Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Editor-in-Chief: Sorger, Volker

IMPACT FACTOR 2018: 6.908
5-year IMPACT FACTOR: 7.147

CiteScore 2018: 6.72

In co-publication with Science Wise Publishing

Open Access
See all formats and pricing
More options …
Volume 4, Issue 3


Colloidal Plasmonic Titanium Nitride Nanoparticles: Properties and Applications

Urcan Guler
  • School of Electrical & Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
  • Nano-Meta Technologies Inc., 1281 Win Hentschel Boulevard, West Lafayette, IN 47906, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sergey Suslov / Alexander V. Kildishev
  • School of Electrical & Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
  • Nano-Meta Technologies Inc., 1281 Win Hentschel Boulevard, West Lafayette, IN 47906, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alexandra Boltasseva
  • School of Electrical & Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
  • Nano-Meta Technologies Inc., 1281 Win Hentschel Boulevard, West Lafayette, IN 47906, USA
  • DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, Lyngby, DK-2800, Denmark
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vladimir M. Shalaev
  • Corresponding author
  • School of Electrical & Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
  • Nano-Meta Technologies Inc., 1281 Win Hentschel Boulevard, West Lafayette, IN 47906, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-10-06 | DOI: https://doi.org/10.1515/nanoph-2015-0017


Optical properties of colloidal plasmonic titanium nitride nanoparticles are examined with an eye on their photothermal and photocatalytic applications via transmission electron microscopy and optical transmittance measurements. Single crystal titanium nitride cubic nanoparticles with an average size of 50 nm, which was found to be the optimum size for cellular uptake with gold nanoparticles [1], exhibit plasmon resonance in the biological transparency window and demonstrate a high absorption efficiency. A self-passivating native oxide at the surface of the nanoparticles provides an additional degree of freedom for surface functionalization. The titanium oxide shell surrounding the plasmonic core can create new opportunities for photocatalytic applications.

Keywords : refractory plasmonics; plasmonic heating; photothermal effect; photodynamic therapy; hot electrons; photocatalysis


  • [1] Chithrani B.D., Ghazani A.A., Chan W.C.W., Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells, Nano Letters. 2006, 2006/04/01, 6(4): 662-8.Google Scholar

  • [2] Boltasseva A., Atwater H.A., Materials science. Low-loss plasmonic metamaterials, Science 2011, 331(6015): 290-1.Google Scholar

  • [3] Naik G.V., Shalaev V.M., Boltasseva A., Alternative plasmonic materials: beyond gold and silver, Adv Mater. 2013; 25(24): 3264-94.CrossrefGoogle Scholar

  • [4] Wittmer M., Properties and microelectronic applications of thin films of refractory metal nitrides, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 1985, 3(4): 1797-803.CrossrefGoogle Scholar

  • [5] Tang T.E., Che-Chia W., Haken R.A., Holloway T.C., Hite L.R., Blake T.G.W., Titanium nitride local interconnect technology for VLSI, Electron Devices, IEEE Transactions on. 1987, 34(3): 682-8.Google Scholar

  • [6] Tompkins H.G., Gregory R., Boeck B., Optical properties of titanium nitride thin films, Surface and Interface Analysis 1991, 17(1): 22-4.CrossrefGoogle Scholar

  • [7] Steinmüller-Nethl D., Kovacs R., Gornik E., Rödhammer P., Excitation of surface plasmons on titaniumnitride films: determination of the dielectric function, Thin Solid Films 1994, 237(1): 277-81.CrossrefGoogle Scholar

  • [8] Hibbins A.P., Sambles J.R., Lawrence C.R., Surface plasmonpolariton study of the optical dielectric function of titaniumnitride, Journal of Modern Optics 1998, 45(10): 2051-62.CrossrefGoogle Scholar

  • [9] Chen N.C., Lien W.C., Liu C.R., Huang Y.L., Lin Y.R., Chou C., et al., Excitation of surface plasma wave at TiN/air interface in the Kretschmann geometry, Journal of Applied Physics 2011, 109(4): 043104-7.CrossrefGoogle Scholar

  • [10] Naik G.V., Schroeder J.L., Ni X., Kildishev A.V., Sands T.D., Boltasseva A., Titaniumnitride as a plasmonicmaterial for visible and near-infrared wavelengths, Optical Materials Express 2012, 2(4): 478-89.CrossrefGoogle Scholar

  • [11] Naik G.V., Saha B., Liu J., Saber S.M., Stach E.A., Irudayaraj J.M.K., et al., Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials, Proceedings of the National Academy of Sciences 2014May 12, 2014.Google Scholar

  • [12] Kinsey N., Ferrera M., Naik G.V., Babicheva V.E., Shalaev V.M., Boltasseva A., Experimental demonstration of titanium nitride plasmonic interconnects, Optics Express 2014 2014/05/19, 22(10): 12238-47.Google Scholar

  • [13] Guler U., Boltasseva A., Shalaev V.M., Refractory Plasmonics, Science 2014, 344(6181): 263-4.Google Scholar

  • [14] Guler U., Shalaev V.M., Boltasseva A., Nanoparticle plasmonics: going practicalwith transition metal nitrides,Materials Today 2015, 18(4): 227-37.CrossrefGoogle Scholar

  • [15] Quinten M., The color of finely dispersed nanoparticles, Applied Physics B. 2001, 2001/09/01, 73(4): 317-26.Google Scholar

  • [16] Reinholdt A., Pecenka R., Pinchuk A., Runte S., Stepanov A.L., Weirich T.E., et al., Structural, compositional, optical and colorimetric characterization of TiN-nanoparticles; The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics 2004, 2004/10/01, 31(1): 69-76.Google Scholar

  • [17] Guler U., Naik G.V., Boltasseva A., Shalaev V.M., Kildishev A.V., Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications, Applied Physics B. 2012, 2012/05/01, 107(2): 285-91.Google Scholar

  • [18] Guler U., Ndukaife J.C., Naik G.V., Nnanna A.G.A., Kildishev A.V., Shalaev V.M., et al., Local Heating with Lithographically Fabricated Plasmonic Titanium Nitride Nanoparticles, Nano Letters 2013, 13(12): 6078-83.CrossrefGoogle Scholar

  • [19] Li W., Guler U., Kinsey N., Naik G.V., Boltasseva A., Guan J., et al., Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber, Advanced Materials 2014, 26(47): 7959-65.CrossrefGoogle Scholar

  • [20] Guler U., Kildishev A.V., Boltasseva A., Shalaev V.M., Plasmonics on the slope of enlightenment: the role of transition metal nitrides, Faraday Discussions 2015, 178(0): 71-86.CrossrefGoogle Scholar

  • [21] Zhou N., Xu X., Hammack Aaron T., Stipe Barry C., Gao K., Scholz W., et al., Plasmonic near-field transducer for heatassisted magnetic recording, Nanophotonics 2014, 3(3): 141-55.Google Scholar

  • [22] Bauer T., Thermophotovoltaics: Basic Principles and Critical Aspects of System Design, Berlin, Germany: Springer-Verlag; 2011. 222 p.Google Scholar

  • [23] Clavero C., Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices, Nat Photon. 2014, 8(2): 95-103.CrossrefGoogle Scholar

  • [24] Linic S., Christopher P., Ingram D.B., Plasmonic-metal nanostructures for eflcient conversion of solar to chemical energy, Nat Mater. 2011, 10(12): 911-21.CrossrefGoogle Scholar

  • [25] Mukherjee S., Libisch F., Large N., Neumann O., Brown L.V., Cheng J., et al., Hot Electrons Do the Impossible: Plasmon-Induced Dissociation of H2 on Au, Nano Letters 2012, 2013/01/09, 13(1): 240-7.Google Scholar

  • [26] Boyd D.A., Greengard L., Brongersma M., El-Naggar M.Y., Goodwin D.G., Plasmon-Assisted Chemical Vapor Deposition, Nano Letters. 2006, 6(11): 2592-7.CrossrefGoogle Scholar

  • [27] Wakabayashi H., Saito Y., Takeuchi K., Mogami T., Kunio T., A dual-metal gate CMOS technology using nitrogenconcentration- controlled TiNx film, Electron Devices, IEEE Transactions on. 2001, 48(10): 2363-9. Google Scholar

  • [28] Dong S., Chen X., Gu L., Zhang L., Zhou X., Liu Z., et al., A biocompatible titanium nitride nanorods derived nanostructured electrode for biosensing and bioelectrochemical energy conversion, Biosensors and Bioelectronics 2011, 26(10): 4088-94.CrossrefGoogle Scholar

  • [29] Hyde G.K., McCullen S.D., Jeon S., Stewart S.M., Jeon H., Loboa E.G., et al., Atomic layer deposition and biocompatibility of titanium nitride nano-coatings on cellulose fiber substrates, Biomedical Materials 2009, 4(2): 025001.CrossrefGoogle Scholar

  • [30] Wisbey A., Gregson P.J., Tuke M., Application of PVD TiN coating to Co-Cr-Mo based surgical implants, Biomaterials 1987, 8(6): 477-80.CrossrefGoogle Scholar

  • [31] Li J., Gao L., Sun J., Zhang Q., Guo J., Yan D., Synthesis of Nanocrystalline TitaniumNitride Powders by Direct Nitridation of Titanium Oxide, Journal of the American Ceramic Society 2001, 84(12): 3045-7.CrossrefGoogle Scholar

  • [32] Saha N.C., Tompkins H.G., Titanium nitride oxidation chemistry: An xray photoelectron spectroscopy study, Journal of Applied Physics 1992, 72(7): 3072-9.CrossrefGoogle Scholar

  • [33] Jaque D., Martinez Maestro L., del Rosal B., Haro-Gonzalez P., Benayas A., Plaza J.L., et al., Nanoparticles for photothermal therapies, Nanoscale 2014, 6(16): 9494-530.CrossrefGoogle Scholar

  • [34] Loo C., Lin A., Hirsch L., Lee M.H., Barton J., Halas N., et al., Nanoshell-enabled photonics-based imaging and therapy of cancer, Technol Cancer Res Treat. 2004 Feb, 3(1): 33-40.CrossrefGoogle Scholar

  • [35] Hirsch L.R., Stafford R.J., Bankson J.A., Sershen S.R., Rivera B., Price R.E., et al., Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance, Proceedings of the National Academy of Sciences 2003, 100(23): 13549-54.Google Scholar

  • [36] Hirsch L.R., Jackson J.B., Lee A., Halas N.J., West J.L., A Whole Blood Immunoassay Using Gold Nanoshells, Analytical Chemistry 2003, 2003/05/01, 75(10): 2377-81.Google Scholar

  • [37] Huang P., Lin J., Li W., Rong P., Wang Z., Wang S., et al., Biodegradable Gold Nanovesicles with an Ultrastrong Plasmonic Coupling Effect for Photoacoustic Imaging and Photothermal Therapy, Angewandte Chemie International Edition 2013, 52(52): 13958-64.CrossrefGoogle Scholar

  • [38] Goodman A.M., Cao Y., Urban C., Neumann O., Ayala-Orozco C., Knight M.W., et al., The Surprising in Vivo Instability of Near-IR-Absorbing HollowAu-Ag Nanoshells, ACS Nano. 2014, 2014/04/22, 8(4): 3222-31.Google Scholar

  • [39] Xie J., Lee S., Chen X., Nanoparticle-based theranostic agents, Advanced Drug Delivery Reviews 2010, 62(11): 1064-79.CrossrefGoogle Scholar

  • [40] Li Z., Huang P., Zhang X., Lin J., Yang S., Liu B., et al., RGDConjugated Dendrimer-Modified Gold Nanorods for in Vivo Tumor Targeting and Photothermal Therapy†, Molecular Pharmaceutics 2009, 2010/02/01, 7(1): 94-104.Google Scholar

  • [41] Dasgupta S., Auth T., Gompper G., Shape and OrientationMatter for the Cellular Uptake of Nonspherical Particles, Nano Letters 2014, 2014/02/12, 14(2): 687-93. Google Scholar

  • [42] Takada N., Sasaki T., Sasaki K., Synthesis of crystalline TiN and Si particles by laser ablation in liquid nitrogen, Applied Physics A 2008, 2008/12/01, 93(4): 833-6.Google Scholar

  • [43] Yang X., Li C., Yang L., Yan Y., Qian Y., Reduction-Nitridation Synthesis of Titanium Nitride Nanocrystals, Journal of the American Ceramic Society 2003, 86(1): 206-8.CrossrefGoogle Scholar

  • [44] George P.P., Gedanken A., Makhlouf S.-D., Genish I., Marciano A., Abu-Mukh R., Synthesis and characterization of titanium nitride, niobium nitride, and tantalum nitride nanocrystals via the RAPET (reaction under autogenic pressure at elevated temperature) technique; Journal of Nanoparticle Research 2009, 2009/05/01, 11(4): 995-1003.Google Scholar

  • [45] Calka A., Formation of titanium and zirconium nitrides by mechanical alloying, Applied Physics Letters 1991, 59(13): 1568-9.CrossrefGoogle Scholar

  • [46] Kumar S., Murugan K., Chandrasekhar S.B., Hebalkar N., Krishna M., Satyanarayana B.S., et al., Synthesis and characterization of nano silicon and titanium nitride powders using atmospheric microwave plasma technique, Journal of Chemical Sciences 2012, 2012/05/01, 124(3): 557-63.Google Scholar

  • [47] Dekker J.P., van der Put P.J., Veringa H.J., Schoonman J., Vapour-phase synthesis of titanium nitride powder, Journal of Materials Chemistry 1994, 4(5): 689-94.CrossrefGoogle Scholar

  • [48] Aghababazadeh R., Mirhabibi A.R., Rand B., Banijamali S., Pourasad J., Ghahari M., Synthesis and characterization of nanocrystalline titanium nitride powder from rutile and anatase as precursors, Surface Science 2007, 601(13): 2881-5.Google Scholar

  • [49] Egerton R.F., Electron energy-loss spectroscopy in the TEM, Reports on Progress in Physics 2009, 72(1): 016502.Google Scholar

  • [50] Reddy B.V., Khanna S.N., Structure and stability of TinNm clusters, Physical Review B 1996, 54(3): 2240-3.CrossrefGoogle Scholar

  • [51] Weir A., Westerhoff P., Fabricius L., Hristovski K., von Goetz N., Titanium Dioxide Nanoparticles in Food and Personal Care Products, Environmental Science & Technology 2012, 2012/02/21, 46(4): 2242-50.Google Scholar

  • [52] Tompkins H.G., The initial stages of the oxidation of titanium nitride, Journal of Applied Physics 1992, 71(2): 980-3.CrossrefGoogle Scholar

  • [53] Bannister F.A., Osbornite, meteoric titanium nitride, Mineralogical Magazine 1941, 26: 36-44.CrossrefGoogle Scholar

  • [54] Stuart H.R., Hall D.G., Island size effects in nanoparticleenhanced photodetectors, Applied Physics Letters 1998, 73(26): 3815-7.CrossrefGoogle Scholar

  • [55] Bohren C., Huffman D., Absorption and Scattering of Light by Small Particles (Wiley science paperback series): Wiley-VCH, 1998. Google Scholar

About the article

Received: 2014-10-28

Accepted: 2015-06-21

Published Online: 2015-10-06

Published in Print: 2015-01-01

Citation Information: Nanophotonics, Volume 4, Issue 3, Pages 269–276, ISSN (Online) 2192-8614, ISSN (Print) 2192-8606, DOI: https://doi.org/10.1515/nanoph-2015-0017.

Export Citation

© 2015. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Alejandro Alvarez Barragan, Sergei Hanukovich, Krassimir Bozhilov, Sharma S. R. K. C. Yamijala, Bryan M. Wong, Phillip Christopher, and Lorenzo Mangolini
The Journal of Physical Chemistry C, 2019, Volume 123, Number 35, Page 21796
Alyssa Beierle, Paul Gieri, Hanqing Pan, Michael D. Heagy, Alejandro Manjavacas, and Sanchari Chowdhury
Solar Energy Materials and Solar Cells, 2019, Volume 200, Page 109967
Pascal M. Gschwend, Simona Conti, Andres Kaech, Caroline Maake, and Sotiris E. Pratsinis
ACS Applied Materials & Interfaces, 2019, Volume 11, Number 25, Page 22550
Lei Zhang, Yihan Wu, Wenshan Yu, and Shengping Shen
Engineering Analysis with Boundary Elements, 2019, Volume 105, Page 231
Pilot, Signorini, Durante, Orian, Bhamidipati, and Fabris
Biosensors, 2019, Volume 9, Number 2, Page 57
Hossein Robatjazi, Daniel Weinberg, Dayne F. Swearer, Christian Jacobson, Ming Zhang, Shu Tian, Linan Zhou, Peter Nordlander, and Naomi J. Halas
Science Advances, 2019, Volume 5, Number 2, Page eaav5340
Anton A. Popov, Gleb Tselikov, Noé Dumas, Charlotte Berard, Khaled Metwally, Nicola Jones, Ahmed Al-Kattan, Benoit Larrat, Diane Braguer, Serge Mensah, Anabela Da Silva, Marie-Anne Estève, and Andrei V. Kabashin
Scientific Reports, 2019, Volume 9, Number 1
Yi-Jun Jen, Wei-Chien Wang, Kai-Lun Wu, and Meng-Jie Lin
Coatings, 2018, Volume 8, Number 12, Page 465
Sara Magdi, Dengxin Ji, Qiaoqiang Gan, and Mohamed A. Swillam
Journal of Nanophotonics, 2017, Volume 11, Number 1, Page 016001
Esmat Rafiee, Roozbeh Negahdari, and Farzin Emami
Photonics and Nanostructures - Fundamentals and Applications, 2018
Manpreet Kaur, Satoshi Ishii, Satish Laxman Shinde, and Tadaaki Nagao
Advanced Sustainable Systems, 2018, Page 1800112
Satoshi Ishii, Satish Laxman Shinde, and Tadaaki Nagao
Advanced Optical Materials, 2018, Page 1800603
Satoshi Ishii, Ryosuke Kamakura, Hiroyuki Sakamoto, Thang D. Dao, Satish L. Shinde, Tadaaki Nagao, Koji Fujita, Kyoko Namura, Motofumi Suzuki, Shunsuke Murai, and Katsuhisa Tanaka
Nanoscale, 2018
Stephen Exarhos, Alejandro Alvarez-Barragan, Ece Aytan, Alexander A. Balandin, and Lorenzo Mangolini
ACS Energy Letters, 2018, Page 2349
Rodrigo Sato, Satoshi Ishii, Tadaaki Nagao, Masanobu Naito, and Yoshihiko Takeda
ACS Photonics, 2018
Levi Tegg, Dylan Cuskelly, and Vicki J Keast
Nanotechnology, 2018, Volume 29, Number 40, Page 40LT02
Mingzhu Li, Urcan Guler, Yanan Li, Anthony Rea, Ekembu K. Tanyi, Yoonseob Kim, Mikhail A. Noginov, Yanlin Song, Alexandra Boltasseva, Vladimir M. Shalaev, and Nicholas A. Kotov
ACS Energy Letters, 2018, Page 1578
Deesha Shah, Alessandra Catellani, Harsha Reddy, Nathaniel Kinsey, Vladimir Shalaev, Alexandra Boltasseva, and Arrigo Calzolari
ACS Photonics, 2018
Hadley A. Smith, Said Elhamri, Kurt G. Eyink, Lawrence Grazulis, Madelyn J. Hill, Tyson C. Back, Augustine M. Urbas, Brandon M. Howe, and Amber N. Reed
Journal of Vacuum Science & Technology A, 2018, Volume 36, Number 3, Page 03E107
S. Yick, A. T. Murdock, P. J. Martin, D. F. Kennedy, T. Maschmeyer, and A. Bendavid
Nanoscale, 2018
Ankit Agrawal, Shin Hum Cho, Omid Zandi, Sandeep Ghosh, Robert W. Johns, and Delia J. Milliron
Chemical Reviews, 2018
Manpreet Kaur, Satoshi Ishii, Satish Laxman Shinde, and Tadaaki Nagao
ACS Sustainable Chemistry & Engineering, 2017
Johanna Midelet, Afaf H. El-Sagheer, Tom Brown, Antonios G. Kanaras, and Martinus H. V. Werts
Particle & Particle Systems Characterization, 2017, Page 1700095
Oday Abdulmunem, Khaleel Hassoon, Mahmoud Gaafar, Arash Rahimi-Iman, and Jan C. Balzer
Journal of Infrared, Millimeter, and Terahertz Waves, 2017, Volume 38, Number 10, Page 1206
Deesha Shah, Harsha Reddy, Nathaniel Kinsey, Vladimir M. Shalaev, and Alexandra Boltasseva
Advanced Optical Materials, 2017, Volume 5, Number 13, Page 1700065
Rongcheng Ban, Yingjian Yu, Meng Zhang, Jun Yin, Binbin Xu, De-Yin Wu, Min Wu, Zhigang Zhang, Huiling Tai, Jing Li, and Junyong Kang
ACS Applied Materials & Interfaces, 2017, Volume 9, Number 15, Page 13564
Alberto Naldoni, Urcan Guler, Zhuoxian Wang, Marcello Marelli, Francesco Malara, Xiangeng Meng, Lucas V. Besteiro, Alexander O. Govorov, Alexander V. Kildishev, Alexandra Boltasseva, and Vladimir M. Shalaev
Advanced Optical Materials, 2017, Volume 5, Number 15, Page 1601031
Urcan Guler, Dmitry Zemlyanov, Jongbum Kim, Zhuoxian Wang, Rohith Chandrasekar, Xiangeng Meng, Eric Stach, Alexander V. Kildishev, Vladimir M. Shalaev, and Alexandra Boltasseva
Advanced Optical Materials, 2017, Volume 5, Number 7, Page 1600717
Alejandro Alvarez Barragan, Niranjan V. Ilawe, Lanlan Zhong, Bryan M. Wong, and Lorenzo Mangolini
The Journal of Physical Chemistry C, 2017, Volume 121, Number 4, Page 2316
Oruganti Anjaneyulu, Satoshi Ishii, Tsubasa Imai, Toyokazu Tanabe, Shigenori Ueda, Tadaaki Nagao, and Hideki Abe
RSC Adv., 2016, Volume 6, Number 112, Page 110566
Andrew A. Herzing, Urcan Guler, Xiuli Zhou, Alexandra Boltasseva, Vladimir Shalaev, and Theodore B. Norris
Applied Physics Letters, 2016, Volume 108, Number 17, Page 171107
Satoshi Ishii, Ramu Pasupathi Sugavaneshwar, and Tadaaki Nagao
The Journal of Physical Chemistry C, 2016, Volume 120, Number 4, Page 2343

Comments (0)

Please log in or register to comment.
Log in