Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Editor-in-Chief: Sorger, Volker

IMPACT FACTOR 2018: 6.908
5-year IMPACT FACTOR: 7.147

CiteScore 2018: 6.72

In co-publication with Science Wise Publishing

Open Access
See all formats and pricing
More options …
Volume 4, Issue 3


Coupling between plasmonic films and nanostructures: from basics to applications

Thomas Maurer
  • Corresponding author
  • Laboratory of Nanotechnology and Optical Instrumentation, UMR 6281 STMR, Technological University of Troyes, 12 Rue Marie Curie, CS 42060, 10004 Troyes Cedex – France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Pierre-Michel Adam
  • Laboratory of Nanotechnology and Optical Instrumentation, UMR 6281 STMR, Technological University of Troyes, 12 Rue Marie Curie, CS 42060, 10004 Troyes Cedex – France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gaëtan Lévêque
  • Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN, CNRS-8520), Cité Scientifique, Avenue Poincaré, 59652 Villeneuve d’Ascq, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-11-06 | DOI: https://doi.org/10.1515/nanoph-2014-0015


Plasmonic film-nanoparticles coupled systems have had a renewed interest for the past 5 years both for the richness of the provided plasmonic modes and for their high technological potential. Many groups started to investigate the optical properties of film-nanoparticles coupled systems, as to whether the spacer layer thickness is tens of nanometers thick or goes down to a few nanometers or angstroms, even reaching contact. This article reviews the recent breakthroughs in the physical understanding of such coupled systems and the different systems where nanoparticles on top of the spacer layer are either isolated/random or form regular arrays. The potential for applications, especially as perfect absorbers or transmitters is also put into evidence.

Keywords : surface plasmon polaritons; localized surface plasmons; plasmonic coupling; metallic film; absorbers; gap modes


  • [1] Barnes WL, Dereux A, Ebbesen TW. Surface plasmon subwavelength optics. Nature 2003;424:824-30.CrossrefGoogle Scholar

  • [2] Bergman DJ, Stockman MI. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Phys Rev Lett 2003;90:027402.CrossrefGoogle Scholar

  • [3] Szunerits S, Boukherroub R. Sensing using localised surface plasmon resonance sensors. Chem Commun (Camb). 2012;48:8999-9010.CrossrefGoogle Scholar

  • [4] Huang X, Jain PK, El-Sayed IH, El-Sayed MA. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Laser Med Sci 2008;23:217-28.CrossrefGoogle Scholar

  • [5] Hayashi S, Okamoto T. Plasmonics: visit the past to know the future. J Phys D: Appl Phys 2012;45:433001.CrossrefGoogle Scholar

  • [6] Liu Y, Zhang X. Metamaterials: a new frontier of science and technology. Chem Soc Rev. 2011;40:2494-507.CrossrefGoogle Scholar

  • [7] Bohren CF, Huffman DR. Absorption and scattering of light by small particles. (Wiley science paperback series), vol. 16. 1998:544.Google Scholar

  • [8] Martin OJF. “Plasmon Resonances in Nanowires with a Nonregular Cross-Section,” in Optical Nanotechnologies The Manipulation of Surface and Local Plasmons, vol. 210, 2003, pp. 183-210.Google Scholar

  • [9] Novotny L, van Hulst N. Antennas for light. Nat Photon 2011;5:83-90.CrossrefGoogle Scholar

  • [10] Bohren CF, Huffman DR. Absorption and scattering of light by small particles. Weinheim, Germany: Wiley-VCH Verlag GmbH, 1998.Google Scholar

  • [11] Fuchs R. Theory of the optical properties of ionic crystal cubes. Phys Rev B 1975;11:1732-40.CrossrefGoogle Scholar

  • [12] Zhang S, Bao K, Halas NJ, Xu H, Nordlander P. Substrateinduced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. Nano Lett 2011;11:1657-3.CrossrefGoogle Scholar

  • [13] Schmidt F-P, Ditlbacher H, Hohenester U, Hohenau A, Hofer F, Krenn JR. Dark plasmonic breathing modes in silver nanodisks. Nano Lett 2012;12:5780-3.CrossrefGoogle Scholar

  • [14] Luk’yanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H, Chong CT. The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 2010;9:707-15.CrossrefGoogle Scholar

  • [15] Lovera A, Gallinet B, Nordlander P, Martin OJF. Mechanisms of Fano resonances in coupled plasmonic systems. ACS Nano 2013;7:4527-36.CrossrefGoogle Scholar

  • [16] Verellen N, Van Dorpe P, Huang C, Lodewijks K, Vandenbosch GAE, Lagae L, Moshchalkov VV. Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing. Nano Lett 2011;11:391-7.CrossrefGoogle Scholar

  • [17] Nylander C, Liedberg B, Lind T. Gas detection by means of surface plasmon resonance. Sensor Actuator 1982;3:79-88.CrossrefGoogle Scholar

  • [18] Baudrion A-L, de Léon-Pérez F, Mahboub O, Hohenau A, Ditlbacher H, García-Vidal FJ, Dintinger J, Ebbesen TW, Martin- Moreno L, Krenn JR. Coupling efficiency of light to surface plasmon polariton for single subwavelength holes in a gold film. Opt Express 2008;16:3420-9.CrossrefGoogle Scholar

  • [19] Lopez-Tejeira F, Rodrigo SG, Martin-Moreno L, Garcia-Vidal FJ, Devaux E, Dintinger J, Ebbesen TW, Krenn JR, Radko IP, Bozhevolnyi SI, Gonzalez MU, Weeber JC, Dereux A. Modulation of surface plasmon coupling-in by one-dimensional surface corrugation. 2007;033035:20.Google Scholar

  • [20] Ropers C, Neacsu CC, Elsaesser T, Albrechty M, Raschke MB, Lienau C. Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source. Nano Lett 2007;7:2784-8.CrossrefGoogle Scholar

  • [21] Lamy J-M, Justice J, Lévêque G, Corbett B. Monolithic excitation and manipulation of surface plasmon polaritons on a vertical cavity surface emitting laser Appl Phys A 2011;103:665-7.CrossrefGoogle Scholar

  • [22] Lalanne P, Hugonin JP. Interaction between optical nano-objects at metallo-dielectric interfaces. 2006;Nat Phys 2:551-6.CrossrefGoogle Scholar

  • [23] Berini P. Long-range surface plasmon polaritons. Adv Opt Photonics 2009;1:484.CrossrefGoogle Scholar

  • [24] Krupin O, Asiri H, Wang C, Tait RN, Berini P. Biosensing using straight long-range surface plasmon waveguides. Opt Express 2013;21:698-709.CrossrefGoogle Scholar

  • [25] Farhang A, Martin OJF. Plasmon delocalization onset in finite sized nanostructures. Opt Express 2011;19:11387-96.CrossrefGoogle Scholar

  • [26] Holland WR, Hall DG. Surface-plasmon dispersion relation: Shifts induced by the interaction with localized plasma resonances. Phys Rev B 1983;27:7765-8.CrossrefGoogle Scholar

  • [27] Kume T, Hayashi S, Yamamoto K. Light emission from surface plasmon polaritons mediated by metallic fine particles. Phys Rev B 1997;55:4774-82.CrossrefGoogle Scholar

  • [28] Holland WR, Hall DG. Frequency shifts of an electric- dipole resonance near a conducting surface. Phys Rev Lett 1984;52:1041-4.CrossrefGoogle Scholar

  • [29] Stuart H, Hall D. Enhanced dipole-dipole interaction between elementary radiators near a surface. Phys Rev Lett 1998;80:5663-6.CrossrefGoogle Scholar

  • [30] Félidj N, Aubard J, Lévi G, Krenn JR, Schider G, Leitner A, Aussenegg FR. Enhanced substrate-induced coupling in two-dimensional gold nanoparticle arrays. Phys Rev B 2002;66:245407.CrossrefGoogle Scholar

  • [31] Hohenau A, Krenn JR. Plasmonic modes of gold nano-particle arrays on thin gold films. Phys Status Solidi - Rapid Res Lett 2010;4:256-8.CrossrefGoogle Scholar

  • [32] Linden S, Kuhl J, Giessen H. Controlling the interaction between light and gold nanoparticles: selective suppression of extinction. Phys Rev Lett 2001;86:4688-91.CrossrefGoogle Scholar

  • [33] Cesario J, Quidant R, Badenes G, Enoch S. Electromagnetic coupling between a metal nanoparticle grating and a metallic surface. Opt Lett 2005;30:3404-6.CrossrefGoogle Scholar

  • [34] Farhang A, Siegfried T, Ekinci Y, Sigg H, Martin OJF. Large-scale sub-100 nm compound plasmonic grating arrays to control the interaction between localized and propagating plasmons. J Nanophotonics 2014;8:083897.CrossrefGoogle Scholar

  • [35] Lassiter JB, McGuire F, Mock JJ, Ciracì C, Hill RT, Wiley BJ, Chilkoti A, Smith DR. Plasmonic waveguide modes of filmcoupled metallic nanocubes. Nano Lett 2013;13:5866-72.CrossrefGoogle Scholar

  • [36] Yamamoto N, Ohtani S, Garcia De Abajo FJ. Gap and mie plasmons in individual silver nanospheres near a silver surface. Nano Lett 2011;11:91-5.CrossrefGoogle Scholar

  • [37] Lei DY, Fernández-Domínguez AI, Sonnefraud Y, Appavoo K, Haglund RF, Pendry JB, Maier SA. Revealing plasmonic gap modes in particle-on-film systems using dark-field spectroscopy. ACS Nano 2012;6:1380-6.CrossrefGoogle Scholar

  • [38] Mock JJ, Hill RT, Degiron A, Zauscher S, Chilkoti A, Smith DR. Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film. Nano Lett 2008;8:2245-52.CrossrefGoogle Scholar

  • [39] Hill RT, Mock JJ, Hucknall A, Wolter SD, Jokerst NM, Smith DR, Chilkoti A. Plasmon ruler with angstrom length resolution. ACS Nano 2012;6:9237-46.CrossrefGoogle Scholar

  • [40] Mock JJ, Hill RT, Tsai Y-J, Chilkoti A, Smith DR. Probing dynamically tunable localized surface plasmon resonances of filmcoupled nanoparticles by evanescent wave excitation. Nano Lett 2012;12:1757-64.CrossrefGoogle Scholar

  • [41] Lévêque G, Martin OJF. Optical interactions in a plasmonic particle coupled to a metallic film. Opt Express 2006;14:9971-81.CrossrefGoogle Scholar

  • [42] Mortensen NA, Raza S, Wubs M, Søndergaard T, Bozhevolnyi SI. A generalized non-local optical response theory for plasmonic nanostructures. Nat Commun 2014;5:3809.CrossrefGoogle Scholar

  • [43] Ciracì C, Hill RT, Mock JJ, Urzhumov Y, Fernández-Domínguez AI, Maier SA, Pendry JB, Chilkoti A, Smith DR. Probing the ultimate limits of plasmonic enhancement. Science 2012;337:1072-4.CrossrefGoogle Scholar

  • [44] Hao J, Wang J, Liu X, Padilla WJ, Zhou L, Qiu M. High performance optical absorber based on a plasmonic metamaterial. Appl Phys Lett 2010;96:251104-251104-3.CrossrefGoogle Scholar

  • [45] Wu C, Neuner B, Shvets G, John J, Milder A, Zollars B, Savoy S. Large-area wide-angle spectrally selective plasmonic absorber. Phys Rev B 2011; 84:075102.CrossrefGoogle Scholar

  • [46] Moreau A, Ciracì C, Mock JJ, Hill RT, Wang Q, Wiley BJ, Chilkoti A, Smith DR, Ciraci C. Controlled-reflectance surfaces with film-coupled colloidal nanoantennas. Nature 2012;492:86-9.CrossrefGoogle Scholar

  • [47] Shalaev VM. Optical negative-index metamaterials. Nat Photonics 2007;1:41-8.CrossrefGoogle Scholar

  • [48] Nielsen MG, Pors A, Albrektsen O, Bozhevolnyi SI. Efficient absorption of visible radiation by gap plasmon resonators. Opt Express 2012;20:13311.CrossrefGoogle Scholar

  • [49] Hedayati MK, Javaherirahim M, Mozooni B, Abdelaziz R, Tavassolizadeh A, Chakravadhanula VSK, Zaporojtchenko V, Strunkus T, Faupel F, Elbahri M. Design of a perfect black absorber at visible frequencies using plasmonic metamaterials. Adv Mater 2011;23:5410-4.CrossrefGoogle Scholar

  • [50] Yan M, Dai J, Qiu M. Lithography-free broadband visible light absorber based on a mono-layer of gold nanoparticles. J Opt 2014;16:25002.CrossrefGoogle Scholar

  • [51] Liu G-Q, Liu Z-Q, Huang K, Chen Y-H, Cai Z-J, Zhang X-N, Hu Y. Narrowband light total antireflection and absorption in metal film-array structures by plasmonic near-field coupling. Plasmonics 2014;9:17-25.CrossrefGoogle Scholar

  • [52] Tan H, Santbergen R, Smets AHM, Zeman M. Plasmonic light trapping in thin-film silicon solar cells with improved selfassembled silver nanoparticles. Nano Lett. 2012;12:4070-6.CrossrefGoogle Scholar

  • [53] Elbahri M, Hedayati MK, Kiran Chakravadhanula VS, Jamali M, Strunkus T, Zaporojtchenko V, Faupel F. An omnidirectional transparent conducting-metal-based plasmonic nanocomposite. Adv Mater 2011;23:1993-7.CrossrefGoogle Scholar

  • [54] Liu Z, Liu G, Zhou H, Liu X, Huang K, Chen Y, Fu G. Near-unity transparency of a continuous metal film via cooperative effects of double plasmonic arrays. Nanotechnology 2013;24:155203.CrossrefGoogle Scholar

  • [55] Liu GQ, Hu Y, Liu ZQ, Cai ZJ, Zhang XN, Chen YH, Huang K. Multispectral optical enhanced transmission of a continuous metal film coated with a plasmonic core-shell nanoparticle array. Opt Commun 2014;316:111-9.CrossrefGoogle Scholar

  • [56] Cui L, Song G, Lang P, Wu C, Liu H, Yu L, Xiao J. Optical interaction in a plasmonic metallic particle chain coupled to a metallic film. Optik (Stuttg) 2013;124:6936-8.CrossrefGoogle Scholar

  • [57] Orendorff CJ, Gole A, Sau TK, Murphy CJ. Surface-enhanced raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence. Anal Chem 2005;77:3261-6.CrossrefGoogle Scholar

  • [58] Daniels JK, Chumanov G. Nanoparticle-mirror sandwich substrates for surface-enhanced Raman scattering. J Phys Chem B 2005;109:17936-42. CrossrefGoogle Scholar

  • [59] Mubeen S, Zhang S, Kim N, Lee S, Krämer S, Xu H, Moskovits M. Plasmonic properties of gold nanoparticles separated from a gold mirror by an ultrathin oxide. Nano Lett 2012;12:2088-94.CrossrefGoogle Scholar

  • [60] Wang X, Li M, Meng L, Lin K, Feng J, Huang T, Yang Z, Ren B. Probing the location of hot spots by surface-enhanced Raman spectroscopy: toward uniform substrates. ACS Nano 2014;8:528-36.CrossrefGoogle Scholar

  • [61] Maurer T, Nicolas R, Leveque G, Subramanian P, Proust J, Béal J, Schuermans S, Vilcot JP, Herro Z, Kazan M, Plain J, Boukherroub R, Akjouj A, Djafari-Rouhani B, Adam PM, Szunerits S. Enhancing LSPR sensitivity of Au gratings through graphene coupling to Au film. Plasmonics 2013;9:507-12.CrossrefGoogle Scholar

  • [62] Nicolas R, Maurer T, Lévêque G, Subramanian P, Proust J, Béal J, Schuermans S, Vilcot J-P, Herro Z, Kazan M, Plain J, Boukherroub R, Akjouj A, Djafari-Rouhani B, Adam P-M, Szunerits S. Enhanced gold film-coupled graphene-based plasmonic nanosensor. Proceeding SPIE, Plasmon Met Nanostructures Their Opt Prop XI 2013;8809:88090R.Google Scholar

  • [63] Zalyubovskiy SJ, Bogdanova M, Deinega A, Lozovik Y, Pris AD, An KH, Hall WP, Potyrailo RA. Theoretical limit of localized surface plasmon resonance sensitivity to local refractive index change and its comparison to conventional surface plasmon resonance sensor. J Opt Soc Am A 2012;29:994-1002.CrossrefGoogle Scholar

  • [64] Lodewijks K, Van Roy W, Borghs G, Lagae L, Van Dorpe P. Boosting the figure-of-merit of LSPR-based refractive index sensing by phase-sensitive measurements. Nano Lett 2012;12:1655-9. CrossrefGoogle Scholar

About the article

Received: 2014-07-25

Accepted: 2015-01-19

Published Online: 2015-11-06

Citation Information: Nanophotonics, Volume 4, Issue 3, Pages 363–382, ISSN (Online) 2192-8614, ISSN (Print) 2192-8606, DOI: https://doi.org/10.1515/nanoph-2014-0015.

Export Citation

© 2015. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Christian Stelling, Stefan Fossati, Jakub Dostalek, and Markus Retsch
Nanoscale, 2018
Herve Bertin, Yoann Brûlé, Giovanni Magno, Thomas Lopez, Philippe Gogol, Laetitia Pradere, Boris Gralak, David Barat, Guillaume Demésy, and Beatrice Dagens
ACS Photonics, 2018
Xiaomeng Jia, Patrick Bowen, Zhiqin Huang, Xiaojun Liu, Christopher Bingham, and David R. Smith
Optics Express, 2018, Volume 26, Number 3, Page 3004
Adarsh B. Vasista, Harshvardhan Jog, Tal Heilpern, Matthew E. Sykes, Sunny Tiwari, Deepak K. Sharma, Shailendra K. Chaubey, Gary P. Wiederrecht, Stephen K. Gray, and G. V. Pavan Kumar
Nano Letters, 2017
Samuel S. Hinman, Kristy S. McKeating, and Quan Cheng
Analytical Chemistry, 2017
Chao Wei, Chenjie Zhang, Jing Zhang, Minmin Xu, Yaxian Yuan, and Jianlin Yao
RSC Adv., 2017, Volume 7, Number 77, Page 48544
Zdeněk Farka, Tomáš Juřík, David Kovář, Libuše Trnková, and Petr Skládal
Chemical Reviews, 2017, Volume 117, Number 15, Page 9973
Youjun Zeng, Rui Hu, Lei Wang, Dayong Gu, Jianan He, Shu-Yuen Wu, Ho-Pui Ho, Xuejin Li, Junle Qu, Bruce Zhi Gao, and Yonghong Shao
Nanophotonics, 2017, Volume 6, Number 5
Zhengqi Liu, Houjiao Zhang, Xiaoshan Liu, Pingping Pan, Yi Liu, Li Tang, and Guiqiang Liu
Nanotechnology, 2017, Volume 28, Number 23, Page 235202
Nabil Mahi, Gaëtan Lévêque, Ophélie Saison, Joseph Marae-Djouda, Roberto Caputo, Arthur Gontier, Thomas Maurer, Pierre-Michel Adam, Benemar Bouhafs, and Abdellatif Akjouj
The Journal of Physical Chemistry C, 2017, Volume 121, Number 4, Page 2388
Quang Cong Tong, Mai Hoang Luong, Thi Mo Tran, Jacqueline Remmel, Minh Thanh Do, Duy Manh Kieu, Rasta Ghasemi, Duc Tho Nguyen, and Ngoc Diep Lai
Journal of Electronic Materials, 2017, Volume 46, Number 6, Page 3695
Khai Q. Le, Quang Minh Ngo, and Truong Khang Nguyen
IEEE Journal of Selected Topics in Quantum Electronics, 2017, Volume 23, Number 2, Page 388
Michel Pellarin, Julien Ramade, Jan Michael Rye, Christophe Bonnet, Michel Broyer, Marie-Ange Lebeault, Jean Lermé, Sylvie Marguet, Julien R.G. Navarro, and Emmanuel Cottancin
ACS Nano, 2016, Volume 10, Number 12, Page 11266
Chih-Tsung Yang, Lin Wu, Xiaohu Liu, Nhung Thi Tran, Ping Bai, Bo Liedberg, Yi Wang, and Benjamin Thierry
Analytical Chemistry, 2016, Volume 88, Number 23, Page 11924
Abdelali Mrabti, Gaëtan Lévêque, Abdellatif Akjouj, Yan Pennec, Bahram Djafari-Rouhani, Rana Nicolas, Thomas Maurer, and Pierre-Michel Adam
Physical Review B, 2016, Volume 94, Number 7
Martin Mayer, Moritz Tebbe, Christian Kuttner, Max J. Schnepf, Tobias A. F. König, and Andreas Fery
Faraday Discuss., 2016, Volume 191, Page 159
Robert W. Johns, Hans A. Bechtel, Evan L. Runnerstrom, Ankit Agrawal, Sebastien D. Lounis, and Delia J. Milliron
Nature Communications, 2016, Volume 7, Page 11583

Comments (0)

Please log in or register to comment.
Log in