Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Editor-in-Chief: Sorger, Volker

IMPACT FACTOR 2018: 6.908
5-year IMPACT FACTOR: 7.147

CiteScore 2018: 6.72

In co-publication with Science Wise Publishing

Open Access
See all formats and pricing
More options …
Volume 4, Issue 1


Active molecular plasmonics: tuning surface plasmon resonances by exploiting molecular dimensions

Kai Chen
  • Corresponding author
  • Department of Mechanical Engineering, Materials Science and Engineering Program, and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, USA
  • International Center for Material Nanoarchitectonics (MANA), National Institute for Materials Science, Tsukuba, 305-0044, Japan; CREST, Japan Science and Technology Agency, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Eunice Sok Ping Leong
  • Corresponding author
  • Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 3 Research Link, Singapore 117602, Singapore
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michael Rukavina
  • Corresponding author
  • Department of Mechanical Engineering, Materials Science and Engineering Program, and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tadaaki Nagao
  • Corresponding author
  • International Center for Material Nanoarchitectonics (MANA), National Institute for Materials Science, Tsukuba, 305-0044, Japan; CREST, Japan Science and Technology Agency, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yan Jun Liu
  • Corresponding author
  • Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 3 Research Link, Singapore 117602, Singapore
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yuebing Zheng
  • Corresponding author
  • Department of Mechanical Engineering, Materials Science and Engineering Program, and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-06-29 | DOI: https://doi.org/10.1515/nanoph-2015-0007


Molecular plasmonics explores and exploits the molecule–plasmon interactions on metal nanostructures to harness light at the nanoscale for nanophotonic spectroscopy and devices. With the functional molecules and polymers that change their structural, electrical, and/or optical properties in response to external stimuli such as electric fields and light, one can dynamically tune the plasmonic properties for enhanced or new applications, leading to a new research area known as active molecular plasmonics (AMP). Recent progress in molecular design, tailored synthesis, and self-assembly has enabled a variety of scenarios of plasmonic tuning for a broad range of AMP applications. Dimension (i.e., zero-, two-, and threedimensional) of the molecules on metal nanostructures has proved to be an effective indicator for defining the specific scenarios. In this review article, we focus on structuring the field of AMP based on the dimension of molecules and discussing the state of the art of AMP. Our perspective on the upcoming challenges and opportunities in the emerging field of AMP is also included.

Keywords: active molecular plasmonics; dimension; graphene; molecular switches; organic materials; plasmon–molecule interactions; polymers; surface plasmons


  • Google Scholar

  • [1] Raether H., Surface plasmons on smooth and rough surfaces and on gratings, Springer, Berlin, Germany, 1988. Google Scholar

  • [2] Maier S.A., Plasmonics: fundamentals and applications, Springer, New York, 2007. Google Scholar

  • [3] Bozhevolnyi S.I., Plasmonic nanoguides and circuits, Pan Stanford Publishing Pte. Ltd., Singapore, 2009. Google Scholar

  • [4] Ebbesen T.W., Lezec H.J., Ghaemi H.F., Thio T., Wolff P.A., Extraordinary optical transmission through subwavelength hole arrays, Nature 1998, 391:667-9. CrossrefGoogle Scholar

  • [5] Ozbay E., Plasmonics: merging photonics and electronics at nanoscale dimensions, Science 2006, 311:189-93. CrossrefGoogle Scholar

  • [6] Zayats A.V., Smolyaninov I.I., Maradudin A.A., Nano-optics of surface plasmon polaritons, Phys. Rep. 2005, 408:131-314. CrossrefGoogle Scholar

  • [7] Maier S.A., Kik P.G., Atwater H.A., Meltzer S., Harel E., Koel B.E., Requicha A.A.G., Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides, Nat. Mater. 2003, 2:229-32. CrossrefGoogle Scholar

  • [8] Engheta N., Salandrino A., Alù A., Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors, Phys. Rev. Lett. 2005, 95:095504. CrossrefGoogle Scholar

  • [9] Engheta N., Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials, Science 2007, 317:1698-702. CrossrefGoogle Scholar

  • [10] Guo X., Qiu M., Bao J.,Wiley B.J., Yang Q., Zhang X.,Ma Y., Yu H., Tong L., Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits. Nano Lett. 2009, 9:4515-9. CrossrefGoogle Scholar

  • [11] Sorger V.J., Ye Z., Oulton R.F., Wang Y., Bartal G., Yin X., Zhang X., Experimental demonstration of low-loss opticalwaveguiding at deep subwavelength scales, Nat. Commun. 2011, 2:331. CrossrefGoogle Scholar

  • [12] Geisler P., Razinskas G., Krauss E., Wu X.F., Rewitz C., Tuchscherer P., Goetz S., Huang C.B., Brixner T., Hecht B.,Multimode plasmon excitation and in situ analysis in top-down fabricated nanocircuits, Phys. Rev. Lett. 2013, 111:183901. CrossrefGoogle Scholar

  • [13] Huang K.C.Y., Seo M.K., Sarmiento T., Huo Y., Harris J.S., Brongersma M.L., Electrically driven subwavelength optical nanocircuits, Nat. Photon. 2014, 8:244-9. CrossrefGoogle Scholar

  • [14] Sharma B., Frontiera R.R., Henry A.I., Ringe E., Van Duyne R.P., SERS: Materials, applications, and the future, Mater. Today 2012, 15:16-25. CrossrefGoogle Scholar

  • [15] Neubrech F., Pucci A., Cornelius T.W., Karim S., García-Etxarri A., Aizpurua J., Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection, Phys. Rev. Lett. 2008, 101:157403. CrossrefGoogle Scholar

  • [16] Chen K., Adato R., Altug H., Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy, ACS Nano 2012, 6:7998-8006. CrossrefGoogle Scholar

  • [17] Atwater H.A., Polman A., Plasmonics for improved photovoltaic devices, Nat. Mater. 2010, 9:205-13. CrossrefGoogle Scholar

  • [18] Aubry A., Lei D.Y., Fernandez-Dominguez A.I., Sonnefraud Y., Maier S.A., Pendry J.B., Plasmonic light-harvesting devices over the whole visible spectrum, Nano Lett. 2010, 10:2574-9. CrossrefGoogle Scholar

  • [19] Andreussi O., Biancardi A., Corni S., Mennucci B., Plasmoncontrolled light-harvesting: Design rules for biohybrid devices via multiscale modeling, Nano Lett. 2013, 13:4475-84. CrossrefGoogle Scholar

  • [20] Pendry J.B., Negative refractionmakes a perfect lens, Phys. Rev. Lett. 2000, 85:3966-9. CrossrefGoogle Scholar

  • [21] Fang N., Lee H., Sun C., Zhang X., Subdiffraction-limited optical imaging with a silver superlens, Science 2005, 308:534-7. CrossrefGoogle Scholar

  • [22] Pendry J.B., Schurig D., Smith D.R., Controlling electromagnetic fields, Science 2006, 312:1780-2. CrossrefGoogle Scholar

  • [23] Smolyaninov I.I., Smolyaninova V.N., Kildishev A.V., Shalaev V.M., Anisotropic metamaterials emulated by tapered waveguides: application to optical cloaking, Phys. Rev. Lett. 2009, 102:213901. CrossrefGoogle Scholar

  • [24] Scholl J., Koh A., Dionne J., Quantumplasmon resonances of individual metallic nanoparticles, Nature 2012, 483:421-7. CrossrefGoogle Scholar

  • [25] Ni X., Emani N.K., Kildishev A.V., Boltasseva A., Shalaev V.M., Broadband light bending with plasmonic nanoantennas, Science 2012, 335:427. CrossrefGoogle Scholar

  • [26] Naik G.V., Saha B., Liu J., Saber S.M., Stach E.A., Irudayaraj J.M.K., Sands T.D., Shalaev V.M., Boltassevaa A., Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials, Proc. Natl. Acad. Sci. 2014, 111:7546-51. CrossrefGoogle Scholar

  • [27] Oulton R.F., Sorger V.J., Zentgraf T., Ma R.M., Gladden C., Dai L., Bartal G., Zhang X., Plasmon lasers at deep subwavelength scale, Nature 2009, 461:629-32. CrossrefGoogle Scholar

  • [28] Ma R.M., Oulton R.F., Sorger V.J., Bartal G., Zhang X., Roomtemperature subdiffraction-limited plasmon laser by total internal reflection, Nat. Mater. 2011, 10:110-3. CrossrefGoogle Scholar

  • [29] Krasavin A.V., Zheludev N.I., Active plasmonics: controlling signals in Au/Ga waveguide using nanoscale structural transformations, Appl. Phys. Lett. 2004, 84:1416-8. CrossrefGoogle Scholar

  • [30] Lopez R., Haynes T.E., Boatner L.A., Feldman L.C., Haglund Jr. R.F., Temperature-controlled surface plasmon resonance in VO2 nanorods, Opt. Lett. 2002, 27:1327-9. CrossrefGoogle Scholar

  • [31] MacDonald K.F., Sámson Z.L., Stockman M.I., Zheludev N.I., Ultrafast active plasmonics, Nat. Photon. 2009, 3:55-8. CrossrefGoogle Scholar

  • [32] Liu Y.J., Hao Q.Z., Smalley J.S.T., Liou J., Khoo I.C., Huang T.J., A frequency-addressed plasmonic switch based on dualfrequency liquid crystals, Appl. Phys. Lett. 2010, 97:091101. CrossrefGoogle Scholar

  • [33] Chang W.S., Lassiter J.B., Swanglap P., Sobhani H., Khatua S., Nordlander P., Halas N.J., Link S., A plasmonic Fano switch, Nano Lett. 2012, 12:4977-82. CrossrefGoogle Scholar

  • [34] Dionne J., Diest K., Sweatlock L., Atwater H., PlasMOStor: a metal-oxide-silicon field-effect plasmonic modulator. Nano Lett. 2009, 9:897-902. CrossrefGoogle Scholar

  • [35] Temnov V.V., Armelles G., Woggon U., Guzatov D., Cebollada A., Garcia-Martin A., Garcia-Martin J.M., Thomay T., Leitenstorfer A., Bratschitsch R., Active magneto-plasmonics in hybrid metal–ferromagnet structures, Nat. Photon. 2010, 4:107-11. CrossrefGoogle Scholar

  • [36] Diest K., Dionne J.A., Spain M., Atwater H.A., Tunable color filters based on metal-insulator-metal resonators, Nano Lett. 2009, 9:2579-83. CrossrefGoogle Scholar

  • [37] Liu Y.J., Si G.Y., Leong E.S.P., Xiang N., Danner A.J., Teng J.H., Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays, Adv.Mater. 2012, 24:OP131-5. Google Scholar

  • [38] Lee K.S., El-Sayed M.A., Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition, J. Phys. Chem. B 2006, 110:19220-5. CrossrefGoogle Scholar

  • [39] Liu N., Weiss T., Mesch M., Langguth L., Eigenthaler U., Hirscher M., Sönnichsen C., Giessen H., Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing, Nano Lett. 2010, 10:1103-7. CrossrefGoogle Scholar

  • [40] MacDonald K.F., Zheludev N.I., Active plasmonics: current status, Laser Photon. Rev. 2010, 4:562-7. Google Scholar

  • [41] Temnov V.V., Ultrafast acousto-magneto-plasmonics, Nat. Photon. 2012, 6:728-36. CrossrefGoogle Scholar

  • [42] Van Duyne R.P., Molecular plasmonics, Science 2004, 306:985- 6. CrossrefGoogle Scholar

  • [43] Zheng Y.B., Yang Y.W., Jensen L., Fang L., Juluri B.K., Flood A.H., Weiss P.S., Stoddart J.F., Huang T.J., Active molecular plasmonics: controlling plasmon resonances with molecular switches, Nano Lett. 2009, 9:819-25. CrossrefGoogle Scholar

  • [44] Zhao J., Sherry L.J., Schatz G.C., Van Duyne R.P., Molecular plasmonics: Chromophore-plasmon coupling and single-particle nanosensors, IEEE J. Sel. Top. Quant. Electron. 2008, 14:1418- 29. CrossrefGoogle Scholar

  • [45] Jiang N., Shao L., Wang J., (Gold nanorod core)/(polyaniline shell) plasmonic switches with large plasmon shifts and modulation depths, Adv. Mater. 2014, 26:3282-9. CrossrefGoogle Scholar

  • [46] Leroux Y.R., Lacroix J.C., Chane-Ching K.I., Fave C., Félidj N., Lévi G., Aubard J., Krenn J.R., Hohenau A., Conducting polymer electrochemical switching as an easy means for designing active plasmonic devices, J. Am. Chem. Soc. 2005, 127:16022-3. CrossrefGoogle Scholar

  • [47] Tokareva I., Minko S., Fendler J.H., Hutter E., Nanosensors based on responsive polymer brushes and gold nanoparticle enhanced transmission surface plasmon resonance spectroscopy, J. Am. Chem. Soc. 2004, 126:15950-1. CrossrefGoogle Scholar

  • [48] Stuart M.A.C., HuckW.T.S., Genzer J.,Müller M., Ober C., Stamm M., Sukhorukov G.B., Szleifer I., Tsukruk V.V., Urban M., Winnik F., Zauscher S., Luzinov I., Minko S., Emerging applications of stimuli-responsive polymer materials, Nat. Mater. 2010, 9:101- 13. CrossrefGoogle Scholar

  • [49] Schwartz T., Hutchison J.A., Genet C., Ebbesen T.W., Reversible switching of ultrastrong light-molecule coupling, Phys. Rev. Lett. 2011, 106:196405. CrossrefGoogle Scholar

  • [50] Pala R.A., Shimizu K.T., Melosh N.A., Brongersma M.L., A nonvolatile plasmonic switch employing photochromic molecules, Nano Lett. 2008, 8:1506-10. CrossrefGoogle Scholar

  • [51] Ashry I., Zhang B., Khalifa M.B., Claderone J.A., Santos W.L., Heflin J.R., Robinson H.D., Xu Y., Fluorescence lifetime based characterization of active and tunable plasmonic nanostructures, Opt. Express 2014, 22:20720-6. CrossrefGoogle Scholar

  • [52] Noginov M.A., Zhu G., Belgrave A.M., Bakker R., Shalaev V.M., Narimanov E.E., Stout S., Herz E., Suteewong T., Wiesner U., Demonstration of a spaser-based nanolaser, Nature 2009, 460:1110-2. CrossrefGoogle Scholar

  • [53] Suh J.Y., Kim C.H., Zhou W., Huntington M.D., Co D.T., Wasielewski M.R., Odom T.W., Plasmonic bowtie nanolaser arrays, Nano Lett. 2012, 12:5769-74. CrossrefGoogle Scholar

  • [54] Meng X., Kildishev A.V., Fujita K., Tanaka K., Shalaev V.M., Wavelength-tunable spasing in the visible, Nano Lett. 2013, 13:4106-12 CrossrefGoogle Scholar

  • [55] Zayats A.V., Maier S., Active plasmonics and tuneable plasmonic metamaterials, Wiley, 2013. Google Scholar

  • [56] Hill M.T., Gather M.C., Advances in small lasers, Nat. Photon. 2014, 8:908-18. CrossrefGoogle Scholar

  • [57] Dickson W., Wurtz G.A., Evans P.R., Pollard R.J., Zayats A.V., Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal, Nano Lett. 2007, 8:281-6. Google Scholar

  • [58] Khatua S., Chang W.S., Swanglap P., Olson J., Link S., Active modulation of nanorod plasmons, Nano Lett. 2011, 11:3797- 802. CrossrefGoogle Scholar

  • [59] Mitsuishi M., Koishikawa Y., Tanaka H., Sato E., Mikayama T., Matsui J., Miyashita T., Nanoscale actuation of thermoresponsive polymer brushes coupled with localized surface plasmon resonance of gold nanoparticles, Langmuir 2007, 23:7472-4. CrossrefGoogle Scholar

  • [60] Joshi G.K., Smith K.A., Johnson M.A., Sardar R., Temperaturecontrolled reversible localized surface plasmon resoance response of polymer-functionalized gold nanoprisms in the solid state, J. Phys. Chem. C 2013, 117:26228-37. CrossrefGoogle Scholar

  • [61] Li B., Smilgies D.M., Price A.D., Huber D.L., Clem P.G., Fan H., Poly(Nisopropylacrylamide) surfactant-funtionalized responsive silver nanoparticles and superlattices, ACS Nano 2014, 8:4799-804. CrossrefGoogle Scholar

  • [62] Gehan H., Mangeney C., Aubard J., Lévi G., Hohenau A., Krenn J.R., Lacaze E., Félidj N., Design and optical properties of active polymer-coated plasmonic nanostructures, J. Phys. Chem. Lett. 2011, 2:926-31 . CrossrefGoogle Scholar

  • [63] Karg M., Pastoriza-Santos I., Pérez-Juste J., Hellweg T., Liz- Marzán L.M., Nanorod-coated PNIPAM microgels: thermoresponsive optical properties, Small 2007, 3:1222-9. CrossrefGoogle Scholar

  • [64] Gehan H., Fillaud L., Chehimi M.M., Aubard J., Hohenau A., Felidj N., Mangeney C., Thermo-induced electromagnetic coupling in gold/polymer hybrid plasmonic structures probed by surfaceenhanced Raman scattering, ACS Nano 2010, 4:6491-500. CrossrefGoogle Scholar

  • [65] Durand-Gasselin C., Sanson N., Lequeux N., Reversible controlled assembly of thermosensitive polymer-coated gold nanoparticles, Langmuir 2011, 27:12329-35. CrossrefGoogle Scholar

  • [66] Liu Y., Han X., He L., Yin Y., Thermoresponsive assembly of charged gold nanoparticles and their reversible tuning of plasmon coupling, Angew. Chem. Int. Ed. 2012, 51:6373-7. CrossrefGoogle Scholar

  • [67] Zheng Y.B., Kiraly B., Cheunkar S., Huang T.J., Weiss P.S., Incident-angle-modulated molecular plasmonic switches: a case of weak exciton–plasmon coupling, Nano Lett. 2011, 11:2061-5. CrossrefGoogle Scholar

  • [68] Koenig Jr. G.M., Meli M.V., Park J.S., de Pablo J.J., Abbott N.L., Coupling of the plasmon resonances of chemically functionalized gold nanoparticles to local order in thermotropic liquid crystals, Chem. Mater. 2007, 19:1053-61. CrossrefGoogle Scholar

  • [69] Kossyrev P.A., Yin A., Cloutier S.G., Cardimona D.A., Huang D., Alsing P.M., Xu J.M., Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix, Nano Lett. 2005, 5:1978-81. CrossrefGoogle Scholar

  • [70] Chu K.C., Chao C.Y., Chen Y.F., Wu Y.C., Chen C.C., Electrically controlled surface plasmon resonance frequency of gold nanorods, Appl. Phys. Lett. 2006, 89:103107. CrossrefGoogle Scholar

  • [71] Müller J., Sönnichsen C., von Poschinger H., von Plessen G., Klar T.A., Feldmann J., Electrically controlled light scattering with single metal nanoparticles, Appl. Phys. Lett. 2002, 81:171-3. CrossrefGoogle Scholar

  • [72] Evans P.R., Wurtz G.A., Hendren W.R., Atkinson R., Dickson W., Zayats A.V., Pollard R.J., Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal, Appl. Phys. Lett. 2007, 91:043101. CrossrefGoogle Scholar

  • [73] Olson J., Swanglap P., Chang W.S., Khatua S., Solis D., Link S., Detailed mechanism for the orthogonal polarization switching of gold nanorod plasmons, Phys. Chem. Chem. Phys. 2013, 15:4195-204. CrossrefGoogle Scholar

  • [74] Xie J., Zhang X., Peng Z., Wang Z., Wang T., Zhu S., Wang Z., Zhang L., Zhang J., Yang B., Low electric field intensity and thermotropic tuning surface plasmon band shift of gold island film by liquid crystals, J. Phys. Chem. C 2012, 116:2720-7. CrossrefGoogle Scholar

  • [75] Park S.Y., Stroud D., Surface-enhanced plasmon splitting in a liquid-crystal-coated gold nanoparticle, Phys. Rev. Lett. 2005, 94:217401. CrossrefGoogle Scholar

  • [76] De Sio L., Caputo R., Cataldi U., Umeton C., Broad band tuning of the plasmonic resonance of gold nanoparticles hosted in selforganized soft materials, J. Mater. Chem. 2011, 21:18967. CrossrefGoogle Scholar

  • [77] Liu Y.J., Leong E.S.P., Wang B., Teng J.H., Optical transmission enhancement and tuning by overlaying liquid crystals on a gold film with patterned nanoholes, Plasmonics 2011, 6:659–64. CrossrefGoogle Scholar

  • [78] Si G.Y., Zhao Y.H., Leong E.S.P., Liu Y.J., Liquid-crystal-enabled active plasmonics: a review, Materials 2014, 7:1296–317. CrossrefGoogle Scholar

  • [79] Li H., Xu S., Gu Y., Wang H.L., Ma R., Lombardi J.R., Xu W., Active plasmonic nanoantennas for controlling fluorescence beams, J. Phys. Chem. C 2013, 117:19154-9. CrossrefGoogle Scholar

  • [80] Pratibha R., Park K., Smalyukh I.I., Park W., Tunable optical metamaterial based on liquid crystal-gold nanosphere composite, Opt. Express 2009, 17:19459-69. CrossrefGoogle Scholar

  • [81] Buchnev O., Ou J.Y., Kaczmarek M., Zheludev N.I., Fedotov V.A., Electro-optical control in a plasmonic metamaterial hybridised with a liquid-crystal cell, Opt. Express 2013, 21:1633-8. CrossrefGoogle Scholar

  • [82] Zhao Q., Kang L., Du B., Li B., Zhou J., Tang H., Liang X., Zhang B., Electrically tunable negative permeability metamaterials based on nematic liquid crystals, Appl. Phys. Lett. 2007, 90:011112. CrossrefGoogle Scholar

  • [83] Ishii S., Kildishev A.V., Shalaev V.M., Drachev V.P., Controlling the wave focal structure of metallic nanoslit lenses with liquid crystals, Laser Phys. Lett. 2011, 8:828-32. CrossrefGoogle Scholar

  • [84] Hsiao V.K.S., Zhang Y.B., Juluri B.K., Huang T.J., Light-driven plasmonic switches based on Au nanodisk arrays and photoresponsive liquid crystals, Adv. Mater. 2008, 20:3528-32. CrossrefGoogle Scholar

  • [85] Liu Y.J., Zheng Y.B., Shi J., Huang H., Walker T.R., Huang T.J., Optically switchable gratings based on azo-dye-doped, polymerdispersed liquid crystals, Opt. Lett. 2009, 34:2351-3. CrossrefGoogle Scholar

  • [86] Liu Y.J., Zheng Y.B., Liou J., Chiang I.K., Khoo I.C., Huang T.J., Alloptical modulation of localized surface plasmon coupling in a hybrid system composed of photoswitchable gratings and Au nanodisk arrays, J. Phys. Chem. C 2011, 115:7717-22. CrossrefGoogle Scholar

  • [87] Liu Y.J., Cai Z.Y., Leong E.S.P., Zhao X.S., Teng J.H., Optically switchable photonic crystals based on inverse opals partially infiltrated by photoresponsive liquid crystals, J. Mater. Chem. 2012, 22:7609-13. CrossrefGoogle Scholar

  • [88] Liu Y.J., Ding X.Y., Lin S.C.S., Shi J.J., Chiang I.K., Huang T.J., Surface acoustic wave driven light shutters using polymerdispersed liquid crystals, Adv. Mater. 2011, 23:1656-9. Google Scholar

  • [89] Cetin A.E., Mertiri A., Huang M., Erramilli S., Altug H., Thermal tuning of surface plasmon polaritons using liquid crystals, Adv. Opt. Mater. 2013, 1:915–20. CrossrefGoogle Scholar

  • [90] Kotsuchibashi Y., Ebara M., Yamamoto K., Aoyagi T., “On–off” switching of dynamically controllable self-assembly formation of double-responsive block copolymers with tunable LCSTs, J. Polym. Sci. A Polym. Chem. 2010, 48:4393-9. CrossrefGoogle Scholar

  • [91] Yan L., Zheng Y.B., Zhao F., Li S., Gao X., Xu B., Weiss P.S., Zhao Y., Chemistry and physics of a single atomic layer: strategies and challenges for functionalization of graphene and graphenebased materials, Chem. Soc. Rev. 2012, 41:97-114. CrossrefGoogle Scholar

  • [92] Chen J., Badioli M., Alonso-González, Thongrattanasiri S., Huth F., Osmond J., Spasenović M., Centeno A., Pesquera A., Godgnon P., Elorza A.Z., Camara N., García de Abajo F.J., Hillenbrand R., Koppens F.H.L., Optical nano-imaging of gate-tunable graphene plasmons, Nature 2012, 487:77-81. Google Scholar

  • [93] Fei Z., Rodin A.S., Andreev G.O., Bao W., McLeod A.S., Wagner M., Zhang L.M., Zhao Z., Thiemens M., Dominguez G., Fogler M.M., Castro Net A.H., Lau C.N., Keilmann F., Basov D.N., Gate-tuning of graphene plasmons revealed by infrared nanoimaging, Nature 2012, 487:82-5. Google Scholar

  • [94] Mousavi S.H., Kholmanov I., Alici K.B., Purtseladze D., Arju N., Tatar K., Fozdar D.Y., Suk J.W., Hao Y., Khanikaev A.B., Ruoff R.S., Shvets G., Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared, Nano Lett. 2013, 13:1111-7. CrossrefGoogle Scholar

  • [95] Li Z., Yu N., Modulation of mid-infrared light using graphenemetal plasmonic antennas, Appl. Phys. Lett. 2013, 102:131108. CrossrefGoogle Scholar

  • [96] Emani N.K., Chung T.F., Kildishev A.V., Shalaev V.M., Chen Y.P., Boltasseva A., Electrical modulation of Fano resonance in plasmonic nanostructures using graphene, Nano Lett. 2014, 14:78- 82. CrossrefGoogle Scholar

  • [97] Dabidian N., Kholmanov I., Khanikaev A.B., Tatar K., Trendafilov S., Mousavi S.H., Magnuson C., Ruoff R.S., Shvets G., Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces, ACS Photon 2015, DOI: 10.1021/ph5003279. CrossrefGoogle Scholar

  • [98] Grigorenko A.N., Polini M., Novoselov K.S., Graphene plasmonics, Nat. Photon. 2012, 6:749-58. CrossrefGoogle Scholar

  • [99] García de Abajo F.J., Graphene plasmonics: challenges and opportunities, ACS Photon. 2014, 1:135-52. CrossrefGoogle Scholar

  • [100] Fang Z., Wang Y., Schlather A.E., Liu Z., Ajayan P.M., García de Abajo F.J., Nordlander P., Zhu X., Halas N.J., Active tunable absorption enhancement with graphene nanodisk arrays, Nano Lett. 2014, 14:299-304. CrossrefGoogle Scholar

  • [101] Niu J., Shin Y.J., Lee Y., Ahn J.H., Yang H., Graphene induced tunability of the surface plasmon resonance, Appl. Phys. Lett. 2012, 100:061116. CrossrefGoogle Scholar

  • [102] Gao W., Shi G., Jin Z., Shu J., Zhang Q., Vajtai R., Ajayan P.M., Kono J., Xu Q., Excitation and active control of propagating surface plasmon polaritons in graphene, Nano Lett. 2013, 13:3698- 702. CrossrefGoogle Scholar

  • [103] Kim J., Son H., Cho D.J., Geng B., ReganW., Shi S., Kim K., Zettl A., Shen Y.R., Wang F., Electrical control of optical plasmon resonance with graphene, Nano Lett. 2012, 12:5598-602. CrossrefGoogle Scholar

  • [104] Emani N.K., Chung T.F., Ni X., Kildishev A.V., Chen Y.P., Boltasseva A., Electrically tunable damping of plasmonic resonances with graphene, Nano Lett. 2012, 12:5202-6. CrossrefGoogle Scholar

  • [105] Yao Y., Kats M.A., Genevet P., Yu N., Song Y., Kong J., Capasso F., Broad electrical tuning of graphene-loaded plasmonic antennas, Nano Lett. 2013, 13:1257-64. CrossrefGoogle Scholar

  • [106] Luk’yanchuk B., Zheludev N.I., Maier S.A., Halas N.J., Nordlander P., Giessen H., Chong C.T., The Fano resonance in plasmonic nanostructures and metamaterials, Nat. Mater. 2010, 9:707-15. CrossrefGoogle Scholar

  • [107] Khanikaev A.B., Wu C., Shvets G., Fano-resonant metamaterials and their applications, Nanophotonics 2013, 2:247-64. Google Scholar

  • [108] Liu H.L., Leong E.S.P., Wang Z.L., Si G.Y., Zheng L.J., Liu Y.J., Soci C., Multiple and multipolar Fano resonances in plasmonic nanoring pentamers, Adv. Opt. Mater. 2013, 1:978-83. CrossrefGoogle Scholar

  • [109] Liu H.L., Wang Z.L., Huang J., Liu Y.J., Fan H.J., Zheludev N.I., Soci C., Plasmonic nanoclocks, Nano Lett. 2014, 14:5162-9. CrossrefGoogle Scholar

  • [110] Zheng Y.B., Payton J.L., Chung C.H., Liu R., Cheunkar S., Pathem B.K., Yang Y., Jensen L., Weiss P.S., Surface-enhanced Raman spectroscopy to probe reversibly photoswitchable azobenzene in controlled nanoscale environments, Nano Lett. 2011, 11:3447- 52. CrossrefGoogle Scholar

  • [111] Pathem B.K., Zheng Y.B., Payton J.L., Song T.B., Yu B.C., Tour J.M., Yang Y., Jensen L., Weiss P.S., Effect of tether conductivity on the eflciency of photoisomerization of azobenzenefunctionalized molecules on Au{111}, J. Phys. Chem. Lett. 2012, 3:2388-94. CrossrefGoogle Scholar

  • [112] Zheng Y.B., Payton J.L., Song T.B., Pathem B.K., Zhao Y., Ma H., Yang Y., Jensen L., Jen A.K.Y., Weiss P.S., Surface-enhanced Raman spectroscopy to probe photoreaction pathways and kinetics of isolated reactants on surfaces: flat versus curved substrates, Nano Lett. 2012, 12:5362-8. CrossrefGoogle Scholar

  • [113] Zheng Y.B., Pathem B.K., Hohman J.N., Thomas J.C., Kim M., Weiss P.S., Photoresponsive molecules in well-defined nanoscale environments, Adv. Mater. 2013, 25:302-12. CrossrefGoogle Scholar

  • [114] Pathem B.K., Zheng Y.B., Morton S., Petersen M.A., Zhao Y., Chung C.H., Yang Y., Jensen L., Nielsen M.B., Weiss P.S., Photoreaction of matrix-isolated dihydroazulene-functionalized molecules on Au{111}, Nano Lett. 2013, 13:337-43. Google Scholar

  • [115] Pathem B.K., Claridge S.A., Zheng Y.B., Weiss P.S., Molecular switches and motors on surfaces, Annu. Rev. Phys. Chem. 2013, 64:605-30. CrossrefGoogle Scholar

  • [116] Joshi G.K., Blodgett K.N.,Muhoberac B.B., Johnson M.A., Smith K.A., Sardar R., Ultrasensitive photoreversible molecular sensors of azobenzene-functionalized plasmonic nanoantennas, Nano Lett. 2014, 14:532-40. CrossrefGoogle Scholar

  • [117] Larsson E.M., Syrenova S., Langhammer C., Nanoplasmonic sensing for nanomaterials science, Nanophotonics 2012, 1:249- 66. Google Scholar

  • [118] Davis T.J., Gómez D.E., Vernon K.C., Interaction of molecules with localized surface plasmons in metallic nanoparticles, Phys. Rev. B 2010, 81:045432. CrossrefGoogle Scholar

  • [119] Antosiewicz T.J., Apell S.P., Claudio V., Käll M., A simple model for the resonance shift of localized plasmons due to dielectric particle adhesion, Opt. Express 2012, 20:524-33. CrossrefGoogle Scholar

  • [120] Nusz G.J., Curry A.C., Marinakos S.M., Wax A., Chilkoti A., Rational selection of gold nanorod geometry for label-free plasmonic biosensors, ACS Nano 2009, 3:795-806. CrossrefGoogle Scholar

  • [121] Unger A., Kreiter M., Analyzing the performance of plasmonic resonators for dielectric sensing, J. Phys. Chem. C 2009, 113:12243-51. CrossrefGoogle Scholar

  • [122] Zhang W., Martin O.J.F., A universal law for plasmon resonance shift in biosensing, ACS Photon. 2015, 2:144-50. CrossrefGoogle Scholar

  • [123] Dostert K.H., Álvarez M., Koynov K., del Campo A., Butt H.J., Kreiter M., Near field guided chemical nanopatterning, Langmuir 2012, 28:3699-703. CrossrefGoogle Scholar

  • [124] Chen H., Kou X., Yang Z., Ni W., Wang J., Shape- and sizedependent refractive index sensitivity of gold nanoparticles, Langmuir 2008, 24:5233-7. CrossrefGoogle Scholar

  • [125] Maack J., Ahuja R.C., Tachibana H., Resonant and nonresonant investigations of amphiphilic azobenzene derivatives in solution and in monolayers at the air/water interface, J. Phys. Chem. 1995, 99:9210-20. CrossrefGoogle Scholar

  • [126] Goulet-Hanssens A., Corkery T.C., Priimagi A., Barrett C.J., Effect of head group size on the photoswitching applications of azobenzene Disperse Red 1 analogues, J. Mater. Chem. C 2014, 2:7505-12. Google Scholar

About the article

Received: 2014-10-02

Accepted: 2015-05-01

Published Online: 2015-06-29

Citation Information: Nanophotonics, Volume 4, Issue 1, Pages 186–197, ISSN (Online) 2192-8614, ISSN (Print) 2192-8606, DOI: https://doi.org/10.1515/nanoph-2015-0007.

Export Citation

© 2015 K. Chen et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Hodjat Hajian, Amir Ghobadi, Bayram Butun, and Ekmel Ozbay
Journal of the Optical Society of America B, 2019, Volume 36, Number 8, Page F131
Shengtao Yin, Wei Ji, Dong Xiao, Yu Li, Ke Li, Zhen Yin, Shouzhen Jiang, Liyang Shao, Dan Luo, and Yan Jun Liu
Optics Communications, 2019, Volume 448, Page 10
Zhangbo Li, Zhiliang Zhang, and Kai Chen
Micromachines, 2019, Volume 10, Number 4, Page 241
Dong Xiao, Yan Jun Liu, Shengtao Yin, Jianxun Liu, Wei Ji, Bing Wang, Dan Luo, Guixin Li, and Xiao Wei Sun
Optics Express, 2018, Volume 26, Number 19, Page 25305
Shengtao Yin, Yan Jun Liu, Dong Xiao, Huilin He, Dan Luo, Shouzhen Jiang, Haitao Dai, Wei Ji, and Xiao Wei Sun
Journal of Physics D: Applied Physics, 2018, Volume 51, Number 23, Page 235101
Antti J. Moilanen, Tommi K. Hakala, and Päivi Törmä
ACS Photonics, 2017
Nina Jiang, Xiaolu Zhuo, and Jianfang Wang
Chemical Reviews, 2017
Yin Huang, Yuecheng Shen, Changjun Min, Shanhui Fan, and Georgios Veronis
Nanophotonics, 2017, Volume 6, Number 5
Kai Chen, Peijun Guo, Thang Duy Dao, Shi-Qiang Li, Satoshi Ishiii, Tadaaki Nagao, and Robert P. H. Chang
Advanced Optical Materials, 2017, Page 1700091
Jean-Christophe Lacroix, Pascal Martin, and Pierre-Camille Lacaze
Annual Review of Analytical Chemistry, 2017, Volume 10, Number 1, Page 201
Oleksiy Guselnikova, Pavel Postnikov, Roman Elashnikov, Marina Trusova, Yevgeniya Kalachyova, Milan Libansky, Jiri Barek, Zdenka Kolska, Vaclav Švorčík, and Oleksiy Lyutakov
Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, Volume 516, Page 274
Litao Hu, Yan Jun Liu, Shicai Xu, Zhe Li, Jia Guo, Saisai Gao, Zhengyi Lu, Haipeng Si, Shouzhen Jiang, and Shuyun Wang
Chemical Physics Letters, 2017, Volume 667, Page 351
Ju-Won Jeon, Jing Zhou, Jeffrey A. Geldmeier, James F. Ponder, Mahmoud A. Mahmoud, Mostafa El-Sayed, John R. Reynolds, and Vladimir V. Tsukruk
Chemistry of Materials, 2016, Volume 28, Number 20, Page 7551
Yu-Cheng Hsiao, Chen-Wei Su, Zong-Han Yang, Yevheniia I. Cheypesh, Jhen-Hong Yang, Victor Yu. Reshetnyak, Kuo-Ping Chen, and Wei Lee
RSC Adv., 2016, Volume 6, Number 87, Page 84500
Kai Chen, Gary Razinskas, Thorsten Feichtner, Swen Grossmann, Silke Christiansen, and Bert Hecht
Nano Letters, 2016, Volume 16, Number 4, Page 2680
Nityanand Sharma, Hamid Keshmiri, Xiaodong Zhou, Ten It Wong, Christian Petri, Ulrich Jonas, Bo Liedberg, and Jakub Dostalek
The Journal of Physical Chemistry C, 2016, Volume 120, Number 1, Page 561
Linhan Lin and Yuebing Zheng
Scientific Reports, 2015, Volume 5, Page 14788

Comments (0)

Please log in or register to comment.
Log in