Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Editor-in-Chief: Sorger, Volker

12 Issues per year

IMPACT FACTOR 2016: 4.492
5-year IMPACT FACTOR: 5.723

CiteScore 2016: 4.75
CiteScoreTracker 2017: 5.83

In co-publication with Science Wise Publishing

Open Access
See all formats and pricing
More options …
Volume 4, Issue 3

Propagation and survival of frequency-bin entangled photons in metallic nanostructures

Laurent Olislager / Wakana Kubo / Takuo Tanaka / Simona Ungureanu / Renaud A. L. Vallée / Branko Kolaric
  • Corresponding author
  • Laboratoire Interfaces and Fluides Complexes, Centre d’Innovation et de Recherche Laboratoire Interfaces and Fluides Complexes, Centre d’Innovation et de Recherche en Materiaux Polymeres, University of Mons, 20 Place du Parc, B-7000 Mons, Belgium
  • Research Center in Physics of Matter and Radiation (PMR), Department of Physics, University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Philippe Emplit
  • OPERA–Photonique, CP 194/5, Université libre de Bruxelles, av. F.D. Roosevelt 50, Brussels B-1050, Belgium
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Serge Massar
  • Laboratoire d’Information Quantique, CP 225, Université libre de Bruxelles, av. F.D. Roosevelt 50, Brussels B-1050, Belgium
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-10-06 | DOI: https://doi.org/10.1515/nanoph-2015-0011


We report on the design of two plasmonic nanostructures and the propagation of frequency-bin entangled photons through them. The experimental findings clearly show the robustness of frequency-bin entanglement, which survives after interactions with both a hybrid plasmo-photonic structure, and a nano-pillar array. These results confirm that quantum states can be encoded into the collective motion of a many-body electronic system without demolishing their quantum nature, and pave the way towards applications of plasmonic structures in quantum information.


  • [1] Zubin Jacob and Vladimir Shalaev. Plasmonics goes quantum. 2011.Google Scholar

  • [2] Zubin Jacob. Quantum plasmonics. Mrs Bull., 37(08):761-767, 2012.Web of ScienceCrossrefGoogle Scholar

  • [3] M S Tame, K R McEnery, S K Özdemir, J Lee, S A Maier, and M S Kim. Quantum plasmonics. Nat. Phys., 9(6):329-340, 2013.Web of ScienceCrossrefGoogle Scholar

  • [4] Michael A Nielsen and Isaac L Chuang. Quantum computation and quantum information. Cambridge university press, 2010.Google Scholar

  • [5] Igor Aharonovich, Andrew D Greentree, and Steven Prawer. Diamond photonics. Nat. Photonics, 5(7):397-405, 2011.Web of ScienceCrossrefGoogle Scholar

  • [6] Alexander Huck, Shailesh Kumar, Abdul Shakoor, and Ulrik L Andersen. Controlled coupling of a single nitrogen-vacancy center to a silver nanowire. Phys. Rev. Lett., 106(9):96801, 2011.Web of ScienceCrossrefGoogle Scholar

  • [7] H F Schouten, N Kuzmin, G Dubois, T D Visser, G Gbur, P F A Alkemade, H Blok, D Lenstra, E R Eliel, and Others. Plasmon-assisted two-slit transmission: Young’s experiment revisited. Phys. Rev. Lett., 94(5):53901, 2005.CrossrefGoogle Scholar

  • [8] Sylvain Fasel, Matthäus Halder, Nicolas Gisin, and Hugo Zbinden. Quantum superposition and entanglement of mesoscopic plasmons. New J. Phys., 8(1):13, 2006.Google Scholar

  • [9] A V Akimov, AMukherjee, C L Yu, D E Chang, A S Zibrov, P R Hemmer, H Park, and M D Lukin. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature, 450(7168):402-406, 2007.Web of ScienceGoogle Scholar

  • [10] Roman Kolesov, Bernhard Grotz, Gopalakrishnan Balasubramanian, Rainer J Stöhr, Aurélien A L Nicolet, Philip R Hemmer, Fedor Jelezko, and JörgWrachtrup. Wave-particle duality of single surface plasmon polaritons. Nat. Phys., 5(7):470-474, 2009.CrossrefGoogle Scholar

  • [11] Giuliana Di Martino, Yannick Sonnefraud, Stéphane Kéna- Cohen, Mark Tame, Sahin K Özdemir, M S Kim, and Stefan A Maier. Quantum statistics of surface plasmon polaritons in metallic stripe waveguides. Nano Lett., 12(5):2504-2508, 2012.Web of ScienceCrossrefGoogle Scholar

  • [12] Yong-Jing Cai, Ming Li, Xi-Feng Ren, Chang-Ling Zou, Xiao Xiong, Hua-Lin Lei, Bi-Heng Liu, Guo-Ping Guo, and Guang-Can Guo. High visibility on-chip quantum interference of single surface plasmons. arXiv Prepr. arXiv1402.0955, 2014.Google Scholar

  • [13] Alexander Huck, Stephan Smolka, Peter Lodahl, Anders S Sø rensen, Alexandra Boltasseva, Jiri Janousek, and Ulrik L Andersen. Demonstration of quadrature-squeezed surface plasmons in a gold waveguide. Phys. Rev. Lett., 102(24):246802, 2009.Web of ScienceCrossrefGoogle Scholar

  • [14] A Gonzalez-Tudela, Diego Martin-Cano, Esteban Moreno, Luis Martin-Moreno, C Tejedor, and Francisco J Garcia-Vidal. Entanglement of two qubits mediated by one-dimensional plasmonic waveguides. Phys. Rev. Lett., 106(2):20501, 2011.Web of ScienceCrossrefGoogle Scholar

  • [15] ReinierWHeeres, Leo P Kouwenhoven, and Valery Zwiller. Quantum interference in plasmonic circuits. Nat. Nanotechnol., 8(10):719-722, 2013.CrossrefWeb of ScienceGoogle Scholar

  • [16] S Dutta Gupta and G S Agarwal. Two-photon quantum interference in plasmonics: theory and applications. Opt. Lett., 39(2):390-393, 2014.Web of ScienceCrossrefGoogle Scholar

  • [17] James S Fakonas, Hyunseok Lee, Yousif A Kelaita, and Harry A Atwater. Two-plasmon quantum interference. Nat. Photonics, 8(4):317-320, 2014.CrossrefWeb of ScienceGoogle Scholar

  • [18] Michael Steel. Quantum plasmonics: Two-plasmon interference. Nat. Photonics, 8(4):273-275, 2014.CrossrefWeb of ScienceGoogle Scholar

  • [19] G Di Martino, Y Sonnefraud, M S Tame, S Kéna-Cohen, F Dieleman, ∖cSK Özdemir, M S Kim, and S A Maier. Observation of quantum interference in the plasmonic Hong-Ou-Mandel effect. Phys. Rev. Appl., 1(3):34004, 2014.CrossrefWeb of ScienceGoogle Scholar

  • [20] Thomas W Ebbesen, H J Lezec, H F Ghaemi, Tineke Thio, and P A Wolff. Extraordinary optical transmission through subwavelength hole arrays. Nature, 391(6668):667-669, 1998.Google Scholar

  • [21] L Martin-Moreno, F J Garcia-Vidal, H J Lezec, K M Pellerin, T Thio, J B Pendry, and T W Ebbesen. Theory of extraordinary optical transmission through subwavelength hole arrays. Phys. Rev. Lett., 86(6):1114, 2001.CrossrefGoogle Scholar

  • [22] E Altewischer, M P Van Exter, and J P Woerdman. Plasmonassisted transmission of entangled photons. Nature, 418(6895):304-306, 2002.Google Scholar

  • [23] Esteban Moreno, F J Garcia-Vidal, Daniel Erni, J Ignacio Cirac, and LMartín-Moreno. Theory of plasmon-assisted transmission of entangled photons. Phys. Rev. Lett., 92(23):236801, 2004.CrossrefGoogle Scholar

  • [24] Sylvain Fasel, Franck Robin, Esteban Moreno, Daniel Erni, Nicolas Gisin, and Hugo Zbinden. Energy-time entanglement preservation in plasmon-assisted light transmission. Phys. Rev. Lett., 94(11):110501, 2005.CrossrefGoogle Scholar

  • [25] Xi-Feng Ren, Guo-Ping Guo, Yun-Feng Huang, Chuan-Feng Li, and Guang-Can Guo. Plasmon-assisted transmission of highdimensional orbital angular-momentum entangled state. EPL (Europhysics Lett., 76(5):753, 2006.CrossrefGoogle Scholar

  • [26] L. Olislager, J. Cussey, A. T. Nguyen, P. Emplit, S. Massar, J.-M. Merolla, and K. Phan Huy. Frequency-bin entangled photons. Phys. Rev. A, 82(1):013804, July 2010.Web of ScienceCrossrefGoogle Scholar

  • [27] Laurent Olislager, Ismaël Mbodji, Erik Woodhead, Johann Cussey, Luca Furfaro, Philippe Emplit, Serge Massar, Kien Phan Huy, and Jean-Marc Merolla. Implementing two-photon interference in the frequency domain with electro-optic phase modulators. New J. Phys., 14(4):43015, 2012.Google Scholar

  • [28] Laurent Olislager, Erik Woodhead, Kien Phan Huy, Jean-Marc Merolla, Philippe Emplit, and Serge Massar. Creating and manipulating entangled optical qubits in the frequency domain. Phys. Rev. A, 89(5):52323, 2014.CrossrefWeb of ScienceGoogle Scholar

  • [29] Simona Ungureanu, Branko Kolaric, Jianing Chen, Rainer Hillenbrand, and Renaud A L Vallée. Far-field disentanglement of modes in hybrid plasmonic-photonic crystals by fluorescence nano-reporters. Nanophotonics, 2(3):173-185, 2013. Web of ScienceGoogle Scholar

  • [30] Pierre Fauché, Simona Ungureanu, Branko Kolaric, and Renaud A L Vallée. Emitters as probes of a complex plasmo-photonics mode. J. Mater. Chem. C, 2014.Google Scholar

  • [31] Shigenori Fujikawa, Rie Takaki, and Toyoki Kunitake. Fabrication of arrays of sub-20-nm silicawalls via photolithography and solution-based molecular coating. Langmuir, 22(21):9057-61, October 2006.CrossrefGoogle Scholar

  • [32] Wakana Kubo and Shigenori Fujikawa. Embedding of a gold nanofin array in a polymer film to create transparent, flexible and anisotropic electrodes. J. Mater. Chem., 19(15):2154, March 2009.CrossrefGoogle Scholar

  • [33] Wakana Kubo and Shigenori Fujikawa. Au double nanopillars with nanogap for plasmonic sensor. Nano Lett., 11(1):8-15, January 2011.CrossrefGoogle Scholar

  • [34] A. Taflove, A. Oskooi, and S. G. Johnson, editors. Advances in FDTD Computational Electrodynamics: Photonics and Nanotechnology. Artech House, Inc.„ 2013.Google Scholar

  • [35] A D Rakic, A B Djurišic, J M Elazar, and M L Majewski. Optical Properties of Metallic Films for Vertical-Cavity Optoelectronic Devices. Appl. Opt., 37(22):5271-5283, August 1998. CrossrefGoogle Scholar

About the article

Received: 2006-02-01

Accepted: 2015-05-02

Published Online: 2015-10-06

Published in Print: 2015-01-01

Citation Information: Nanophotonics, Volume 4, Issue 3, Pages 324–331, ISSN (Online) 2192-8614, ISSN (Print) 2192-8606, DOI: https://doi.org/10.1515/nanoph-2015-0011.

Export Citation

© 2015. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Hyunyoung Y. Kim and Daisik S. Kim
Nanophotonics, 2017, Volume 0, Number 0

Comments (0)

Please log in or register to comment.
Log in