Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Editor-in-Chief: Sorger, Volker

12 Issues per year

IMPACT FACTOR 2016: 4.492
5-year IMPACT FACTOR: 5.723

CiteScore 2016: 4.75
CiteScoreTracker 2017: 5.83

In co-publication with Science Wise Publishing

Open Access
See all formats and pricing
More options …
Volume 4, Issue 1

Transparent conducting oxides for electro-optical plasmonic modulators

Viktoriia E. Babicheva
  • Corresponding author
  • DTU Fotonik – Department of Photonics Engineering, Technical University of Denmark, Oersteds Plads 343, DK-2800 Kgs. Lyngby, Denmark and ITMO University, Kronverkskiy, 49, St. Petersburg 197101, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alexandra Boltasseva
  • Corresponding author
  • School of Electrical & Computer Engineering and Birck Nanotechnology Center, Purdue University, 1205 West State Street, West Lafayette, IN 47907-2057 USA and DTU Fotonik – Department of Photonics Engineering, Technical University of Denmark, Oersteds Plads 343, DK-2800 Kgs. Lyngby, Denmark
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andrei V. Lavrinenko
  • Corresponding author
  • DTU Fotonik – Department of Photonics Engineering, Technical University of Denmark, Oersteds Plads 343, DK-2800 Kgs. Lyngby, Denmark
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-06-16 | DOI: https://doi.org/10.1515/nanoph-2015-0004


The ongoing quest for ultra-compact optical devices has reached a bottleneck due to the diffraction limit in conventional photonics. New approaches that provide subwavelength optical elements, and therefore lead to miniaturization of the entire photonic circuit, are urgently required. Plasmonics, which combines nanoscale light confinement and optical-speed processing of signals, has the potential to enable the next generation of hybrid information-processing devices, which are superior to the current photonic dielectric components in terms of speed and compactness. New plasmonic materials (other than metals), or optical materials with metal-like behavior, have recently attracted a lot of attention due to the promise they hold to enable low-loss, tunable, CMOScompatible devices for photonic technologies. In this review, we provide a systematic overview of various compact optical modulator designs that utilize a class of the most promising new materials as the active layer or core— namely, transparent conducting oxides. Such modulators can be made low-loss, compact, and exhibit high tunability while offering low cost and compatibility with existing semiconductor technologies. A detailed analysis of different configurations and their working characteristics, such as their extinction ratio, compactness, bandwidth, and losses, is performed identifying the most promising designs.

Keywords: modulators; electro-optical materials; waveguide modulators; nanocircuits; plasmonics; surface plasmons; active plasmonics; transparent conducting oxides; epsilon-near-zero materials


  • [1] D. A. B. Miller, "Rationale and Challenges for Optical Interconnects to Electronic Chips," Proc. IEEE 88, 728-749 (2000) CrossrefGoogle Scholar

  • [2] R. A. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE J. Sel. Top. Quantum Electron. 12,. 1678–1687 (2006). CrossrefGoogle Scholar

  • [3] G. T. Reed, G.Mashanovich, F. Y. Gardes, and D. J. Thomson, Silicon optical modulators, Nature Photonics 4, 518 - 526 (2010). CrossrefGoogle Scholar

  • [4] Pavesi, L., & Lockwood, D. J. (Eds.). (2004). Silicon photonics (Vol. 1). Springer. Google Scholar

  • [5] K. Hassan, J.C. Weeber, L. Markey, A. Dereux, A. Pitilakis, O. Tsilipakos, and E.E. Kriezis, Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides, Appl. Phys. Lett. 99, 241110 (2011) CrossrefGoogle Scholar

  • [6] R.S. Jacobsen, K.N. Andersen, P.I. Borel, J. Fage-Pedersen, L.H. Frandsen,O. Hansen, M. Kristensen, A.V. Lavrinenko, G.Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199-202 (2006) Google Scholar

  • [7] R.A. Soref and B.R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123-129 (1987) CrossrefGoogle Scholar

  • [8] H. Huang, S.R. Nuccio, Y. Yue, J.Y. Yang, Y. Ren, C. Wei, G. Yu, R. Dinu, D. Parekh, C.J. Chang-Hasnain, and A.E.Willner, Broadband Modulation Performance of 100-GHz EO Polymer MZMs, J. Lightwave Technol. 30, 3647-3652 (2012). Google Scholar

  • [9] L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B.Q. Chen, R. Dinu, M. Fournier, J.M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, 100 GHz silicon–organic hybrid modulator, Light Sci Appl. 3, doi:10.1038/lsa.2014.54 (2014). CrossrefGoogle Scholar

  • [10] C.E. Png, S.P. Chan, S.T. Lim, and G.T. Reed, "Optical Phase Modulators for MHz and GHz modulation in Silicon-On-Insulator (SOI)" J. Lightwave Technol. 22, 1573-1582 (2004). CrossrefGoogle Scholar

  • [11] A.S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615-618 (2004). Google Scholar

  • [12] H. Yu, M. Pantouvaki, J. Van Campenhout, D. Korn, K. Komorowska, P. Dumon, Y. Li, P. Verheyen, P. Absil, L. Alloatti, D. Hillerkuss, J. Leuthold, R. Baets, andW. Bogaerts, "Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators," Opt. Express 20, 12926-12938 (2012). CrossrefGoogle Scholar

  • [13] D.Z. Feng, S.R. Liao, H. Liang, J. Fong, B. Bijlani, R. Shafiiha, B. Jonathan Luff, Y. Luo, J. Cunningham, A.V. Krishnamoorthy, and M. Asghari, "High speed GeSi electro-absorption modulator at 1550 nm wavelength on SOI waveguide," Opt. Express 20, 22224-22232 (2012) CrossrefGoogle Scholar

  • [14] Y.W. Rong, Y.S. Ge, Y.J. Huo, M. Fiorentino, M.R.T. Tan, T.I. Kamins, T.J. Ochalski, G. Huyet, and J.S. Harris Jr., “Quantumconfined Stark effect in Ge/SiGe quantum wells on Si,” IEEE J. Sel. Top. Quantum. Electron. 16, 85-92 (2010). CrossrefGoogle Scholar

  • [15] J.E. Roth, O. Fidaner, R. K. Schaevitz, Y.H. Kuo, T.I. Kamins, J.S. Harris Jr., and D.A.B. Miller, "Optical modulator on silicon employing germaniumquantumwells," Opt. Express 15, 5851-5859 (2007). CrossrefGoogle Scholar

  • [16] P. Chaisakul, D. Marris-Morini, M.S. Rouifed, J. Frigerio, D. Chrastina, J.R. Coudevylle, X. L. Roux, S. Edmond, G. Isella, and L. Vivien, “Recent progress in GeSi electro-absorption modulators,” Sci. Technol. Adv. Mater. 15, 014601 (2014). CrossrefGoogle Scholar

  • [17] M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, A graphene-based broadband optical modulator, Nature 474, 64-67 (2011). Google Scholar

  • [18] L. Yang, T. Hu, A. Shen, C. Pei, B. Yang, T. Dai, H. Yu, Y. Li, X. Jiang, and J. Yang, "Ultracompact optical modulator based on graphene-silica metamaterial," Optics Letters, 39, 1909-1912 (2014). CrossrefGoogle Scholar

  • [19] U. Ralevic, G. Isic, B. Vasic and R. Gajic, Modulating light with graphene embedded into an opticalwaveguide, J. Phys. D: Appl. Phys. 47, 335101 (2014). Google Scholar

  • [20] W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. Ron Shen, Ultrafast All- Optical Graphene Modulator, Nano Letters, 14, 955-959 (2014). CrossrefGoogle Scholar

  • [21] S. J. Koester,M. Li, “Waveguide-Coupled Graphene Optoelectronics,” IEEE J. Sel. Top. Quantum. Electron. 20, 6000211 (2014). Google Scholar

  • [22] I. Khromova, A. Andryieuski, and A. Lavrinenko, Ultrasensitive terahertz/infrared waveguide modulators based on multilayer graphene metamaterials, Laser & Phot. Rev., 8, 916-923 (2014). Google Scholar

  • [23] A.V. Zayats, I.I. Smolyaninov, and A.A.Maradudin, “Nano-optics of surface plasmon polaritons,” Physics Reports 408, 131-314 (2005). Google Scholar

  • [24] E. Ozbay, “Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions,” Science 311, 189–193 (2006). Google Scholar

  • [25] R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,”Mater. Today 9, 20–27 (2006). CrossrefGoogle Scholar

  • [26] Harry A. Atwater, “The Promise of Plasmonics,” Scientific American 17, 56 - 63 (2007). Google Scholar

  • [27] Stefan A. Maier, Plasmonics: fundamentals and applications, Springer Verlag, 2007. Google Scholar

  • [28] Mark L. Brongersma and Pieter G. Kik, Surface Plasmon Nanophotonics, Springer Netherlands, 2007 Google Scholar

  • [29] Sergey Bozhevolnyi, Plasmonic Nanoguides and Circuits, Pan Stanford Publishing, 2008. Google Scholar

  • [30] L. Cao, Mark L. Brongersma, “Ultrafast developments,” Nature Photonics 3, 12-13 (2009). CrossrefGoogle Scholar

  • [31] Dmitri K. Gramotnev, Sergey I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nature Photonics 4, 83-91 (2010). Google Scholar

  • [32] M.L. Brongersma and V.M. Shalaev, “Applied Physics: The case for plasmonics,” Science 328, 440-441 (2010). Google Scholar

  • [33] J.A. Dionne and H.A. Atwater, "Plasmonics: Metal-worthy methods and materials in nanophotonics," MRS Bulletin 37, 717-724 (2012). CrossrefGoogle Scholar

  • [34] J.A. Schuller, E.S. Barnard,W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Materials 9, 193 (2010). CrossrefGoogle Scholar

  • [35] V.J. Sorger, R.F. Oulton, Ren-Min Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bulletin 37, 728-738 (2012). CrossrefGoogle Scholar

  • [36] K.F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photon. Rev. 4, 562–567 (2010). Google Scholar

  • [37] A. Emboras, C. Hoessbacher, C. Haffner, W. Heni, U. Koch, P. Ma, Y. Fedoryshyn, J. Niegemann, C. Hafner and J. Leuthold, "Electrically Controlled Plasmonic Switches and Modulators," IEEE Journal of Selected Topics in Quantum Electronics, DOI: 10.1109/JSTQE.2014.2382293, vol.21, no.4, pp.1-8 (2015). CrossrefGoogle Scholar

  • [38] J. Leuthold et al., “PlasmonicCommunications: Light on aWire,” Optics & Photonics News, May 2013 Google Scholar

  • [39] Sarah K. Pickus, Sikandar Khan, Chenran Ye, Zhuoran Li, and Volker J. Sorger, "Silicon Plasmon Modulators: Breaking Photonic Limits," IEEE Photonic Society, Research highlights, vol. 27, no. 6, pp. 4-10 (2013) Google Scholar

  • [40] J.A. Dionne, L.A. Sweatlock, M.T. Sheldon, A.P. Alivisatos, H.A. Atwater, “Silicon-based plasmonics for on-chip photonics,” IEEE Journal of Selected Topics in QuantumElectronics, 16, 295– 306 (2010). Google Scholar

  • [41] Hassan M.G. Wassel, Daoxin Dai, Mohit Tiwari, Jonathan K. Valamehr, Luke Theogarajan, Jennifer Dionne, Frederic T. Chong, and Timothy Sherwood, “Opportunities and Challenges of Using Plasmonic Components in Nanophotonic Architectures,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems 2, 154-168 (2012). Google Scholar

  • [42] Rashid Zia, Mark D. Selker, Peter B. Catrysse, and Mark L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” Journal of the Optical Society of America A 21, 2442-2446 (2004). Google Scholar

  • [43] Ewold Verhagen, Jennifer A. Dionne, L. (Kobus) Kuipers, Harry A. Atwater, and Albert Polman, Near-Field Visualization of Strongly Confined Surface Plasmon Polaritons in Metal−Insulator−Metal Waveguides, Nano Lett., 8 (9), 2925–2929 (2008). CrossrefGoogle Scholar

  • [44] H.T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Physical Review Letters 96, 097401 (2006). CrossrefGoogle Scholar

  • [45] Y. Kurokawa and H.T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: Analysis of optical properties,” Physical Review B 75, 035411 (2007). CrossrefGoogle Scholar

  • [46] J.A. Dionne, H. J. Lezec, Harry A. Atwater, “Highly confined photon transport in subwavelength metallic slot waveguides,” Nano Lett. 6, 1928–1932 (2006). CrossrefGoogle Scholar

  • [47] A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, "Integrated optical components utilizing long-range surface plasmon polaritons," J. Lightwave. Technol. 23, 413-422 (2005). CrossrefGoogle Scholar

  • [48] Pierre Berini, “Long-range surface plasmon polaritons,” Advances in Optics and Photonics 1, 484-588 (2009). Google Scholar

  • [49] Alexey V. Krasavin and Anatoly V. Zayats, "Numerical analysis of long-range surface plasmon polariton modes in nanoscale plasmonic waveguides," Opt. Lett. 35, 2118-2120 (2010) Google Scholar

  • [50] A. V. Krasavin, A. V. Zayats, All-optical active components for dielectric-loaded plasmonic waveguides, Opt. Comm., vol. 283, pp. 1581-1584, (2010). Google Scholar

  • [51] Volker J. Sorger, Ziliang Ye, Rupert F. Oulton, Yuan Wang, Guy Bartal, Xiaobo Yin, and Xiang Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nature Communications 2, 331 (2011). Google Scholar

  • [52] V.S. Volkov, Z. Han, M.G. Nielsen, K. Leosson, H. Keshmiri, J. Gosciniak, O. Albrektsen, and S. I. Bozhevolnyi, "Long-range dielectric-loaded surface plasmon polariton waveguides operating at telecommunication wavelengths," Optics Letters 36, 4278-4280 (2011). CrossrefGoogle Scholar

  • [53] Alexey V. Krasavin and Anatoly V. Zayats, "Guiding light at the nanoscale: numerical optimization of ultrasubwavelength metallic wire plasmonic waveguides," Opt. Lett. 36, 3127-3129 (2011) Google Scholar

  • [54] Xueliang Shi, Xianmin Zhang, Zhanghua Han, Uriel Levy, and Sergey I. Bozhevolnyi, "CMOS-Compatible Long-Range Dielectric-Loaded Plasmonic Waveguides," J. Lightwave Technol. 31, 3361-3367 (2013) Google Scholar

  • [55] Roy Zektzer, Boris Desiatov, Noa Mazurski, Sergey I. Bozhevolnyi, and Uriel Levy, "Experimental demonstration of CMOScompatible long-range dielectric-loaded surface plasmonpolariton waveguides (LR-DLSPPWs)," Opt. Express 22, 22009-22017 (2014) CrossrefGoogle Scholar

  • [56] S. Ishii, M. Y. Shalaginov, V. E. Babicheva, A. Boltasseva, and A. V. Kildishev, "Plasmonic waveguides cladded by hyperbolic metamaterials," Optics Letters 39, 4663-4666 (2014). CrossrefGoogle Scholar

  • [57] V.E. Babicheva, M. Y. Shalaginov, S. Ishii, A. Boltasseva, and A. V. Kildishev, “Finite-width plasmonic waveguides with hyperbolic multilayer cladding", Opt. Express 23, 9681-9689 (2015). CrossrefGoogle Scholar

  • [58] Ashwani Kumar et al., Dielectric-loaded plasmonic waveguide components: Going practical, Laser Photonics Rev. 7, no. 6, 938-951 (2013) CrossrefGoogle Scholar

  • [59] P.R. West, S. Ishii, G. Naik, N. Emani, V.M. Shalaev, and A. Boltasseva, "Searching for better plasmonic materials," Laser & Photonics Reviews 4, 795-808 (2010). CrossrefGoogle Scholar

  • [60] A. Boltasseva, H.A. Atwater, "Low-loss plasmonic metamaterials," Science 331, 290-291 (2011). CrossrefGoogle Scholar

  • [61] G. V. Naik and A. Boltasseva, "Semiconductors for plasmonics and metamaterials," Phys. Status Solidi RRL 4, 295-297 (2010) CrossrefGoogle Scholar

  • [62] G.V. Naik, J. Kim, A. Boltasseva, "Oxides and nitrides as alternative plasmonicmaterials in the optical range," OpticalMaterials Express 1, 1090-1099 (2011). CrossrefGoogle Scholar

  • [63] G. V. Naik and A. Boltasseva, "A comparative study of semiconductor-based plasmonic metamaterials," Metamaterials 5, 1-7 (2011) CrossrefGoogle Scholar

  • [64] J. B. Khurgin and A. Boltasseva, "Reflecting upon the losses in plasmonics and metamaterials," MRS Bulletin 37 (8), 768-779, (August 2012) CrossrefGoogle Scholar

  • [65] G. Naik, V.M. Shalaev, A. Boltasseva, "Alternative plasmonic materials: beyond gold and silver," Advanced Materials 25, 3264–3294 (2013). CrossrefGoogle Scholar

  • [66] Alexandra Boltasseva, Empowering plasmonics and metamaterials technology with new material platforms, MRS Bulletin 39, 461 (2014) CrossrefGoogle Scholar

  • [67] H. Kim, M. Osofsky, S. M. Prokes, O. J. Glembocki, and A. Pique, Optimization of Al-doped ZnOfilms for lowloss plasmonicmaterials at telecommunication wavelengths, Appl. Phys. Lett. 102, 171103 (2013) CrossrefGoogle Scholar

  • [68] D. C. Look, T. C. Droubay, and S. A. Chambers, “Stable highly conductive ZnO via reduction of Zn vacancies,” Appl. Phys. Lett.101(10), 102101 (2012). CrossrefGoogle Scholar

  • [69] M. A. Noginov et al, "Transparent conductive oxides: plasmonic materials for telecomwavelengths," Appl. Phys. Lett. 99, 021101 (2011). CrossrefGoogle Scholar

  • [70] M. A. Bodea, G. Sbarcea, G. V. Naik, A. Boltasseva, T. A. Klar, J. D. Pedarnig, "Negative permittivity of ZnO thin films prepared from aluminium and gallium doped ceramics via pulsed-laser deposition," Applied Physics A 110 (4), 929-934 (2012). Google Scholar

  • [71] Andreas Frölich andMartin Wegener, "Spectroscopic characterization of highly doped ZnO films grown by atomic-layer deposition for three-dimensional infrared metamaterials [Invited]," Opt. Mater. Express 1, 883-889 (2011). CrossrefGoogle Scholar

  • [72] A. K. Pradhan et al, Extreme tunability in aluminum doped Zinc Oxide plasmonic materials for near-infrared applications, Scientific Reports 4, 6415 (2014). Google Scholar

  • [73] Sergey Sadofev, Sascha Kalusniak, Peter Schäfer, and Fritz Henneberger, "Molecular beam epitaxy of n-Zn(Mg)O as a low-damping plasmonic material at telecommunication wavelengths," Appl. Phys. Lett. 102, 181905 (2013). CrossrefGoogle Scholar

  • [74] Sergey Sadofev, Sascha Kalusniak, Peter Schäfer, Holm Kirmse, and Fritz Henneberger, "Free-electron concentration and polarity inversion domains in plasmonic (Zn,Ga)O," Phys. Status Solidi B, Volume 252, Issue 3, pages 607–611 (2015). Google Scholar

  • [75] Crissy Rhodes, Stefan Franzen, Jon-Paul Maria, Mark Losego, Donovan N. Leonard, Brian Laughlin, Gerd Duscher, and Stephen Weibel, “Surface plasmon resonance in conducting metal oxides”, J. Appl. Phys. 100, 054905 (2006). CrossrefGoogle Scholar

  • [76] F. Michelotti, L. Dominici, E. Descrovi, N. Danz, and F. Menchini, "Thickness dependence of surface plasmon polariton dispersion in transparent conducting oxide films at 1.55 μm," Opt. Lett. 34, 839-841 (2009). Google Scholar

  • [77] J. Kim, G.V. Naik, N.K. Emani, U. Guler, A. Boltasseva, "Plasmonic resonances in nanostructured transparent conducting oxide films," IEEE Journal of Selected Topics in Quantum Electronics 19, 4601907 (2013). Google Scholar

  • [78] Guillermo Garcia et al, Dynamically Modulating the Surface Plasmon Resonance of Doped Semiconductor Nanocrystals, Nano Lett., 11, 4415–4420 (2011). CrossrefGoogle Scholar

  • [79] Masayuki Kanehara, Hayato Koike, Taizo Yoshinaga, and Toshiharu Teranishi, Indium Tin Oxide Nanoparticles with Compositionally Tunable Surface Plasmon Resonance Frequencies in the Near-IR Region, J. Am. Chem. Soc., 131 (49), pp 17736–17737 (2009). Google Scholar

  • [80] Raffaella Buonsanti, Anna Llordes, Shaul Aloni, Brett A. Helms, and Delia J. Milliron, Tunable Infrared Absorption and Visible Transparency of Colloidal Aluminum-Doped Zinc Oxide Nanocrystals, Nano Lett., 11 (11), pp 4706–4710 (2011). CrossrefGoogle Scholar

  • [81] T. R. Gordon, T. Paik, D. R. Klein, G. V. Naik, H. Caglayan, A. Boltasseva, C. B. Murray, "Shape-Dependent Plasmonic Response and Directed Self-Assembly in a New Semiconductor Building Block, Indium-Doped CadmiumOxide (ICO)," Nano Letters 13 (6), 2857-2863 (2013). CrossrefGoogle Scholar

  • [82] Shi-Qiang Li et al, "Plasmonic-Photonic Mode Coupling in Indium-Tin-Oxide Nanorod Arrays," ACS Photonics 1, 163-172 (2014). Google Scholar

  • [83] Daniel B. Tice, Shi-Qiang Li, Mario Tagliazucchi, D. Bruce Buchholz, Emily A. Weiss, and Robert P. H. Chang, "Ultrafast Modulation of the Plasma Frequency of Vertically Aligned Indium Tin Oxide Rods," Nano Lett. 14, 1120-1126 (2014). Google Scholar

  • [84] M. Abb, Y.Wang, N. Papasimakis, C. H. de Groot, O. L.Muskens, Surface-Enhanced Infrared Spectroscopy Using Metal Oxide Plasmonic Antenna Arrays, Nano Lett. 14 (1), 346–352 (2014). CrossrefGoogle Scholar

  • [85] Kevin Santiago, Rajeh Mundle, Chandan B. Samantaray, M. Bahoura, and A. K. Pradhan, "Nanopatterning of atomic layer deposited Al:ZnO films using electron beam lithography for waveguide applications in the NIR region," Opt. Mater. Express 2, 1743-1750 (2012). CrossrefGoogle Scholar

  • [86] G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, A. Boltasseva, "Demonstration of Al:ZnO as a plasmonic component of nearinfrared metamaterials," Proceedings of the National Academy of Sciences 109 (23), 8834-8838 (5 2012). Google Scholar

  • [87] Zhang, Yun ; Wei, Tiaoxing ; Dong, Wenjing ; Huang, Chanyan ; Zhang, Kenan ; Sun, Yan ; Chen, Xin ; Dai, Ning, "Nearperfect infrared absorption from dielectric multilayer of plasmonic aluminum-doped zinc oxide." Applied Physics Letters 102, 213117 (2013). CrossrefGoogle Scholar

  • [88] J. Kim et al, “Optical properties of gallium-doped zinc oxide—a low-loss plasmonic material: first-principles theory and experiment,” Physical Review X 3, 041037 (2013). CrossrefGoogle Scholar

  • [89] Arrigo Calzolari, Alice Ruini, and Alessandra Catellani, Transparent Conductive Oxides as Near-IR Plasmonic Materials: The Case of Al-Doped ZnO Derivatives, ACS Photonics, 1, 703-709 (2014). Google Scholar

  • [90] D. Traviss, R. Bruck, B. Mills, M. Abb, O. L. Muskens, Ultrafast plasmonics using transparent conductive oxide hybrids in the epsilon near-zero regime, Appl. Phys. Lett. 102, 121112 (2013). CrossrefGoogle Scholar

  • [91] Nader Engheta, "Pursuing Near-Zero Response," Science Vol. 340 no. 6130 pp. 286-287 (2013). Google Scholar

  • [92] Mario Silveirinha and Nader Engheta, "Tunneling of Electromagnetic Energy through Subwavelength Channels and Bends using ∖epsilon-Near-Zero Materials," PRL 97, 157403 (2006). Google Scholar

  • [93] K.L. Tsakmakidis, O. Hess, “Extreme control of light in metamaterials: Complete and loss-free stopping of light,” Physica B - Condensed Matter 407, 4066-4069 (2012). Google Scholar

  • [94] D. B. Li and C. Z. Ning, “Giant modal gain, amplified surface plasmon-polariton propagation, and slowing down of energy velocity in a metal-semiconductor-metal structure,” Physical Review B 80, 153304 (2009). CrossrefGoogle Scholar

  • [95] D. B. Li and C. Z. Ning, “Peculiar features of confinement factors in a metal-semiconductorwaveguide,” Appl. Phys. Lett. 96, 181109 (2010). CrossrefGoogle Scholar

  • [96] K.L. Tsakmakidis, A.D. Boardman, O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450, 397–401 (2007). Google Scholar

  • [97] Yu-Jung Lu et al, "Plasmonic Nanolaser Using Epitaxially Grown Silver Film," Science 337, 450 (2012). Google Scholar

  • [98] Rupert F. Oulton et al, "Plasmon lasers at deep subwavelength scale," Nature 461, 629-632 (2009). Google Scholar

  • [99] J.A. Dionne, L.A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Physical Review B 72, 075405 (2005). CrossrefGoogle Scholar

  • [100] J.A. Dionne, L.A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Physical Review B 73, 035407 (2006). CrossrefGoogle Scholar

  • [101] K. Tsakmakidis, J. Hamm, T. W. Pickering, and O. Hess, "Plasmonic Nanolasers Without Cavity, Threshold and Diffraction Limit using Stopped Light," in Frontiers in Optics 2012/Laser Science XXVIII, OSA Technical Digest (online) (Optical Society of America, 2012), paper FTh2A.2. Google Scholar

  • [102] K.L. Tsakmakidis, T.W. Pickering, J.M. Hamm, A.F. Page, O. Hess, "Completely stopped and dispersionless light in plasmonic waveguides," Phys. Rev. Lett. 112, 167401 (2014). CrossrefGoogle Scholar

  • [103] M. Kauranen, A. Zayats, “Nonlinear plasmonics,” Nature Photon. 6, 737–748 (2012). CrossrefGoogle Scholar

  • [104] H. Aouani, M. Rahmani, M. Navarro-Cía, S.A. Maier, "Thirdharmonic- upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna," Nature Nanotechn. 9, 290–294 (2014). CrossrefGoogle Scholar

  • [105] B. Metzger et al, "Doubling the eflciency of third harmonic generation by positioning ITO nanocrystals into the hot-spot of plasmonic gap-antennas," Nano Lett. 14 (5), pp 2867–2872 (2014). CrossrefGoogle Scholar

  • [106] Abb M, Wang Y, de Groot CH, Muskens OL, "Hotspotmediated ultrafast nonlinear control of multifrequency plasmonic nanoantennas," Nat Commun. 5, 4869 (2014). CrossrefGoogle Scholar

  • [107] Martina Abb, Pablo Albella, Javier Aizpurua, Otto L Muskens, "All-optical control of a single plasmonic nanoantenna–ITO hybrid," Nano Letters 11, 2457-2463 (2011). Google Scholar

  • [108] Martina Abb, Otto L Muskens, "Ultrafast plasmonic nanoantenna-ITO hybrid switches," International Journal of Optics, article ID 132542 (2012). Google Scholar

  • [109] Martina Abb, Borja Sepúlveda, Harold MH Chong, Otto L Muskens, "Transparent conducting oxides for active hybrid metamaterial devices," Journal of Optics 14, 114007 (2012). Google Scholar

  • [110] E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett.10(6), 2111–2116 (2010). CrossrefGoogle Scholar

  • [111] Kaifeng Shi, Riaz R. Haque, Bingyin Zhao, Runchen Zhao, and Zhaolin Lu, "Broadband electro-optical modulator based on transparent conducting oxide," Opt. Lett. 39, 4978-4981 (2014). Google Scholar

  • [112] Volker J. Sorger, Norberto D. Lanzillotti-Kimura, Ren-Min Ma and Xiang Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1, 17-22 (2012). Google Scholar

  • [113] V.E. Babicheva, N. Kinsey, G.V. Naik, M. Ferrera, A.V. Lavrinenko, V.M. Shalaev, A. Boltasseva, “Towards CMOScompatible nanophotonics: Ultra-compact modulators using alternative plasmonic materials,” Optics Express 21, 27326- 27337 (2013). CrossrefGoogle Scholar

  • [114] W. Cai, J.S. White, and M.L. Brongersma, "Compact, high-speed and power-eflcient electrooptic plasmonic modulators," Nano Letters 9, 4403 (2009). CrossrefGoogle Scholar

  • [115] A. Hryciw, Y.C. Jun, and M.L. Brongersma, “Plasmonics: Electrifying plasmonics on silicon,” Nature Materials 9, 3 (2010). CrossrefGoogle Scholar

  • [116] M.J. Dicken, L.A Sweatlock, D. Pacifici, H.J. Lezec, K. Bhattacharya and H.A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8, 4048-4052 (2008). CrossrefGoogle Scholar

  • [117] K.F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nature Photonics 3, 55 (2009). CrossrefGoogle Scholar

  • [118] Alexey V. Krasavin, Thanh Phong Vo, Wayne Dickson, Padraig M. Bolger and Anatoly V. Zayats, “All-Plasmonic Modulation via Stimulated Emission of Copropagating Surface Plasmon Polaritons on a Substrate with Gain,” Nano Letters 11, 2231-2235 (2011). Google Scholar

  • [119] Xianji Piao, Sunkyu Yu, and Namkyoo Park, "Control of Fano asymmetry in plasmon induced transparency and its application to plasmonic waveguide modulator," Opt. Express 20, 18994-18999 (2012). CrossrefGoogle Scholar

  • [120] S. Sederberg, D. Driedger, M. Nielsen, and A.Y. Elezzabi, "Ultrafast all-optical switching in a silicon-based plasmonic nanoring resonator," Opt. Express 19, 23494-23503 (2011). CrossrefGoogle Scholar

  • [121] M. P. Nielsen and A. Y. Elezzabi, "Ultrafast all-optical modulation in a silicon nanoplasmonic resonator," Opt. Express 21, 20274-20279 (2013). CrossrefGoogle Scholar

  • [122] Andres D. Neira, Gregory A. Wurtz, Pavel Ginzburg, and Anatoly V. Zayats, "Ultrafast all-optical modulation with hyperbolic metamaterial integrated in Si photonic circuitry," Opt. Express 22, 10987-10994 (2014). Google Scholar

  • [123] X. M. Sun, L. J. Zhou, X. W. Li, Z. H. Hong and J. P. Chen, “Design and Analysis of a Miniature Intensity Modulator Based on a Silicon-Polymer-Metal Hybrid PlasmonicWaveguide", IEEE Photonics Journal 6 (3), 4801110, (2014). Google Scholar

  • [124] Sa’ad Hassan, Ewa Lisicka-Skrzek, Anthony Olivieri, R Niall Tait, and Pierre Berini, "Fabrication of a plasmonic modulator incorporating an overlaid grating coupler", Nanotechnology 25, 495202 (2014). Google Scholar

  • [125] Alexander S. Shalin, Pavel Ginzburg, Pavel A. Belov, Yuri S. Kivshar, and Anatoly V. Zayats, "Nano-opto-mechanical effects in plasmonicwaveguides," Laser&Photonics Reviews 8, 1, 131– 136, (2014). Google Scholar

  • [126] Chenran Ye, Zhuoran Li, Ke Liu, Richard Soref, Volker J. Sorger, 2014 "A Compact Plasmonic Silicon-based Electro-optic 2×2 Switch" IEEE Journal of Selected Topics in QuantumElectronics, (2014). Google Scholar

  • [127] Yulin Wang et al, "Plasmonic switch based on composite interference in metallic strip waveguides," Laser Photonics Rev. 8, No. 4, L47–L51 (2014). Google Scholar

  • [128] A. Melikyan, N. Lindenmann, S. Walheim, P.M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, Th. Schimmel, C. Koos,W. Freude, and J. Leuthold, "Surface plasmon polariton absorption modulator," Optics Express 19, 8855-8869 (2011). CrossrefGoogle Scholar

  • [129] C. Huang, R. Lamond, S. K. Pickus, Z. R. Li, and V. J. Sorger, "A sub-ʎ size modulator beyond the eflciency-loss limit," IEEE Photonics J. 5, 2202411 (2013). CrossrefGoogle Scholar

  • [130] J.A. Dionne, K. Diest, L.A. Sweatloc, and H.A. Atwater, "Plas- MOStor: a metal- oxide- Si field effect plasmonic modulator," Nano Letters 9, 897-902 (2009). CrossrefGoogle Scholar

  • [131] T. Hirata, K. Kajikawa, T. Tabei, and H. Sunami, “Proposal of a Metal–Oxide–Semiconductor Silicon Optical Modulator Based on Inversion-Carrier Absorption,” Jpn. J. Appl. Phys. 47, 2906 (2008). Google Scholar

  • [132] T. Tabei, T. Hirata, K. Kajikawa, and H. Sunami, “Potentiality of Metal–Oxide–Semiconductor Silicon Optical Modulator Based on Free Carrier Absorption,” Jpn. J. App. Phys. 48, 114501 (2009). Google Scholar

  • [133] T. Tabei and S. Yokoyama, “Proposal of a silicon optical modulator based on surface plasmon resonance,” Proc. SPIE 8431, 84311K (2012). Google Scholar

  • [134] Shiyang Zhu, G. Q. Lo, and D. L. Kwong, “Electro-absorption modulation in horizontal metal-insulator-silicon-insulatormetal nanoplasmonic slot waveguides,” Applied Physics Letters 99, 151114 (2011). Google Scholar

  • [135] Shiyang Zhu, G. Q. Lo and D. L. Kwong, “Theoretical investigation of silicon MOS-type plasmonic slot waveguide based MZI modulators,” Optics Express 18, 27802 (2010). Google Scholar

  • [136] Roney Thomas, Zoran Ikonic and Robert W. Kelsall, “Electrooptic metal–insulator–semiconductor–insulator–metal Mach- Zehnder plasmonic modulator,” Photonics and Nanostructures: Fundamentals and Applications 10, 183-189 (2012). Google Scholar

  • [137] Zhaolin Lu, Wangshi Zhao, and Kaifeng Shi, “Ultracompact Electroabsorption Modulators Based on. Tunable Epsilon-Near- Zero-Slot Waveguides,” Photonics Journal, IEEE 4, 735-740 (2012). CrossrefGoogle Scholar

  • [138] A.V. Krasavin and A.V. Zayats, "Photonic Signal Processing on Electronic Scales: Electro-Optical Field-Effect Nanoplasmonic Modulator," Phys. Rev. Lett. 109, 053901-1-5 (2012). CrossrefGoogle Scholar

  • [139] V.E. Babicheva, A.V. Lavrinenko, “Plasmonic modulator optimized by patterning of active layer and tuning permittivity,” Optics Communications 285, 5500–5507 (2012). Google Scholar

  • [140] A. P. Vasudev, Ju-Hyung Kang, Junghyun Park, Xiaoge Liu, and M. L. Brongersma, "Electro-optical modulation of a silicon waveguide with an “epsilon-near-zero” material," Opt. Express 21, 26387-26397 (2013). CrossrefGoogle Scholar

  • [141] Shiyang Zhu, G. Q. Lo, and D. L. Kwong, "Design of an ultra-compact electro-absorption modulator comprised of a deposited TiN/HfO2/ITO/Cu stack forCMOS backend integration," Opt. Express 22, 17930-17947 (2014). Google Scholar

  • [142] Jin Tae Kim, “Silicon Optical Modulators Based On Tunable Hybrid Plasmonic Directional Couplers,” Selected Topics in Quantum Electronics, IEEE Journal of Vol. 21, Issue 4, Article#: 3300108 (2014). Google Scholar

  • [143] H.W. H. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pal, U. Peschel, and H. A. Atwater, “Nanoscale Conducting Oxide PlasMOStor,” Nano Lett. 14 (11), 6463–6468 (2014). CrossrefGoogle Scholar

  • [144] T. Amemiya, E. Murai, Z. Gu, N. Nishiyama, and S. Arai, "GaInAsP/InP-based optical modulator consisting of gapsurface- plasmon-polariton waveguide: theoretical analysis," J. Opt. Soc. Am. B 31, 2908-2913 (2014). CrossrefGoogle Scholar

  • [145] Hongwei Zhao, Yu Wang, Antonio Capretti, Luca Dal Negro, and Jonathan Klamkin, "Broadband Electro-Absorption Modulators Design Based on Epsilon-Near-Zero IndiumTin Oxide," DOI: 10.1109/JSTQE.2014.2375153, IEEE Journal of Selected Topics in Quantum Electronics, vol. 21, no. 4, (2015). CrossrefGoogle Scholar

  • [146] Chenran Ye, Sikandar Khan, Zhuo Ran Li, Ergun Simsek, and Volker J. Sorger, "ʎ-Size ITO and Graphene-Based Electro-Optic Modulators on SOI," IEEE Selected Topics in Quantum Electronics 20, 4, 3400310 (2014). Google Scholar

  • [147] Chenran Ye, Sarah Pickus, Ke Liu, Chen Huang, and Volker J. Sorger, “High performance Graphene and ITO-based Electrooptic Modulators and Switches,” Proceedings of OECC / ACOFT 2014, 6-10 July 2014, Melbourne, Australia, 404-406 (2014). Google Scholar

  • [148] A.V. Krasavin and N. I. Zheludev, “Active plasmonics: controlling signals in Au/Ga waveguide using nanoscale structural transformations,” Appl. Phys. Lett. 84, 1416 (2004). CrossrefGoogle Scholar

  • [149] A.V. Krasavin, K. F. MacDonald, N. I. Zheludev, and A.V. Zayats, “High-contrast modulation of light with light by control of surface plasmon polariton wave coupling,” Appl. Phys. Lett. 85, 3369–3371 (2004). CrossrefGoogle Scholar

  • [150] A. V. Krasavin, A. V. Zayats, and N. I. Zheludev, "Active control of surface plasmon–polariton waves," J. Opt. A: Pure Appl. Opt. 7, S85–S89 (2005). Google Scholar

  • [151] Wangshi Zhao and Zhaolin Lu, "Nanoplasmonic optical switch based on Ga-Si3N4-Ga waveguide," Optical Engineering 50(7), 074002 (2011). Google Scholar

  • [152] Luke A. Sweatlock and Kenneth Diest, "Vanadium dioxide based plasmonic modulators," Opt. Express 20, 8700-8709 (2012). Google Scholar

  • [153] B. A. Kruger, A. Joushaghani, and J.K. S. Poon, "Design of electrically driven hybrid vanadium dioxide (VO2) plasmonic switches," Opt. Express 20, 23598-23609 (2012). CrossrefGoogle Scholar

  • [154] A. Joushaghani, B. A. Kruger, S. Paradis, D. Alain, J. S. Aitchison and J. K. S. Poon, “Sub-volt broadband hybrid plasmonicvanadium dioxide switches,” Appl. Phys. Lett. 102, 061101 (2013). CrossrefGoogle Scholar

  • [155] K.J.A. Ooi, P. Bai, H.S. Chu, L.K. Ang, “Ultracompact vanadium dioxide dual-mode plasmonic waveguide electroabsorption modulator,” Nanophotonics 2, 13-19 (2013). Google Scholar

  • [156] Jong-Ho Choe and Jin Tae Kim, "Design of Vanadium Dioxide Based Plasmonic Modulator for Both TE and TM Polarization Mode," IEEE Photonics Technology Letters, DOI: 10.1109/LPT.2014.2384020 CrossrefGoogle Scholar

  • [157] Jin Tae Kim, "CMOS-compatible hybrid plasmonic modulator based on vanadium dioxide insulator-metal phase transition," Opt. Lett. 39, 3997-4000 (2014). Google Scholar

  • [158] Thomas Nikolajsen, Kristjan Leosson, Sergey I Bozhevolnyi, "Surface plasmon polariton based modulators and switches operating at telecom wavelengths," Applied Physics Letters 85, 5833-5835 (2004). CrossrefGoogle Scholar

  • [159] T. Nikolajsen, K. Leosson, S.I. Bozhevolnyi, "In-line extinction modulator based on long-range surface plasmon polaritons," Optics Communications 244, 455–459 (2005). Google Scholar

  • [160] J. Gosciniak, S.I. Bozhevolnyi, "Performance of thermo-optic components based on dielectric-loaded surface plasmon polariton waveguides," Scientific Reports 3, 1803 (2013). Google Scholar

  • [161] J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L.Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express18(2), 1207–1216 (2010). CrossrefGoogle Scholar

  • [162] A. V. Krasavin, A. V. Zayats, Electro-optic switching element for dielectric-loaded surface plasmon polariton waveguides, Appl. Phys. Lett., 97, 041107, (2010). CrossrefGoogle Scholar

  • [163] A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, "High-speed plasmonic phase modulators," Nature Photonics 8, 229–233 (2014). CrossrefGoogle Scholar

  • [164] J. Gosciniak and D.T.H. Tan, “Graphene-based waveguide integrated dielectric-loaded plasmonic electro-absorption modulators,” Nanotechnology 24, 185202 (2013). CrossrefGoogle Scholar

  • [165] Jieer Lao, Jin Tao, Qi Jie Wang, and Xu Guang Huang, "Tunable graphene-based plasmonic waveguides: nano modulators and nano attenuators," Laser Photonics Rev. 8, 4, 569–574 (2014). Google Scholar

  • [166] Longzhi Yang et al, "Ultracompact plasmonic switch based on graphene-silica metamaterial," Applied Physics Letters 104, 211104 (2014). CrossrefGoogle Scholar

  • [167] V.E. Babicheva, I.V. Kulkova, R. Malureanu, K. Yvind, A.V. Lavrinenko, “Plasmonic modulator based on gain-assisted metalsemiconductor- metal waveguide,” Photonics and Nanostructures - Fundamentals and Applications 10, 389-399 (2012). Google Scholar

  • [168] V.E. Babicheva, R. Malureanu, A.V. Lavrinenko, “Plasmonic finite-thickness metal-semiconductor-metal waveguide as ultra-compact modulator,” Photonics and Nanostructures - Fundamentals and Applications 11, 323–334 (2013). Google Scholar

  • [169] V.E. Babicheva, A.V. Lavrinenko, “Plasmonic modulator based on metal-insulator-metalwaveguidewith bariumtitanate core”, Photonics Letters of Poland 5, 57-59 (2013). Google Scholar

  • [170] V. E.Babicheva, S.V. Zhukovsky, and A. V. Lavrinenko, "Bismuth ferrite as low-loss switchablematerial for plasmonicwaveguide modulator" Opt. Express 22, 28890-28897 (2014). CrossrefGoogle Scholar

  • [171] N. Abadía, T. Bernadin, P. Chaisakul, S. Olivier, D. Marris- Morini, R. Espiau de Lamaëstre, J. C. Weeber, and L. Vivien, "Low-Power consumption Franz-Keldysh effect plasmonic modulator," Opt. Express 22, 11236-11243 (2014). CrossrefGoogle Scholar

  • [172] C. Hoessbacher, Y. Fedoryshyn, A. Emboras, A. Melikyan, M. Kohl, D. Hillerkuss, C. Hafner, and J. Leuthold, "The plasmonic memristor: a latching optical switch," Optica 1, 198-202 (2014). CrossrefGoogle Scholar

  • [173] A. Emboras, C. Hoessbacher, Y. Fedoryshyn, P. Ma, C. Haffner, A. Melikyan, M. Kohl, and C. Hafner, J. Leuthold, “Plasmonic Switches,” Proceedings of OECC / ACOFT 2014, 6-10 July 2014, Melbourne, Australia, 730-732 (2014). Google Scholar

  • [174] Alexandros Emboras, Ilya Goykhman, Boris Desiatov, Noa Mazurski, Liron Stern, Joseph Shappir, and Uriel Levy, "Nanoscale plasmonic memristor with optical read out functionality," Nano Letters 13(12), 6151-6155 (2013). CrossrefGoogle Scholar

  • [175] A. Emboras, R. M. Briggs, A. Najar, S. Nambiar, C. Delacour, P. Grosse, E. Augendre, J. M. Fedeli, B. de Salvo, H. A. Atwater, and R. Espiau de Lamaestre, “Eflcient coupler between silicon photonic and metal-insulator-silicon-metal plasmonic waveguides,” Appl. Phys. Lett. 101(25), 251117 (2012). CrossrefGoogle Scholar

  • [176] R. Yang, M. A. G. Abushagur, and Z. Lu, “Eflciently squeezing near infrared light into a 21nm-by-24nm nanospot,” Optical Express 16, 20142-20148 (2008). Google Scholar

  • [177] R. Yang and Z. Lu, “Silicon-on-Insulator Platform for Integration of 3-D Nanoplasmonic Devices,” IEEE Photonics Technology Letters 23, 1652-1654 (2011). CrossrefGoogle Scholar

  • [178] N. Kinsey, M. Ferrera, V. M. Shalaev, and A. Boltasseva, Examining nanophotonics for integrated hybrid systems: a review of plasmonic interconnects and modulators using traditional and alternative materials Invited, JOSA B, vol. 32,121-142 (2015). Google Scholar

  • [179] G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, A. Boltasseva, "Titanium nitride as a plasmonic material for visible and near-infrared wavelengths," Optical Materials Express 2 (4), 478-489 (2012). CrossrefGoogle Scholar

  • [180] N. Kinsey, M. Ferrera, G. V. Naik, V. E. Babicheva V. M. Shalaev, and A. Boltasseva, Experimental demonstration of titanium nitride plasmonic interconnects, Optics Express, 22, 12238-47 (2014). CrossrefGoogle Scholar

  • [181] U. Guler, G. V. Naik, A. Boltasseva, V. M. Shalaev, A. V. Kildishev, "Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications," Applied Physics B 107 (2), 285-291 (2012). CrossrefGoogle Scholar

  • [182] U. Guler, J. C. Ndukaife, G. V. Naik, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, A. Boltasseva, "Local Heating with Lithographically Fabricated Plasmonic Titanium Nitride Nanoparticles," Nano Letters 13 (12), (2013). Google Scholar

  • [183] U. Guler, V. M. Shalaev, A. Boltasseva, "Nanoparticle Plasmonics: Going Practical with Transition Metal Nitrides," Materials Today, vol. 18, issue 4, pages 227–237 (2015). CrossrefGoogle Scholar

  • [184] U. Guler, A. Boltasseva, V. M. Shalaev, “Refractory Plasmonics,” Science, 344, 263-4 (2014). Google Scholar

  • [185] G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. Stach, J.MKIrudayaraj, T. D. Sands, V. M. Shalaev, A. Boltasseva, "Epitaxial superlattices with titaniumnitride as a plasmonic component for optical hyperbolic metamaterials," PNAS 111, 21, 7546-7551 (2014). Google Scholar

  • [186] H. W. H. Lee, S. P. Burgos, G. Papadakis, and H. A. Atwater, "Nanoscale conducting oxide plasmonic slot waveguide modulator," in Frontiers in Optics 2013, I. Kang, D. Reitze, N. Alic, and D. Hagan, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper FTu4E.3. Google Scholar

  • [187] J. Robertson, "High dielectric constant oxides," Eur. Phys. J. Appl. Phys. 28, 265-291 (2004). CrossrefGoogle Scholar

About the article

Published Online: 2015-06-16

Citation Information: Nanophotonics, Volume 4, Issue 1, Pages 165–185, ISSN (Online) 2192-8614, ISSN (Print) 2192-8606, DOI: https://doi.org/10.1515/nanoph-2015-0004.

Export Citation

© 2015 Viktoriia E. Babicheva et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Denis V. Novitsky, Vladimir R. Tuz, Sergey L. Prosvirnin, Andrei V. Lavrinenko, and Andrey V. Novitsky
Physical Review B, 2017, Volume 96, Number 23
Viktoriia E Babicheva
Journal of Optics, 2017, Volume 19, Number 12, Page 124013
Lei Chen, Han Ye, Yumin Liu, Zhongyuan Yu, Dong Wu, and Rui Ma
Optics Letters, 2017, Volume 42, Number 20, Page 4199
Hao Wu, Ke Ma, Yaocheng Shi, Lech Wosinski, and Daoxin Dai
Nanophotonics, 2017, Volume 6, Number 5
Lei Chen, Han Ye, Yumin Liu, Dong Wu, Rui Ma, and Zhongyuan Yu
Photonics Research, 2017, Volume 5, Number 4, Page 335
Ankit Agrawal, Robert W. Johns, and Delia J. Milliron
Annual Review of Materials Research, 2017, Volume 47, Number 1, Page 1
Ricky Gibson, Shivashankar Vangala, Isaiah O. Oladeji, Evan Smith, Farnood Khalizadeh-Rezaie, Kevin D. Leedy, Bruce Claflin, Tim Cooper, Robert E. Peale, and Justin W. Cleary
Optical Materials Express, 2017, Volume 7, Number 7, Page 2477
Qiangbing Guo, Yudong Cui, Yunhua Yao, Yuting Ye, Yue Yang, Xueming Liu, Shian Zhang, Xiaofeng Liu, Jianrong Qiu, and Hideo Hosono
Advanced Materials, 2017, Volume 29, Number 27, Page 1700754
Christoph A. Riedel, Kai Sun, Otto L. Muskens, and CH de Groot
Optics Express, 2017, Volume 25, Number 9, Page 10031
Xiaofeng Liu, Qiangbing Guo, and Jianrong Qiu
Advanced Materials, 2017, Volume 29, Number 14, Page 1605886
Ilka Kriegel, Francesco Scotognella, and Liberato Manna
Physics Reports, 2017, Volume 674, Page 1
Georgios Sinatkas, Alexandros Pitilakis, Dimitrios C. Zografopoulos, Romeo Beccherelli, and Emmanouil E. Kriezis
Journal of Applied Physics, 2017, Volume 121, Number 2, Page 023109
Marcello Ferrera, Nathaniel Kinsey, Amr Shaltout, Clayton DeVault, Vladimir Shalaev, and Alexandra Boltasseva
Journal of the Optical Society of America B, 2017, Volume 34, Number 1, Page 95
Dimitrios C. Zografopoulos, Mohamed A. Swillam, and Romeo Beccherelli
Applied Physics A, 2016, Volume 122, Number 12
Pouya Dastmalchi and Georgios Veronis
Journal of the Optical Society of America B, 2016, Volume 33, Number 12, Page 2486
Ilka Kriegel, Carmine Urso, Daniele Viola, Luca De Trizio, Francesco Scotognella, Giulio Cerullo, and Liberato Manna
The Journal of Physical Chemistry Letters, 2016, Volume 7, Number 19, Page 3873
Huawei Liang, Lei Zhang, Shuang Zhang, Tun Cao, Andrea Alù, Shuangchen Ruan, and Cheng-Wei Qiu
ACS Photonics, 2016, Volume 3, Number 10, Page 1847
David George, Li Li, Yan Jiang, David Lowell, Michelle Mao, Safaa Hassan, Jun Ding, Jingbiao Cui, Hualiang Zhang, Usha Philipose, and Yuankun Lin
Journal of Applied Physics, 2016, Volume 120, Number 4, Page 043109
Xin Hu, Qin Chen, Long Wen, Lin Jin, Huacun Wang, and Wanwan Liu
IEEE Photonics Technology Letters, 2016, Volume 28, Number 15, Page 1665
U. Koch, C. Hoessbacher, J. Niegemann, C. Hafner, and J. Leuthold
IEEE Photonics Journal, 2016, Volume 8, Number 1, Page 1
Dimitrios C. Zografopoulos, Mohamed A. Swillam, Lamees A. Shahada, and Romeo Beccherelli
Applied Physics A, 2016, Volume 122, Number 4
J. Scott Niezgoda and Sandra J. Rosenthal
ChemPhysChem, 2016, Volume 17, Number 5, Page 645
Viktoriia E. Babicheva, Mikhail Y. Shalaginov, Satoshi Ishii, Alexandra Boltasseva, and Alexander V. Kildishev
Optics Express, 2015, Volume 23, Number 24, Page 31109

Comments (0)

Please log in or register to comment.
Log in