Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Editor-in-Chief: Sorger, Volker

IMPACT FACTOR 2018: 6.908
5-year IMPACT FACTOR: 7.147

CiteScore 2018: 6.72

In co-publication with Science Wise Publishing

Open Access
See all formats and pricing
More options …
Volume 4, Issue 3


Limitations of Extreme Nonlinear Ultrafast Nanophotonics

Christian Kern
  • Institute of Optics and Quantum Electronics, Abbe Center of Photonics, Friedrich-Schiller-University Jena, Max-Wien- Platz 1, D-07743 Jena, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michael Zürch
  • Corresponding author
  • Institute of Optics and Quantum Electronics, Abbe Center of Photonics, Friedrich-Schiller- University Jena, Max-Wien-Platz 1, D-07743 Jena, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Christian Spielmann
  • Institute of Optics and Quantum Electronics, Abbe Center of Photonics, Friedrich-Schiller-University Jena, Max- Wien-Platz 1, D-07743 Jena, Germany
  • Helmholtzinstitut Jena, Helmholtzweg 4, D-07743 Jena, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-10-06 | DOI: https://doi.org/10.1515/nanoph-2015-0013


High-harmonic generation (HHG) has been established as an indispensable tool in optical spectroscopy. This effect arises for instance upon illumination of a noble gas with sub-picosecond laser pulses at focussed intensities significantly greater than 1012W/cm2. HHG provides a coherent light source in the extreme ultraviolet (XUV) spectral region, which is of importance in inner shell photo ionization of many atoms and molecules. Additionally, it intrinsically features light fields with unique temporal properties. Even in its simplest realization, XUV bursts of sub-femtosecond pulse lengths are released. More sophisticated schemes open the path to attosecond physics by offering single pulses of less than 100 attoseconds duration.

Resonant optical antennas are important tools for coupling and enhancing electromagnetic fields on scales below their free-space wavelength. In a special application, placing field-enhancing plasmonic nano antennas at the interaction site of an HHG experiment has been claimed to boost local laser field strengths, from insufficient initial intensities to sufficient values. This was achieved with the use of arrays of bow-tie-shaped antennas of ∼ 100nm in length. However, the feasibility of this concept depends on the vulnerability of these nano-antennas to the still intense driving laser light.We show, by looking at a set of exemplary metallic structures, that the threshold fluence Fth of laser-induced damage (LID) is a greatly limiting factor for the proposed and tested schemes along these lines.We present our findings in the context of work done by other groups, giving an assessment of the feasibility and effectiveness of the proposed scheme.

Keywords : high harmonic generation; plasmonic field enhancement; ultrafast nanophontonics; damage threshold; laser-induced damage; electron beam lithography


  • [1] T. Pfeifer, C. Spielmann, and G. Gerber. Femtosecond x-ray science. Rep. Prog. Phys., 69(2):443-505, 2006.CrossrefGoogle Scholar

  • [2] T. Ditmire, E. T. Gumbrell, R. A. Smith, J. W. G. Tisch, D. D. Meyerhofer, and M. H. R. Hutchinson. Spatial Coherence Measurement of Soft X-Ray Radiation Produced by High Order Harmonic Generation. Phys. Rev. Lett., 77(23):4756-4759, 1996.CrossrefGoogle Scholar

  • [3] E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T.Attwood, R. Kienberger, F. Krausz, and U. Kleineberg. Single- Cycle Nonlinear Optics. Science, 320(5883):1614-1617, 2008.Google Scholar

  • [4] T. Popmintchev, M. C Chen, P. Arpin, M. M. Murnane, and H. C. Kapteyn. The attosecond nonlinear optics of bright coherent Xray generation. Nat Photon, 4(12):822-832, 2010.CrossrefGoogle Scholar

  • [5] H. J. Wörner, J. B. Bertrand, B. Fabre, J. Higuet, H. Ruf, A. Dubrouil, S. Patchkovskii, M. Spanner, Y. Mairesse, V. Blanchet, E. Mével, E. Constant, P. B. Corkum, and D. M. Villeneuve. Conical Intersection Dynamics in NO2 Probed by Homodyne High-Harmonic Spectroscopy. Science, 334(6053):208-212, 2011.Google Scholar

  • [6] A. N. Pfeiffer, C. Cirelli, M. Smolarski, and U. Keller. Recent attoclock measurements of strong field ionization. Attosecond spectroscopy, 414(0):84-91, 2013.Google Scholar

  • [7] P. B. Corkum and F. Krausz. Attosecond science. Nat Phys, 3(6):381-387, 2007.CrossrefGoogle Scholar

  • [8] F. Krausz and M. Y. Ivanov. Attosecond physics. Rev.Mod. Phys., 81(1):163-234, 2009.CrossrefGoogle Scholar

  • [9] G. Sansone, L. Poletto, and M. Nisoli. High-energy attosecond light sources. Nat Photon, 5(11):655-663, 2011.CrossrefGoogle Scholar

  • [10] M. Ferray, A. L’Huillier, X. F. Li, L. A. Lompré, G. Mainfray, and C.Manus. Multiple-harmonic conversion of 1064nmradiation in rare gases. Journal of Physics B: Atomic, Molecular and Optical Physics, 21(3):L31, 1988.Google Scholar

  • [11] P. B. Corkum. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett., 71(13):1994, 1993.CrossrefGoogle Scholar

  • [12] J. L. Krause, K. J. Schafer, and K. C. Kulander. High-order harmonic generation from atoms and ions in the high intensity regime. Phys. Rev. Lett., 68(24):3535-3538, 1992.CrossrefGoogle Scholar

  • [13] T. Brabec and F. Krausz. Intense few-cycle laser fields: Frontiers of nonlinear optics. Rev. Mod. Phys., 72(2):545, 2000.CrossrefGoogle Scholar

  • [14] E. Takahashi, Y. Nabekawa, T. Otsuka, M. Obara, and K. Midorikawa. Generation of highly coherent submicrojoule soft x rays by high-order harmonics. Phys. Rev. A, 66(2):021802, 2002.CrossrefGoogle Scholar

  • [15] A. D. Shiner, C. A. Trallero-Herrero, N. Kajumba, H. C Bandulet, D. Comtois, F. Légaré, M. Giguère, J.-C. Kieffer, P. B. Corkum, and D. M. Villeneuve. Wavelength Scaling of High Harmonic Generation Eflciency. Phys. Rev. Lett., 103(7):073902, 2009.CrossrefGoogle Scholar

  • [16] P. Zeitoun, P. Balcou, S. Bucourt, F. Delmotte, G. Dovillaire, D. Douillet, J. Dunn, G. Faivre, M. Fajardo, K. A. Goldberg, S. Hubert, J. R. Hunter, M. Idir, S. Jacquemot, S. Kazamias, S. Le Pape, X. Levecq, C. L. S. Lewis, R. Marmoret, P. Mercère, A.-S Morlens, P. P. Naulleau, M. F. Ravet, C. Rémond, J. J. Rocca, R. F. Smith, P. Troussel, C. Valentin, and L. Vanbostal. Recent developments in X-UV optics and X-UV diagnostics. Appl. Phys. B, 78(7-8):983-988, 2004.CrossrefGoogle Scholar

  • [17] J. Gautier, P. Zeitoun, C. Hauri, A.-S Morlens, G. Rey, C. Valentin, E. Papalarazou, J.-P Goddet, S. Sebban, F. Burgy, P. Mercère, M. Idir, G. Dovillaire, X. Levecq, S. Bucourt, M. Fajardo, H. Merdji, and J.-P Caumes. Optimization of the wave front of high order harmonics. The European Physical Journal D, 48(3):459-463, 2008.Google Scholar

  • [18] J. Lohbreier, S. Eyring, R. Spitzenpfeil, C. Kern, M. Weger, and C. Spielmann. Maximizing the brilliance of high-order harmonics in a gas jet. New J. Phys., 11(2):023016, 2009.Google Scholar

  • [19] S. Eyring, C. Kern, M. Zürch, and C. Spielmann. Improving high-order harmonic yield usingwavefront-controlled ultrashort laser pulses. Opt. Express, 20(5):5601-5606, 2012.CrossrefGoogle Scholar

  • [20] K. Nakajima. Compact X-ray sources: Towards a table-top freeelectron laser. Nat Phys, 4(2):92-93, 2008.CrossrefGoogle Scholar

  • [21] M. Altarelli, R. Brinkmann, M. Chergui, W. Decking, B. Dobson, S. Düsterer, G. Grübel,W. Graeff, H. Graafsma, J. Hajdu, J.Marangos, J. Pflüger, H. Redlin, D. Riley, I. Robinson, J. Rossbach, A. Schwarz, K. Tiedtke, T. Tschentscher, I. Vartaniants, H. Wabnitz, H. Weise, R. Wichmann, K. Witte, Wolf A., M. Wulff, and M. Yurkov. The European X-Ray Free-Electron Laser Technical design report. DESY XFEL Project Group, 2007.Google Scholar

  • [22] R. Spitzenpfeil, S. Eyring, C. Kern, C. Ott, J. Lohbreier, J. Henneberger, N. Franke, S. Jung, D.Walter, M. Weger, C.Winterfeldt, T. Pfeifer, and C. Spielmann. Enhancing the brilliance of highharmonic generation. Appl. Phys. A, 96(1):69-81, 2009.CrossrefGoogle Scholar

  • [23] M. C Chen, M. R. Gerrity, S. Backus, T. Popmintchev, X. Zhou, P. Arpin, X. Zhang, H. C. Kapteyn, and M. M. Murnane. Spatially coherent, phase matched, high-order harmonic EUV beams at 50 kHz. Opt. Express, 17(20):17376-17383, 2009.CrossrefGoogle Scholar

  • [24] S. Hädrich, J. Rothhardt, M. Krebs, F. Tavella, A. Willner, J. Limpert, and A. Tünnermann. High harmonic generation by novel fiber amplifier based sources. Opt. Express, 18(19):20242-20250, 2010.CrossrefGoogle Scholar

  • [25] M. Krebs, S. Hädrich, S. Demmler, J. Rothhardt, A. Zaïr, L. Chipperfield, J. Limpert, and A. Tünnermann. Towards isolated attosecond pulses at megahertz repetition rates. Nat Photon, 7(7):555-559, 2013.CrossrefGoogle Scholar

  • [26] A. Vernaleken, J. Weitenberg, T. Sartorius, P. Russbueldt, W. Schneider, S. L. Stebbings, M. F. Kling, P. Hommelhoff, H.- D. Hoffmann, R. Poprawe, F. Krausz, T. W. Hänsch, and T. Udem. Single-pass high-harmonic generation at 20.8 MHz repetition rate. Opt. Lett., 36(17):3428-3430, 2011.CrossrefGoogle Scholar

  • [27] R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye. Phase-Coherent Frequency Combs in the Vacuum Ultraviolet via High-Harmonic Generation inside a Femtosecond Enhancement Cavity. Phys. Rev. Lett., 94(19):193201, 2005.CrossrefGoogle Scholar

  • [28] E. Seres, J. Seres, and C. Spielmann. Extreme ultraviolet light source based on intracavity high harmonic generation in a mode locked Ti:sapphire oscillator with 9.4 MHz repetition rate. Opt. Express, 20(6):6185-6190, 2012.CrossrefGoogle Scholar

  • [29] S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim. Highharmonic generation by resonant plasmon field enhancement. Nature, 453(7196):757-760, 2008.Google Scholar

  • [30] W. L. Barnes, A. Dereux, and T. W. Ebbesen. Surface plasmon subwavelength optics. Nature, 424(6950):824-830, 2003.Google Scholar

  • [31] M. Kauranen and A. V. Zayats. Nonlinear plasmonics. Nat Photon, 6(11):737-748, 2012.CrossrefGoogle Scholar

  • [32] R. Petry, M. Schmitt, and J. Popp. Raman Spectroscopy-A Prospective Tool in the Life Sciences. Chem. Phys. Chem., 4(1):14-30, 2003.CrossrefGoogle Scholar

  • [33] G. Herink, D. R. Solli, M. Gulde, and C. Ropers. Field-driven photoemission from nanostructures quenches the quiver motion. Nature, 483(7388):190-193, 2012.Google Scholar

  • [34] M. Krüger, M. Schenk, M. Förster, and P. Hommelhoff. Attosecond physics in photoemission from a metal nanotip. Journal of Physics B: Atomic,Molecular andOptical Physics, 45(7):074006, 2012.Google Scholar

  • [35] A. Husakou, S.-J. Im, and J. Herrmann. Theory of plasmonenhanced high-order harmonic generation in the vicinity of metal nanostructures in noble gases. Phys. Rev. A, 83(4):043839, 2011.CrossrefGoogle Scholar

  • [36] M. F. Ciappina, T. Shaaran, and M. Lewenstein. High order harmonic generation in noble gases using plasmonic field enhancement. Annalen der Physik, 525(1-2):97-106, 2013.Google Scholar

  • [37] A. Husakou, F. Kelkensberg, J. Herrmann, and M. J. J. Vrakking. Polarization gating and circularly-polarized high harmonic generation using plasmonic enhancement in metal nanostructures. Opt. Express, 19(25):25346-25354, 2011.CrossrefGoogle Scholar

  • [38] N. Pfullmann. Nano-antenna-assisted high-order harmonic generation. Dissertation, GottfriedWilhelm Leibniz Universität, Hannover, 2012.Google Scholar

  • [39] M. Sivis, M. Duwe, B. Abel, and C. Ropers. Nanostructureenhanced atomic line emission. Nature, 485(7397):E1-E2, 2012.Google Scholar

  • [40] M. Sivis, M. Duwe, B. Abel, and C. Ropers. Extreme-ultraviolet light generation in plasmonic nanostructures. Nat Phys, 9(5):304-309, 2013.CrossrefGoogle Scholar

  • [41] I.-Y. Park, J. Choi, D.-H. Lee, S. Han, S. Kim, and S.-W. Kim. Generation of EUV radiation by plasmonic field enhancement using nano-structured bowties and funnel-waveguides. Annalen der Physik, 525(1-2):87-96, 2013.Google Scholar

  • [42] P. Muhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl. Resonant optical antennas. Science, 308(5728):1607-1609, 2005.Google Scholar

  • [43] L. Novotny and N. van Hulst. Antennas for light. Nat Photon, 5(2):83-90, 2011.CrossrefGoogle Scholar

  • [44] J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. van Duyne. Biosensingwith plasmonic nanosensors. NatMater, 7(6):442-453, 2008.Google Scholar

  • [45] L. Novotny and S. J. Stranick. Near-Field Optical Microscopy and Spectroscopy with Pointed Probes. Annu. Rev. Phys. Chem, 57(1):303-331, 2006.CrossrefGoogle Scholar

  • [46] S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green. Surface plasmon enhanced silicon solar cells. J. Appl. Phys., 101(9):093105, 2007.CrossrefGoogle Scholar

  • [47] M. S. Tame, K. R. McEnery, S. K. Ozdemir, J. Lee, S. A.Maier, and M. S. Kim. Quantumplasmonics. Nat Phys, 9(6):329-340, 2013.CrossrefGoogle Scholar

  • [48] J. Jahns and S. Helfert. Introduction to micro- and nanooptics. Wiley-VCH-Verl., Weinheim, 2012.Google Scholar

  • [49] J. D. Jackson. Classical electrodynamics. Wiley, 1975.Google Scholar

  • [50] L. Novotny. Effective wavelength scaling for optical antennas. Phys. Rev. Lett., 98(26), 2007.Google Scholar

  • [51] K. C. Y. Huang, Y. C. Jun, M.-K. Seo, and M. L. Brongersma. Power flowfrom a dipole emitter near an optical antenna. Opt. Express, 19(20):19084-19092, 2011.CrossrefGoogle Scholar

  • [52] E. Cubukcu, N. Yu, E. J. Smythe, L. Diehl, K. B. Crozier, and F. Capasso. Plasmonic Laser Antennas and Related Devices. IEEE Journal of Selected Topics in Quantum Electronics, 14(6):1448-1461, 2008.Google Scholar

  • [53] K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate. Optical antennas: Resonators for local field enhancement. J. Appl. Phys., 94(7):4632-4642, 2003.CrossrefGoogle Scholar

  • [54] R. Marty, G. Baffou, A. Arbouet, C. Girard, and R. Quidant. Charge distribution induced inside complex plasmonic nanoparticles. Opt. Express, 18(3):3035-3044, 2010.CrossrefGoogle Scholar

  • [55] J. Merlein. Lineare und nichtlineare Nanoplasmonik. Dissertation, Universität Konstanz, 2008.Google Scholar

  • [56] D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. S. Kino, and W. E. Moerner. Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible. Nano Lett, 4(5):957-961, 2004.CrossrefGoogle Scholar

  • [57] P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner. Improving the Mismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas. Phys. Rev. Lett., 94(1):017402, 2005.CrossrefGoogle Scholar

  • [58] H. Guo, T. P. Meyrath, T. Zentgraf, N. Liu, L. Fu, H. Schweizer, and H. Giessen. Optical resonances of bowtie slot antennas and their geometry and material dependence. Opt. Express, 16(11):7756-7766, 2008.CrossrefGoogle Scholar

  • [59] S. Park, J.W. Hahn, and J. Y. Lee. Doubly resonant metallic nanostructure for high conversion eflciency of second harmonic generation. Opt. Express, 20(5):4856-4870, 2012.CrossrefGoogle Scholar

  • [60] J. Mauritsson, P. Johnsson, E. Gustafsson, A. L’Huillier, K. J. Schafer, and M. B. Gaarde. Attosecond Pulse Trains Generated Using Two Color Laser Fields. Phys. Rev. Lett., 97(1):013001, 2006.CrossrefGoogle Scholar

  • [61] I.-Y. Park, S. Kim, J. Choi, D.-H. Lee, Y.-J. Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim. Plasmonic generation of ultrashort extreme-ultraviolet light pulses. Nat Photon, 5(11):677-681, 2011.CrossrefGoogle Scholar

  • [62] N. Pfullmann, C. Waltermann, M. Kovačev, V. Knittel, R. Bratschitsch, D. Akemeier, A. Hütten, A. Leitenstorfer, and U. Morgner. Nano-antenna-assisted harmonic generation. Appl. Phys. B, 113(1):75-79, 2013.CrossrefGoogle Scholar

  • [63] Y.-Y. Yang, A. Scrinzi, A. Husakou, Q.-G. Li, S. L. Stebbings, F. Süßmann, H.-J. Yu, S. Kim, E. Rühl, J. Herrmann, X.-C. Lin, and M. F. Kling. High-harmonic and single attosecond pulse generation using plasmonic field enhancement in ordered arrays of gold nanoparticles with chirped laser pulses. Opt. Express, 21(2):2195-2205, 2013.CrossrefGoogle Scholar

  • [64] T. Shaaran, M. F. Ciappina, and M. Lewenstein. Quantum-orbit analysis of high-order-harmonic generation by resonant plasmon field enhancement. Phys. Rev. A, 86(2):023408, 2012.CrossrefGoogle Scholar

  • [65] M. F. Ciappina, J. Biegert, R. Quidant, and M. Lewenstein. Highorder- harmonic generation from inhomogeneous fields. Phys. Rev. A, 85(3):033828, 2012.CrossrefGoogle Scholar

  • [66] B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B.W. Shore, and M. D. Perry. Nanosecond-to-femtosecond laser-induced breakdown in dielectrics. Phys. Rev. B, 53(4):1749-1761, 1996.CrossrefGoogle Scholar

  • [67] M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz. Femtosecond optical breakdown in dielectrics. Phys. Rev. Lett., 80(18):4076-4079, 1998.CrossrefGoogle Scholar

  • [68] S. I. Anisimov, B. L. Kapeliov, and T. L. Perelman. Electron- Emission From Surface of Metals Induced By Ultrashort Laser Pulses. Zh. Eksp. Teor. Fiz., 66(2):776-781, 1974.Google Scholar

  • [69] J. König, S. Nolte, and A. Tünnermann. Plasma evolution during metal ablation with ultrashort laser pulses. Opt. Express, 13(26):10597-10607, 2005.CrossrefGoogle Scholar

  • [70] D. von der Linde, K. Sokolowski-Tinten, and J. Bialkowski. Lasersolid interaction in the femtosecond time regime. Appl. Surf. Sci., 109:1-10, 1997.Google Scholar

  • [71] H. Inouye, K. Tanaka, I. Tanahashi, and K. Hirao. Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system. Phys. Rev. B, 57(18):11334-11340, 1998.CrossrefGoogle Scholar

  • [72] J. Huang, Y. Zhang, J. K. Chen, and M. Yang. Ultrafast solid-liquidvapor phase change of a thin gold film irradiated by femtosecond laser pulses and pulse trains. Front. Energy, 6(1):1-11, 2012.CrossrefGoogle Scholar

  • [73] P. B. Corkum, F. Brunel, N. K. Sherman, and T. Srinivasan-Rao. Thermal Response of Metals to Ultrashort-Pulse Laser Excitation. Phys. Rev. Lett., 61(25):2886-2889, 1988.CrossrefGoogle Scholar

  • [74] B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A, 63(2):109-115, 1996.CrossrefGoogle Scholar

  • [75] Y. Jee, M. F. Becker, and R. M. Walser. Laser-induced damage on single-crystal metal surfaces. J. Opt. Soc. Am. B, 5(3):648-659, 1988.CrossrefGoogle Scholar

  • [76] B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B.W. Shore, and M. D. Perry. Optical ablation by high-power short-pulse lasers. J. Opt. Soc. Am. B, 13(2):459-468, 1996.CrossrefGoogle Scholar

  • [77] C. Kern. ExtremeNonlinear Optics with Spatially Controlled Light Fields. Dissertation, Friedrich-Schiller-Universität, Jena, 2014.Google Scholar

  • [78] J. Güdde, J. Hohlfeld, J. G. Müller, and E. Matthias. Damage threshold dependence on electron-phonon coupling in Au and Ni films. Appl. Surf. Sci., 127-129(0):40-45, 1998.Google Scholar

  • [79] J. Bonse, J. M. Wrobel, J. Krüger, and W. Kautek. Ultrashortpulse laser ablation of indium phosphide in air. Appl. Phys. A, 72(1):89-94, 2001.CrossrefGoogle Scholar

  • [80] X. Ni, C.-Y. Wang, Li Yang, J. Li, L. Chai, W. Jia, R. Zhang, and Z. Zhang. Parametric study on femtosecond laser pulse ablation of Au films. Appl. Surf. Sci., 253(3):1616-1619, 2006.CrossrefGoogle Scholar

  • [81] J. M. Liu. Simple technique for measurements of pulsed Gaussian-beam spot sizes. Opt. Lett., 7(5):196-198, 1982.CrossrefGoogle Scholar

  • [82] J. Krüger, D. Dufft, R. Koter, and A. Hertwig. Femtosecond laserinduced damage of gold films: Photon-Assisted Synthesis and Processing of Functional Materials - E-MRS-H Symposium. Appl. Surf. Sci., 253(19):7815-7819, 2007.Google Scholar

  • [83] D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld. Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation. Appl. Surf. Sci., 150(1-4):101-106, 1999.Google Scholar

  • [84] A. M. Summers, A. S. Ramm, G. Paneru, M. F. Kling, B. N. Flanders, and C. A. Trallero-Herrero. Optical damage threshold of au nanowires in strong femtosecond laser fields. Opt. Express, 22(4):4235-4246, 2014.CrossrefGoogle Scholar

  • [85] J. Chen, W.-K. Chen, J. Tang, and P. M. Rentzepis. Time-resolved structural dynamics of thin metal films heated with femtosecond optical pulses. Proc. Natl. Acad. Sci. U.S.A., 108(47):18887-18892, 2011.CrossrefGoogle Scholar

  • [86] C. de Marco, S. M. Eaton, R. Suriano, S. Turri, M. Levi, R. Ramponi, G. Cerullo, and R. Osellame. Surface Properties of Femtosecond Laser Ablated PMMA. ACS Appl. Mater. Interfaces, 2(8):2377-2384, 2010.CrossrefGoogle Scholar

  • [87] C. Kern, M. Zürch, J. Petschulat, T. Pertsch, B. Kley, T. Käsebier, U. Hübner, and C. Spielmann. Comparison of femtosecond laser-induced damage on unstructured vs. nano-structured Autargets. Appl. Phys. A, 104(1):15-21, 2011.CrossrefGoogle Scholar

  • [88] D. Cialla, R. Siebert, U. Hübner, R. Möller, H. Schneidewind, R. Mattheis, J. Petschulat, A. Tünnermann, T. Pertsch, B. Dietzek, and J. Popp. Ultrafast plasmon dynamics and evanescent field distribution of reproducible surface-enhancedRamanscattering substrates. Anal. Bioanal. Chem., 394(7):1811-1818, 2009.Google Scholar

  • [89] A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg. Femtosecond laser near-field ablation from gold nanoparticles. Nat Phys, 2(1):44-47, 2006.CrossrefGoogle Scholar

  • [90] A. Plech, P. Leiderer, and J. Boneberg. Femtosecond laser near field ablation. Laser & Photon. Rev., 3(5):435-451, 2009.CrossrefGoogle Scholar

  • [91] V. K. Valev, D. Denkova, X. Zheng, A. I. Kuznetsov, C. Reinhardt, B. N. Chichkov, G. Tsutsumanova, E. J. Osley, V. Petkov, B. de Clercq, A. V. Silhanek, Y. Jeyaram, V. Volskiy, P. A. Warburton, G. A. E. Vandenbosch, S. Russev, O. A. Aktsipetrov, M. Ameloot, V. V. Moshchalkov, and T. Verbiest. Plasmon-Enhanced Sub- Wavelength Laser Ablation: Plasmonic Nanojets. AdvancedMaterials, 24(10):OP29-OP35, 2012.Google Scholar

  • [92] N. Pfullmann, M. Noack, J. de Cardoso Andrade, S. Rausch, T. Nagy, C. Reinhardt, V. Knittel, R. Bratschitsch, A. Leitenstorfer, D. Akemeier, A. Hütten, M. Kovačev, and U. Morgner. Nanoantennae assisted emission of extreme ultraviolet radiation. Annalen der Physik, 2014.Google Scholar

  • [93] M. J. Weber. Handbook of optical materials. CRC Press, Boca Raton, 2003.Google Scholar

  • [94] G. Xu, Y. Chen, M. Tazawa, and P. Jin. Influence of dielectric properties of a substrate upon plasmon resonance spectrum of supported Ag nanoparticles. Appl. Phys. Lett, 88(4):043114, 2006. CrossrefGoogle Scholar

About the article

Received: 2014-11-28

Accepted: 2015-05-21

Published Online: 2015-10-06

Published in Print: 2015-01-01

Citation Information: Nanophotonics, Volume 4, Issue 3, Pages 303–323, ISSN (Online) 2192-8614, ISSN (Print) 2192-8606, DOI: https://doi.org/10.1515/nanoph-2015-0013.

Export Citation

© 2015. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Liping Shi, Rana Nicolas, Jose R. C. Andrade, Willem Boutu, Dominik Franz, Torsten Heidenblut, Carsten Reinhardt, Uwe Morgner, Hamed Merdji, and Milutin Kovacev
ACS Photonics, 2018
Liping Shi, Bianca Iwan, Quentin Ripault, José R. C. Andrade, Seunghwoi Han, Hyunwoong Kim, Willem Boutu, Dominik Franz, Rana Nicolas, Torsten Heidenblut, Carsten Reinhardt, Bert Bastiaens, Tamas Nagy, Ihar Babuskin, Uwe Morgner, Seung-Woo Kim, Günter Steinmeyer, Hamed Merdji, and Milutin Kovačev
Physical Review Applied, 2018, Volume 9, Number 2
Steffen Hädrich, Jan Rothhardt, Manuel Krebs, Stefan Demmler, Arno Klenke, Andreas Tünnermann, and Jens Limpert
Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, Volume 49, Number 17, Page 172002

Comments (0)

Please log in or register to comment.
Log in