage in graphene. Nat Commun 2011;2:458.CrossrefGoogle Scholar
[13]
Fang Z, Liu Z, Wang Y, Ajayan PM, Nordlander P, Halas NJ.
Graphene-antenna sandwich photodetector. Nano Lett
2012;12:3808–13.CrossrefGoogle Scholar
[14]
Engel M, Steiner M, Lombardo A, Ferrari AC, Löhneysen HV,
Avouris P, Krupke R. Light–matter interaction in a microcavity-controlled
graphene transistor. Nat Commun 2012;3:906.CrossrefGoogle Scholar
[15]
Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang
X. A graphene-based broadband optical modulator. Nature
2011;474:64–7.CrossrefGoogle Scholar
[16]
Li W, Chen B, Meng C, Fang W, Xiao Y, Li X, Hu Z, Xu Y, Tong L, Wang
H, Liu W, Bao J, Shen YR. Ultrafast all-optical graphene modulator. Nano Lett
2014;14:955–9.CrossrefGoogle Scholar
[17]
Mueller T, Xia F, Avouris P. Graphene photodetectors for high-speed
optical communications. Nat Photon 2010;4:297–301.CrossrefGoogle Scholar
[18]
Shi S-F, Xu X, Ralph DC, McEuen PL. Plasmon resonance in individual
nanogap electrodes studied using graphene nanoconstrictions as photodetectors.
Nano Lett 2011;11:1814–8.CrossrefGoogle Scholar
[19]
Liu Y, Cheng R, Liao L, Zhou H, Bai J, Liu G, Liu L, Huang Y, Duan
X. Plasmon resonance enhanced multicolour photodetection by graphene. Nat Commun
2011;2:579.CrossrefGoogle Scholar
[20]
Konstantatos G, Badioli M, Gaudreau L, Osmond J, Bernechea M, Garcia
de Arquer FP, Gatti F, Koppens FH. Hybrid graphene-quantum dot phototransistors
with ultrahigh gain. Nat Nanotechnol 2012;7:363–8.CrossrefGoogle Scholar
[21]
Sun Z, Liu Z, Li J, Tai G-a, Lau S-P, Yan F. Infrared photodetectors
based on CVD grown graphene and PbS quantum dots with ultrahigh responsivity.
Adv Mater 2012;24:5878–83.CrossrefGoogle Scholar
[22]
Gan X, Mak KF, Gao Y, You Y, Hatami F, Hone J, Heinz TF, Englund D.
Strong enhancement of light-matter interaction in graphene coupled to a photonic
crystal nanocavity. Nano Lett 2012;12:5626–31.CrossrefGoogle Scholar
[23]
Furchi M, Urich A, Pospischil A, Lilley G, Unterrainer K, Detz H,
Klang P, Andrews AM, Schrenk W, Strasser G, Mueller T. Microcavity-integrated
graphene photodetector. Nano Lett 2012;12:2773–7.CrossrefGoogle Scholar
[24]
Ferreira A, Peres NMR, Ribeiro RM, Stauber T. Graphene-based
photodetector with two cavities. Phys Rev B 2012;85:115438.CrossrefGoogle Scholar
[25]
Gan X, Shiue R-J, Gao Y, Meric I, Heinz TF, Shepard K, Hone J,
Assefa S, Englund D. Chip-integrated ultrafast graphene photodetector with high
responsivity. Nat Photon 2013;7:883–7.CrossrefGoogle Scholar
[26]
Wang X, Cheng Z, Xu K, Tsang HK, Xu J-B. High-responsivity
graphene/silicon-heterostructure waveguide photodetectors. Nat Photon
2013;7:888–91.CrossrefGoogle Scholar
[27]
Zhu X, Yan W, Mortensen NA, Xiao S. Bends and splitters in graphene
nanoribbon waveguides. Opt Express 2013;21:3486–91.CrossrefGoogle Scholar
[28]
Pospischil A, Humer M, Furchi MM, Bachmann D, Guider R, Fromherz T,
Mueller T. CMOS-compatible graphene photodetector covering all optical
communication bands. Nat Photon 2013;7:892–6.CrossrefGoogle Scholar
[29]
Kim K, Choi JY, Kim T, Cho SH, Chung HJ. A role for graphene in
silicon-based semiconductor devices. Nature
2011;479:338–44.CrossrefGoogle Scholar
[30]
Youngblood N, Anugrah Y, Ma R, Koester SJ, Li M. Multifunctional
graphene optical modulator and photodetector integrated on silicon waveguides.
Nano Lett 2014;14:2741–6.CrossrefGoogle Scholar
[31]
Liu M, Yin X, Zhang X. Double-layer graphene optical modulator. Nano
Lett 2012;12:1482–5.CrossrefGoogle Scholar
[32]
Koester SJ, Li M. High-speed waveguide-coupled graphene-on-graphene
optical modulators. Appl Phys Lett 2012;100:171107.CrossrefGoogle Scholar
[33]
Gan X, Shiue R-J, Gao Y, Mak KF, Yao X, Li L, Szep A, Walker D, Hone
J, Heinz TF, Englund D. High-contrast electrooptic modulation of a photonic
crystal nanocavity by electrical gating of graphene. Nano Lett
2013;13:691–6.CrossrefGoogle Scholar
[34]
Cubukcu E, Kort EA, Crozier KB, Capasso F. Plasmonic laser antenna.
Appl Phys Lett 2006;89:93120.CrossrefGoogle Scholar
[35]
Brongersma ML. Plasmonics: engineering optical nanoantennas. Nat
Photon 2008;2:270–2.CrossrefGoogle Scholar
[36]
Kawata S, Inouye Y, Verma P. Plasmonics for near-field nano-imaging
and superlensing. Nat Photon 2009;3:388–94.CrossrefGoogle Scholar
[37]
Kabashin AV, Evans P, Pastkovsky S, Hendren W, Wurtz GA, Atkinson R,
Pollard R, Podolskiy VA, Zayats AV. Plasmonic nanorod metamaterials for
biosensing. Nat Mater 2009;8:867–71.CrossrefGoogle Scholar
[38]
Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP.
Biosensing with plasmonic nanosensors. Nat Mater
2008;7:442–53.CrossrefGoogle Scholar
[39]
Yanik AA, Cetin AE, Huang M, Artar A, Mousavi SH, Khanikaev A,
Connor JH, Shvets G, Altug H. Seeing protein monolayers with naked eye through
plasmonic Fano resonances. Proc Natl Acad Sci 2011;108:11784.CrossrefGoogle Scholar
[40]
Barnes WL, Dereux A, Ebbesen TW. Surface plasmon subwavelength
optics. Nature 2003;424:824–30.CrossrefGoogle Scholar
[41]
Oulton RF, Sorger VJ, Zentgraf T, Ma R-M, Gladden C, Dai L, Bartal
G, Zhang X. Plasmon lasers at deep subwavelength scale. Nature
2009;461:629–32.CrossrefGoogle Scholar
[42]
Oulton RF, Sorger VJ, Genov DA, Pile DFP, Zhang X. A hybrid
plasmonic waveguide for subwavelength confinement and long-range propagation.
Nat Photon 2008;2:496–500.CrossrefGoogle Scholar
[43]
Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov
SV, Geim AK. Two-dimensional atomic crystals. Proc Natl Acad Sci USA
2005;102:10451–3.CrossrefGoogle Scholar
[44]
Hwang EH, Sarma S. Das, Dielectric function, screening, and plasmons
in two-dimensional graphene. Phys Rev B 2007;75:205418.CrossrefGoogle Scholar
[45]
Freitag M, Low T, Zhu W, Yan H, Xia F, Avouris P. Photocurrent in
graphene harnessed by tunable intrinsic plasmons. Nat Commun
2013;4.Google Scholar
[46]
Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel HA, Liang
X, Zett A, Shen YR, Wang F. Graphene plasmonics for tunable terahertz
metamaterials. Nat Nanotechnol 2011;6:630–4.CrossrefGoogle Scholar
[47]
Yan H, Low T, Zhu W, Wu Y, Freitag M, Li X, Guinea F, Avouris P, Xia
F. Damping pathways of mid-infrared plasmons in graphene nanostructures. Nat
Photon 2013;7:394–9.CrossrefGoogle Scholar
[48]
Brar VW, Jang MS, Sherrott M, Lopez JJ, Atwater HA. Highly confined
tunable mid-infrared plasmonics in graphene nanoresonators. Nano Lett
2013;13:2541–7.CrossrefGoogle Scholar
[49]
Koppens FHL, Chang DE, Garcia De Abajo FJ. Graphene plasmonics: a
platform for strong light-matter interactions. Nano Lett
2011;11:3370–7.CrossrefGoogle Scholar
[50]
Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M, Zhu W, Avouris
P, Xia F. Tunable infrared plasmonic devices using graphene/insulator stacks.
Nat Nanotechnol 2012;7:330–4.CrossrefGoogle Scholar
[51]
Brar VW, Jang MS, Sherrott M, Kim S, Lopez JJ, Kim LB, Choi M,
Atwater H. Hybrid surface-phonon-plasmon polariton modes in graphene/monolayer
h-BN Heterostructures. Nano Lett 2014;14:3876–80.CrossrefGoogle Scholar
[52]
Fei Z, Rodin AS, Andreev GO, Bao W, McLeod AS, Wagner M, Zhang LM,
Zhao Z, Thiemens M, Dominguez G, Fogler MM, Castro Neto AH, Lau CN, Keilmann F,
Basov DN. Gate-tuning of graphene plasmons revealed by infrared nano-imaging.
Nature 2012;487:82–5.Google Scholar
[53]
Sarma SD, Hwang EH. Collective modes of the massless Dirac plasma.
Phys Rev Lett 2009;102:206412.CrossrefGoogle Scholar
[54]
Christensen J, Manjavacas A, Thongrattanasiri S, Koppens FHL,
García de Abajo FJ. Graphene plasmon waveguiding and hybridization in
individual and paired nanoribbons. ACS nano
2011;6:431–40.Google Scholar
[55]
Yan H, Li Z, Li X, Zhu W, Avouris P, Xia F. Infrared spectroscopy of
tunable Dirac terahertz magneto-plasmons in graphene. Nano Lett
2012;12:3766–71.CrossrefGoogle Scholar
[56]
Fang Z, Wang Y, Schlather AE, Liu Z, Ajayan PM, García de
Abajo FJ, Nordlander P, Zhu X, Halas NJ. Active tunable absorption enhancement
with graphene nanodisk arrays. Nano Lett
2013;14:299–304.Google Scholar
[57]
Fang Z, Thongrattanasiri S, Schlather A, Liu Z, Ma L, Wang Y, Ajayan
PM, Nordlander P, Halas NJ, García de Abajo FJ. Gated tunability and
hybridization of localized plasmons in nanostructured graphene. ACS Nano
2013;7:2388–95.CrossrefGoogle Scholar
[58]
Halas NJ, Lal S, Chang W-S, Link S, Nordlander P. Plasmons in
strongly coupled metallic nanostructures. Chem Rev
2011;111:3913–61.CrossrefGoogle Scholar
[59]
Hennessy K, Badolato A, Winger M, Gerace D, Atatüre M, Gulde
S, Fält S, Hu EL, Imamoglu A. Quantum nature of a strongly coupled single
quantum dot-cavity system. Nature 2007;445:896–9.CrossrefGoogle Scholar
[60]
Yoshie T, Scherer A, Hendrickson J, Khitrova G, Gibbs HM, Rupper G,
Ell C, Shchekin OB, Deppe DG. Vacuum Rabi splitting with a single quantum dot in
a photonic crystal nanocavity. Nature 2004;432:200–3.CrossrefGoogle Scholar
[61]
McKeever J, Boca A, Boozer AD, Buck JR, Kimble HJ. Experimental
realization of a one-atom laser in the regime of strong coupling. Nature
2003;425:268–71.CrossrefGoogle Scholar
[62]
Khitrova G, Gibbs HM, Kira M, Koch SW, Scherer A. Vacuum Rabi
splitting in semiconductors. Nat Phys 2006;2:81–90.CrossrefGoogle Scholar
[63]
Gérard JM, Sermage B, Gayral B, Legrand B, Costard E,
Thierry-Mieg V. Enhanced spontaneous emission by quantum boxes in a monolithic
optical microcavity. Phys Rev Lett 1998;81:1110.CrossrefGoogle Scholar
[64]
Boroditsky M, Vrijen R, Krauss TF, Coccioli R. Spontaneous emission
extraction and Purcell enhancement from thin-film 2-D photonic crystals. J
Lightwave Technol 1999;17:2096–112.CrossrefGoogle Scholar
[65]
Vahala KJ. Optical microcavities. Nature
2003;424:839–46.CrossrefGoogle Scholar
[66]
Spillane SM, Kippenberg TJ, Vahala KJ, Goh KW, Wilcut E, Kimble HJ.
Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics. Phys
Rev A 2005;71:13817.CrossrefGoogle Scholar
[67]
Liu F, Cubukcu E. Tunable omnidirectional strong light-matter
interactions mediated by graphene surface plasmons. Phys Rev B
2013;88:11.Google Scholar
[68]
Li Y, Yan H, Farmer DB, Meng X, Zhu W, Osgood RM, Heinz TF, Avouris
P. Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers.
Nano Lett 2014;14:1573–7.CrossrefGoogle Scholar
[69]
Low T, Guinea F, Yan H, Xia F, Avouris P. Novel midinfrared
plasmonic properties of bilayer graphene. Phys Rev Lett
2014;112:116801.CrossrefGoogle Scholar
[70]
Freitag M, Low T, Martin-Moreno L, Zhu W, Guinea F, Avouris P.
Substrate-sensitive mid-infrared photoresponse in graphene. ACS Nano
2014;8:8350–6.CrossrefGoogle Scholar
[71]
Yan H, Low T, Guinea F, Xia F, Avouris P. Tunable phonon-induced
transparency in bilayer graphene nanoribbons. arXiv preprint arXiv:1310.4394
(2013).Google Scholar
[72]
Tanji-Suzuki H, Chen W, Landig R, Simon J, Vuletic V. Vacuum-induced
transparency. Science 2011;333:1266–9.CrossrefGoogle Scholar
[73]
Yanik MF, Suh W, Wang Z, Fan S. Stopping light in a waveguide with
an all-optical analog of electromagnetically induced transparency. Phys Rev Lett
2004;93:233903.CrossrefGoogle Scholar
[74]
Hau LV, Harris SE, Dutton Z, Behroozi CH. Light speed reduction to
17 metres per second in an ultracold atomic gas. Nature
1999;397:594–8.CrossrefGoogle Scholar
[75]
Chen J, Badioli M, Alonso-González P, Thongrattanasiri S,
Huth F, Osmond J, Spasenovic M, Centeno A, Pesquera A, Godignon P, Elorza AZ,
Camara N, García de Abajo FJ, Hillenbrand R, Koppens FHL. Optical
nano-imaging of gate-tunable graphene plasmons. Nature
2012;487:77–81.Google Scholar
[76]
Mak KF, Lee C, Hone J, Shan J, Heinz TF. Atomically thin MoS2: a new
direct-gap semiconductor. Phys Rev Lett 2010;105:136805.CrossrefGoogle Scholar
[77]
Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C-Y, Galli G, Wang
F. Emerging photoluminescence in monolayer MoS2. Nano Lett
2010;10:1271–5.CrossrefGoogle Scholar
[78]
Yang S, Tongay S, Yue Q, Li Y, Li B, Lu F. High-performance
few-layer mo-doped ReSe2 nanosheet photodetectors. Scientific reports
2014;4:5442.Google Scholar
[79]
Huo N, Yang S, Wei Z, Li S-S, Xia J-B, Li J. Photoresponsive and gas
sensing field-effect transistors based on multilayer WS2 nanoflakes. Scientific
reports 2014;4:5209.Google Scholar
[80]
Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A.
Ultrasensitive photodetectors based on monolayer MoS2. Nat Nanotechnol
2013;8:497–501.CrossrefGoogle Scholar
[81]
Britnell L, Ribeiro RM, Eckmann A, Jalil R, Belle BD, Mishchenko A,
Kim Y-J, Gorbachev RV, Georgiou T, Morozov SV, Grigorenko AN, Geim AK, Casiraghi
C, Castro Neto AH, Novoselov KS. Strong light-matter interactions in
heterostructures of atomically thin films. Science
2013;340:1311–4.CrossrefGoogle Scholar
[82]
Yu WJ, Liu Y, Zhou H, Yin A, Li Z, Huang Y, Duan X. Highly efficient
gate-tunable photocurrent generation in vertical heterostructures of layered
materials. Nat Nanotechnol 2013;8:952–8.CrossrefGoogle Scholar
[83]
Fontana M, Deppe T, Boyd AK, Rinzan M, Liu AY, Paranjape M, Barbara
P. Electron-hole transport and photovoltaic effect in gated MoS2 Schottky
junctions. Scientific reports 2013;3:1634.Google Scholar
[84]
Zhang YJ, Oka T, Suzuki R, Ye JT, Iwasa Y. Electrically switchable
chiral light-emitting transistor. Science
2014;344:725–8.CrossrefGoogle Scholar
[85]
Ross JS, Klement P, Jones AM, Ghimire NJ, Yan J, Mandrus DG,
Taniguchi T, Watanabe K, Kitamura K, Yao W, Cobden DH, Xu X. Electrically
tunable excitonic light-emitting diodes based on monolayer WSe2 pn junctions.
Nat Nanotechnol 2014;9:268–72.CrossrefGoogle Scholar
[86]
Baugher BWH, Churchill HOH, Yang Y, Jarillo-Herrero P.
Optoelectronic devices based on electrically tunable pn diodes in a monolayer
dichalcogenide. Nat Nanotechnol 2014;9:262–7.CrossrefGoogle Scholar
[87]
Pospischil A, Furchi MM, Mueller T. Solar-energy conversion and
light emission in an atomic monolayer pn diode. Nat Nanotechnol
2014;9:257–61.CrossrefGoogle Scholar
[88]
Xu X, Yao W, Xiao D, Heinz TF. Spin and pseudospins in layered
transition metal dichalcogenides. Nat Phys
2014;10:343–50.CrossrefGoogle Scholar
[89]
Cao T, Wang G, Han W, Ye H, Zhu C, Shi J, Niu Q, Tan P, Wang E, Liu
B, Feng J. Valley-selective circular dichroism of monolayer molybdenum
disulphide. Nat Commun 2012;3:887.CrossrefGoogle Scholar
[90]
Sundaram RS, Engel M, Lombardo A, Krupke R, Ferrari AC, Avouris Ph,
Steiner M. Electroluminescence in single layer MoS2. Nano Lett
2013;13:1416–21.Google Scholar
[91]
Ye Y, Ye Z, Gharghi M, Yin X, Zhu H, Zhao M, Zhang X.
Exciton-related electroluminescence from monolayer MoS2. arXiv preprint
arXiv:1305.4235 (2013).Google Scholar
[92]
Salehzadeh O, Tran NH, Liu X, Shih I, Mi Z. Exciton kinetics,
quantum efficiency, and efficiency drop of monolayer MoS2 light-emitting
devices. Nano Lett 2014;14:4125–30.Google Scholar
[93]
Keyes RW. The electrical properties of black phosphorus. Phys Rev
1953;92:580.CrossrefGoogle Scholar
[94]
Akahama Y, Endo S, Narita S-i. Electrical properties of black
phosphorus single crystals. J Phys Soc Jpn
1983;52:2148–55.CrossrefGoogle Scholar
[95]
Warschauer D. Electrical and optical properties of crystalline black
phosphorus. J Appl Phys 1963;34:1853.CrossrefGoogle Scholar
[96]
Qiao J, Kong X, Hu Z, Yang F, Ji W. High-mobility transport
anisotropy and linear dichroism in few-layer black phosphorus. Nat Commun
2014;5.Google Scholar
[97]
Takao Y, Asahina H, Morita A. Electronic structure of black
phosphorus in tight binding approach. J Phys Soc Jpn
1981;50:3362.CrossrefGoogle Scholar
[98]
Xia F, Wang H, Jia Y. Rediscovering black phosphorus as an
anisotropic layered material for optoelectronics and electronics. Nat Commun
2014;5.Google Scholar
[99]
Buscema M, Groenendijk DJ, Blanter SI, Steele GA, van der Zant HSJ,
Castellanos-Gomez A. Fast and broadband photoresponse of few-layer black
phosphorus field-effect transistors. Nano Lett
2014;14:3347–52.CrossrefGoogle Scholar
[100]
Hong T, Chamlagain B, Lin W, Chuang H-J, Pan M, Zhou Z, Xu Y-Q.
Polarized photocurrent response in black phosphorus field-effect transistors.
Nanoscale 2014;6:8978–83.CrossrefGoogle Scholar
[101]
Low T, Rodin AS, Carvalho A, Jiang Y, Wang H, Xia F, Castro Neto AH.
Tunable optical properties of multilayers black phosphorus. arXiv preprint
arXiv:1404.4030 (2014).Google Scholar
[102]
Tran Vy, Soklaski R, Liang Y, Yang L. Layer-controlled band gap and
anisotropic excitons in few-layer black phosphorus. Phys Rev B
2014;89:235319.CrossrefGoogle Scholar
[103]
Wang X, Jones AM, Seyler KL, Tran Vy, Jia Y, Zhao H, Wang H, Yang L,
Xu X, Xia F. Highly Anisotropic and Robust Excitons in Monolayer Black
Phosphorus. arXiv preprint arXiv:1411.1695 (2014).Google Scholar
[104]
Engel M, Steiner M, Avouris P. A black phosphorus photo-detector for
multispectral, high-resolution imaging. arXiv preprint arXiv:1407.2534
(2014).Google Scholar
[105]
Low T, Engel M, Steiner M, and Avouris P. Origin of photoresponse in
black phosphorus photo-transistors. arXiv preprint arXiv:1407.7286
(2014).Google Scholar
[106]
Li L, Yu Y, Ye GJ, Ge Q, Ou X, Wu H, Feng D, Chen XH, Zhang Y. Black
phosphorus field-effect transistors. Nat Nanotechnol
2014;9:372–7.CrossrefGoogle Scholar
[107]
Lv HY, Lu WJ, Shao DF, Sun YP. Large thermoelectric power factors in
black phosphorus and phosphorene. arXiv preprint arXiv:1404.5171
(2014).Google Scholar
[108]
Low T, Roldán R, Wang H, Xia F, Avouris P, Moreno LM, Guinea
F. Plasmons and screening in monolayer and multilayer black phosphorus. arXiv
preprint arXiv:1404.4035 (2014).Google Scholar
[109]
Ziletti A, Carvalho A, Campbell DK, Coker DF, Castro Neto AH. Oxygen
defects in phosphorene. arXiv preprint arXiv:1407.5880 (2014).Google Scholar
[110]
Favron A, Gaufrès E, Fossard F, Lévesque PL,
Phaneuf-L’Heureux A-L, Tang NYW, Loiseau A, Leonelli R, Francoeur S,
Martel R. Exfoliating black phosphorus down to the monolayer: photo-induced
oxidation and electronic confinement effects. arXiv preprint arXiv:1408.0345
(2014).Google Scholar
[111]
Castellanos-Gomez A, Vicarelli L, Prada E, Island JO,
Narasimha-Acharya KL, Blanter SI, Groenendijk DJ, Buscema M, Steele GA, Alvarez
JV, Zandbergen HW, Palacios JJ, van der Zant HSJ. Isolation and characterization
of few-layer black phosphorus. arXiv preprint arXiv:1403.0499
(2014).Google Scholar
[112]
Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV,
Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films.
Science 2004;306:666–9.CrossrefGoogle Scholar
Comments (0)