Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Nanophotonics

Editor-in-Chief: Sorger, Volker

12 Issues per year


CiteScore 2017: 6.57

IMPACT FACTOR 2017: 6.014
5-year IMPACT FACTOR: 7.020


In co-publication with Science Wise Publishing

Open Access
Online
ISSN
2192-8614
See all formats and pricing
More options …
Volume 4, Issue 1

Issues

Recent Progress on Plasmon-Enhanced Fluorescence

Jun Dong
  • Corresponding author
  • School of Electronic Engineering, Xi’an University of Posts and Telecommunications, Xi’an 710121, China and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy Sciences, Beijing 100190, China and School of Physics and Information Technology, Shaanxi Normal University, Xi’an, 710062, People’s Republic of China (Contributed Equally)
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zhenglong Zhang
  • Corresponding author
  • Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy Sciences, Beijing 100190, China and School of Physics and Information Technology, Shaanxi Normal University, Xi’an, 710062, People’s Republic of China and Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany, and Physical Chemistry, Friedrich-Schiller University Jena, Helmholtzweg 07743, Jena, Germany (Contributed Equally)
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hairong Zheng
  • Corresponding author
  • School of Physics and Information Technology, Shaanxi Normal University, Xi’an, 710062, People’s Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mentao Sun
  • Corresponding author
  • Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy Sciences, Beijing 100190, China, Email: mtsun@iphy.ac.cn and School of Electronic Engineering, Xi’an University of Posts and Telecommunications, Xi’an 710121, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-12-30 | DOI: https://doi.org/10.1515/nanoph-2015-0028

Abstract

The optically generated collective electron density waves on metal–dielectric boundaries known as surface plasmons have been of great scientific interest since their discovery. Being electromagnetic waves on gold or silver nanoparticle’s surface, localised surface plasmons (LSP) can strongly enhance the electromagnetic field. These strong electromagnetic fields near the metal surfaces have been used in various applications like surface enhanced spectroscopy (SES), plasmonic lithography, plasmonic trapping of particles, and plasmonic catalysis. Resonant coupling of LSPs to fluorophore can strongly enhance the emission intensity, the angular distribution, and the polarisation of the emitted radiation and even the speed of radiative decay, which is so-called plasmon enhanced fluorescence (PEF). As a result, more and more reports on surface-enhanced fluorescence have appeared, such as SPASER-s, plasmon assisted lasing, single molecule fluorescence measurements, surface plasmoncoupled emission (SPCE) in biological sensing, optical orbit designs etc. In this review, we focus on recent advanced reports on plasmon-enhanced fluorescence (PEF). First, the mechanism of PEF and early results of enhanced fluorescence observed by metal nanostructure will be introduced. Then, the enhanced substrates, including periodical and nonperiodical nanostructure, will be discussed and the most important factor of the spacer between molecule and surface and wavelength dependence on PEF is demonstrated. Finally, the recent progress of tipenhanced fluorescence and PEF from the rare-earth doped up-conversion (UC) and down-conversion (DC) nanoparticles (NPs) are also commented upon. This review provides an introduction to fundamentals of PEF, illustrates the current progress in the design of metallic nanostructures for efficient fluorescence signal amplification that utilises propagating and localised surface plasmons.

Keywords: Enhanced fluorescence; metallic nanostructure; Surface plasmon plartion

References

  • [1] Ritchie R. H., Plasma losses by fast electrons in thin films, Phys Rev 1957, 106, 874. CrossrefGoogle Scholar

  • [2] Pitarke J. M., Silkin V. M., Chulkov E. V., Echenique P. M., Theory of surface plasmons and surface-plasmon polaritons, Rep Prog Phys 2007, 70, 1–80. CrossrefGoogle Scholar

  • [3] Ringe E., Zhang J., Langille M. R., Sohn K., Cobley C., Au L., Xia Y., Mirkin C. A., Huang J., Marks L. D., Van Duyne R. P., Effect of Size, Shape, Composition, and Support Film on Localized Surface Plasmon Resonance Frequency: A Single Particle Approach Applied to Silver Bipyramids and Gold Nanocubes, Mater Res Soc Symp. Proc. 2010, 1208, O10–02. Google Scholar

  • [4] Ringe E., Langille M. R., Sohn K., Zhang J., Huang J., Mirkin C. A., Van Duyne R. P., Marks L. D., Plasmon Length: A Universal Parameter to Describe Size Effects in Gold Nanoparticles, J Phys Chem Lett 2012, 3, 1479–1483. CrossrefGoogle Scholar

  • [5] Huang Y. Z., Fang Y. R., Zhang Z. L., Zhu L., Sun M. T., Nanowire-supported plasmonic waveguide for remote excitation of surface-enhanced Raman scattering. Light: Science & Applications 2014, 3, e199. Google Scholar

  • [6] Fang Y. R., Sun M. T., Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits. Light: Science & Applications 2015, 4, e294. Google Scholar

  • [7] Zhang Z. L., Fang Y. R., Wang W. H., Chen L., Sun M. T., Propagating surface plasmon polaritons: towards applications for remote-excitation surface catalytic reactions, Advanced Science 2015, DOI: 10.1002/advs. 201500215. CrossrefGoogle Scholar

  • [8] Dong J., Wang J. G., Ma F. C., Cheng Y., Zhang H., Zhang Z. L., Recent Progresses in Integrated Nanoplasmonic Devices Based on Propagating Surface Plasmon Polaritons, Plasmonics 2015, 10, 1841-1852. CrossrefGoogle Scholar

  • [9] Jain P. K., El-Sayed M. A., Surface Plasmon Resonance Sensitivity of Metal Nanostructures: Physical Basis and Universal Scaling in Metal Nanoshells, J Phys Chem C 2007, 111, 17451–4. CrossrefGoogle Scholar

  • [10] Fort E, Gresillon S. Surface enhanced fluorescence. J Phys D:Appl Phys 2008, 41, 013001(1-31). CrossrefGoogle Scholar

  • [11] Bauch M., Toma K., Toma M., Zhang Q., Dostalek J., Surface plasmon-enhanced fluorescence biosensors: a review, Plasmonics 2014, 9, 781–799. CrossrefGoogle Scholar

  • [12] Caldarola M., Albella P., Cortés E., Rahmani M., Roschuk T., Grinblat G., Oulton R. F., Bragas A. V., Maier S. A., Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultralow heat conversion, Nature Communications 2015, 6:7915. CrossrefGoogle Scholar

  • [13] Moskovits M., Surface-enhanced spectroscopy, Rev Mod Phy 1985, 57, 783–826. CrossrefGoogle Scholar

  • [14] Sun M. T., Zhang Z. L., Wang P. J., Li Q., Ma F. C., Xu H. X., Remotely excited Raman optical activity using chiral plasmon propagation in Ag nanowires. Light: Science & Applications 2013, 2, e112. Google Scholar

  • [15] Ghosh S. K., Pal T., Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles: From Theory to Applications, Chem Rev 2007, 107, 4797–4862. CrossrefGoogle Scholar

  • [16] Xu H. X., Wang X. H., Persson M., Xu H., Käll M., Johansson P., Unified Treatment of Fluorescence and Raman Scattering Processes near Metal Surfaces, Phys Rev Lett 2004, 93, 243002(1– 4). CrossrefGoogle Scholar

  • [17] Lantman E. M. V., Deckert-Gaudig T., Mank A. J. G., Deckert V., Weckhuysen B. M., Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy, Nat Nanotechnol 2012, 7, 583–586. CrossrefGoogle Scholar

  • [18] Sun M. T., Zhang Z. L., Chen L., Li Q., Sheng S. X., Xu H. X., Song P., Plasmon-Driven Selective Reductions Revealed by Tip-Enhanced Raman Spectroscopy, Adv Mater Interfaces 2014, 1300125(1–6). CrossrefGoogle Scholar

  • [19] Drexhage K. H., Interaction of light with monomolecular dye layers, Prog Opt 1974, 12, 163–232. CrossrefGoogle Scholar

  • [20] Höppener C., Novotny L., Exploiting the light-metal interaction for biomolecular sensing and imaging, Quarterly Reviews of Biophysics 2012, 45, 209–255. CrossrefGoogle Scholar

  • [21] Chen K, Leong E S P, Rukavina M, Nagao T, Liu Y J, Zheng Y B. Active molecular plasmonics: tuning surface plasmon resonances by exploiting molecular dimensions, Nanophotonics, 2015, 4:186–197. Google Scholar

  • [22] Lakowicz J. R., Principles of Fluorescence Spectroscopy, 3rd Edition, Springer-Verlag, New York, 2006. Google Scholar

  • [23] Purcell E M. Spontaneous emission probabilities at radio frequencies, Phys Rev 1946, 69, 681. Google Scholar

  • [24] Galloway C. M., Etchegoin P. G., Le Ru E. C., Ultrafast Nonradiative Decay Rates on Metallic Surfaces by Comparing Surface-Enhanced Raman and Fluorescence Signals of Single Molecules, Phys Rev Lett 2009, 103, 063003. CrossrefGoogle Scholar

  • [25] Johansson P., Xu H. X., Surface-enhanced Raman scattering and fluorescence near metal nanoparticles, Phys Rev B 2005, 72, 035427. CrossrefGoogle Scholar

  • [26] Itoh T., Iga M., Tamaru H., Yoshida K., Biju V., Quantitative evaluation of blinking in surface enhanced resonance scattering and fluorescence by electromagnetic mechanism, J Chem Phys 2012, 136, 024703. CrossrefGoogle Scholar

  • [27] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics, Nature 2003, 424, 824. CrossrefGoogle Scholar

  • [28] Wood R.W., On a remarkable case of uneven distribution of light in a diffraction grating spectrum, Philos Mag 1902, 4, 396. Google Scholar

  • [29] Ritchie R. H., Arakawa E. T., Hamm R. N., Surface-plasmon resonance effect in grating diffraction, Phys Rev Lett 1968, 21, 1530– 1533. CrossrefGoogle Scholar

  • [30] Cui X. Q., Tawa K., Hori H., Nishii J., Tailored plasmonic gratings for enhanced fluorescence detection and microscopic imaging, Adv Func Mat 2010, 20, 546. CrossrefGoogle Scholar

  • [31] Tsuneyasu M., Sasakawa C., Naruishi N., Tanaka Y., Yoshida Y., Tawa K., Sensitive detection of interleukin-6 on a plasmonic chip by grating-coupled surface-plasmon-field-enhanced fluorescence imaging, J Appl Phys 2014, 53, 06JL05. Google Scholar

  • [32] Jiang Y., Wang H. Y., Wang H., Gao B. R., Hao Y. W., Jin Y., Chen Q. D., Sun H. B., Surface Plasmon Enhanced Fluorescence of Dye Molecules on Metal Grating Films, J Phys Chem C 2011, 115, 12636. CrossrefGoogle Scholar

  • [33] Hao Y.W.,Wang H. Y., Zhang Z. Y., Zhang X. L., Chen Q. D., Sun H. B., Time-Resolved Fluorescence Anisotropy of Surface Plasmon Coupled Emission on Metallic Gratings, J Phys Chem C 2013, 117, 26734–39. CrossrefGoogle Scholar

  • [34] Yuk J. S., Guignon E. F., Lynes M. A., Sensitivity enhancement of a grating-based surface plasmon-coupled emission (SPCE) biosensor chip using gold thickness, Chem Phys Let 2014, 591, 5–9. CrossrefGoogle Scholar

  • [35] Zhang Z. Y., Wang H. Y., Du J. L., Zhang X. L., Hao Y. W., Chen Q. D., Sun H. B., Surface Plasmon-Modulated Fluorescence on 2D Metallic Silver Gratings, IEEE Photonics Technology Letters 2015, 27, 821–823. CrossrefGoogle Scholar

  • [36] Ebbesen T. W., Extraordinary optical transmission through subwavelength hole arrays. Nature(London) 1998, 391, 667–669. CrossrefGoogle Scholar

  • [37] Sambles J. R., Bradbery G. W., Yang F. Z., Optical-excitation of surface-plasmons-an introduction, Contemp Phys 1991, 32, 173–183. CrossrefGoogle Scholar

  • [38] Ghaemi H. F., Thio T., Grupp D. E., Ebbesen T. W., Lezec H. J., Surface plasmons enhance optical transmission through subwavelength holes, Phys Rev B 1998, 58, 6779–6782. CrossrefGoogle Scholar

  • [39] Strelniker Y. M., Theory of optical transmission through elliptical nanohole arrays, Phys Rev B 2007, 76, 085409(1–6). CrossrefGoogle Scholar

  • [40] Chen Y., Munechika K., Ginger D. S., Dependence of Fluorescence Intensity on the Spectral Overlap between Fluorophores and Plasmon Resonant Single Silver Nanoparticles, Nano Lett 2007, 7, 690–696. CrossrefGoogle Scholar

  • [41] Brolo A. G., Kwok S. C., Mofltt M. G., Gordon R., Riordon J., Kavanagh K. L., Enhanced Fluorescence from Arrays of Nanoholes in a Gold Film, J Am Chem Soc 2005, 127, 14936–14941. CrossrefGoogle Scholar

  • [42] Guo P. F., Wu S., Ren Q. J., Lu J., Chen Z. H., Xiao S. J., Zhu Y. Y., Fluorescence Enhancement by Surface Plasmon Polaritons on Metallic Nanohole Arrays, J Phys Chem Lett 2010, 1, 315–318. CrossrefGoogle Scholar

  • [43] Mazzotta F., Johnson T.W., Dahlin A. B., Shaver J., Oh S. H., Höök F., Influence of the Evanescent Field Decay Length on the Sensitivity of Plasmonic Nanodisks and Nanoholes, ACS Photonics 2015, 2, 256–262. CrossrefGoogle Scholar

  • [44] Im H., Lee S. H., Wittenberg N. J., Johnson T. W., Lindquist N. C., Nagpal P., Norris D. J., Oh S. H., Template-Stripped Smooth Ag Nanohole Arrays with Silica Shells for Surface Plasmon Resonance Biosensing, ACS nano 2011, 5, 6244–6253. CrossrefGoogle Scholar

  • [45] Poirier-Richard H. P., Couture M., Brulea T., Masson J. F., Metalenhanced fluorescence and FRET on nanohole arrays excited at angled incidence, Analyst 2015, 140, 4792. CrossrefGoogle Scholar

  • [46] Wu L., Bai P., Zhou X., Li E. P., Transmission modes in nanoholearraybased plasmonic sensors, IEEE Photonics Journal 2012, 4, 26–33. CrossrefGoogle Scholar

  • [47] Wu L., Zhou X., Bai P., Plasmonic metals for nanohole-array surface plasmon field-enhanced fluorescence spectroscopy biosensing, Plasmonics 2014, 9, 825–833. CrossrefGoogle Scholar

  • [48] Barik A., Otto L. M., Yoo D., Jose J., Johnson T. W., Oh S. H., Dielectrophoresis-Enhanced Plasmonic Sensing with Gold Nanohole Arrays, Nano Lett. 2014, 14, 2006–2012. Google Scholar

  • [49] Sanchez-Gonzalez A., Corni S., Mennucci B., Surface-Enhanced Fluorescence within a Metal Nanoparticle Array:The Role of Solvent and Plasmon Couplings, J Phys Chem C 2011, 115, 5450– 5460. CrossrefGoogle Scholar

  • [50] Usukura E., Shinohara S., Okamoto K., Lim J., Char K., Tamada K., Highly confined, enhanced surface fluorescence imaging with two-dimensional silver nanoparticle sheets, Appl Phys Lett 2014, 104, 121906(1–3). CrossrefGoogle Scholar

  • [51] Dong J., Qu S. X., Zhang Z. L., Liu M. C., Liu G. N., Yan X. Q., Zheng H. R., Surface enhanced fluorescence on three dimensional silver nanostructure substrate, J Appl Phys 2012, 111, 093101. CrossrefGoogle Scholar

  • [52] Yang B. J., Lu N., Qi D., Ma R., Tuning the Intensity of Metal- Enhanced Fluorescence by Engineering Silver Nanoparticle Arrays, Small 2010, 6, 1038–1043. CrossrefGoogle Scholar

  • [53] Qiu T., Jiang J., Zhang W. J., Lang X. Z., Yu X. Q., Chu P. K., High- Sensitivity and Stable Cellular Fluorescence Imaging by Patterned Silver Nanocap Arrays, ACS Appl Mater Interfaces 2010, 2, 2465–2470. CrossrefGoogle Scholar

  • [54] Sugawa K., Tamura T., Tahara H., Yamaguchi D., Akiyama T., Otsuki J., Kusaka Y., Fukuda N., Ushijima H., Metal-Enhanced Fluorescence Platforms Based on Plasmonic Ordered Copper Arrays: Wavelength dependence of Quenching and Enhancement Effects, ACS nano 2013, 7, 9997–10010. CrossrefGoogle Scholar

  • [55] Xi L., Chen M., Zhao X. M., Zhang Z. L., Xia J. R., Xu H. X., Sun M. T., Visualized method of chemical enhancement mechanism on SERS and TERS, J. Raman Spectrosc. 2014, 45, 533–540. CrossrefGoogle Scholar

  • [56] Yasukuni R., Ouhenia-Ouadahi K., Boubekeur-Lecaque L., Félidj N.,MaureI F., Métivier R., Nakatani K., Aubard J., Grand J., Silica- Coated Gold Nanorod Arrays for Nanoplasmonics Devices, Langmuir 2013, 29, 12633–12637. CrossrefGoogle Scholar

  • [57] Huang Q., Huang Z., Meng G., Fu Y., Lakowicz J. R., Plasmonic nanorod arrays for enhancementof single-molecule detection, Chem Commun 2013, 49, 11743–11745. CrossrefGoogle Scholar

  • [58] Singh D. P., Kumar S., Singh J. P., Morphology dependent surface enhanced fluorescence study on silver nanorod arrays fabricated by glancing angle deposition, RSC Adv. 2015, 5, 31341– 31346. CrossrefGoogle Scholar

  • [59] Seal K., Sarychev A. K., Noh H., Genov D. A., Yamilov A., Shalaev V. M., Ying Z. C., Cao H., Near-Field Intensity Correlations in Semicontinuous Metal-Dielectric Films, Phys Rev Lett 2005, 94, 226101. CrossrefGoogle Scholar

  • [60] Shalaev V. M., Nonlinear Optics of Random Media, Springer, Berlin, 2000. Google Scholar

  • [61] Sarychev A. K., Shalaev V. M., Electromagnetic field fluctuations and optical nonlinearities in metal-dielectric composites, Phys Rep 2000, 335, 275–371. CrossrefGoogle Scholar

  • [62] Bozhevolnyi S. I., Markel V. A., Coello V., Kim W., Shalaev V. M., Direct observation of localized dipolar excitations on rough nanostructured surfaces, Phys Rev B 1998, 58, 11441–11448. CrossrefGoogle Scholar

  • [63] Weitz D. A., Garoff S., Hanson C. D., Gramila T. J., Gersten J. I., Fluorescent lifetimes of molecules on silver-island films, Opt Lett 1982, 7, 89–91. CrossrefGoogle Scholar

  • [64] Zhang Y. X., Aslan K., Previte M. J. R., Geddes C. D., Metalenhanced fluorescence from copper substrates, Appl Phys Lett 2007, 90, 173116(1–3). CrossrefGoogle Scholar

  • [65] Szalkowski M., Ashraf K. U., Lokstein H.,Mackowski S., Cogdell R. J., Kowalska D., Silver island film substrates for ultrasensitive fluorescence detection of (bio)molecules, Photosynth Res 2015, DOI:10.1007/s11120-015-0178-x CrossrefGoogle Scholar

  • [66] Mishra H., Zhang Y. X., Geddes C. D., Metal enhanced fluorescence of the fluorescent brightening agent Tinopal-CBX near silver island film, Dyes and Pigments 2011, 91, 225–230. CrossrefGoogle Scholar

  • [67] Shalaev V. M., Poliakov E. Y., Markel V. A., Small-particle composites. II. Nonlinear optical properties, Phys Rev B 1996, 53, 2437–2449 and reference therein. CrossrefGoogle Scholar

  • [68] Karpov S. V., Gerasimov V. S., Isaev I. L., Markel V. A., Spectroscopic studies of fractal aggregates of silver nanospheres undergoing local restructuring, J Chem Phys 2006, 125, 111101–04. CrossrefGoogle Scholar

  • [69] Geddes C. D., Parfenov A., Roll D., Gryczynski I., Malicka J., Lakowicz J. R., Silver Fractal-like Structures for Metal- Enhanced Fluorescence: Enhanced Fluorescence Intensities and Increased Probe Photostabilities, J Fluoresc 2003, 13, 267– 276. CrossrefGoogle Scholar

  • [70] Shtoyko T., Matveeva E. G., Chang I. F., Gryczynski Z., Goldys E., Gryczynski I., Enhanced FluorescentImmunoassays on Silver Fractal-like Structures, Anal Chem 2008, 80, 1962–1966. CrossrefGoogle Scholar

  • [71] Dong J., Li X. Q., Zheng H. R., Yan X. Q., Sun Y., Zhang Z. L., Surface-enhanced fluorescence from silver fractallike nanostructures decorated with silver nanoparticles, Appl Opt 2011, 50, G123–126. CrossrefGoogle Scholar

  • [72] Dong J., Qu S. X., Zheng H. R., Zhang Z. L., Li J. N., Huo Y. P., Li G. A., Simultaneous PEF and SERRS from silver fractal-like nanostructure, Sensors and Actuators B: Chemical 2014, 191, 595–599. CrossrefGoogle Scholar

  • [73] Gu C., Zhang T., Electrochemical Synthesis of Silver Polyhedrons and Dendritic Films with Superhydrophobic Surfaces, Langmuir 2006, 24, 12010–12016. Google Scholar

  • [74] Dong J., Zheng H. R., Yan X. Q., Sun Y., Zhang Z. L., Fabrication of flower-like silver nanostructure on the Al substrate for surface enhanced fluorescence, Appl Phys Lett 2012, 100, 051112(1–3). CrossrefGoogle Scholar

  • [75] Ma N., Tang F.,Wang X. Y., He F., Li L. D., Tunable Metal-Enhanced Fluorescence by Stimuli-Responsive Polyelectrolyte Interlayer Films, Macromol Rapid Commun. 2011, 32, 587–589. Google Scholar

  • [76] Dulkeith E., Morteani A. C., Niedereichholz T., Klar T. A., Feldmann J., Levi S. A., Van Veggel F. C. J. M., Reinhoudt D. N., Möller M., Gittins D. I., Fluorescence Quenching of Dye Molecules near Gold Nanoparticles: Radiative and Nonradiative Effects, Phys Rev Lett 2002, 89, 203002(1–4). CrossrefGoogle Scholar

  • [77] Xie F., Baker M. S., Goldys E. M., Homogeneous Silver-Coated Nanoparticle Substrates for Enhanced Fluorescence Detection, J Phys Chem B 2006, 110, 23085–23091. CrossrefGoogle Scholar

  • [78] Aslan K., Holley P., Geddes C. D., Metal-enhanced fluorescence from silver nanoparticle-deposited polycarbonate substrates, J Mater Chem 2006, 16, 2846–2852. CrossrefGoogle Scholar

  • [79] Xu S., Cao Y., Zhou J., Wang X. N., Wang X., Xu W. Q., Plasmonic enhancement of fluorescence on silver nanoparticle films, Nanotechnology 2011, 22, 275715. CrossrefGoogle Scholar

  • [80] Cao S. H., Cai W. P., Liu Q., Xie K. X., Weng Y. H., Li Y. Q., Turning on fluorescence by plasmonic assembly with large tunable spacing: a new observation and its biosensing application, Chem Commun 2014, 50, 518-520. CrossrefGoogle Scholar

  • [81] Bek A., Jansen R., Ringler M., Mayilo S., Klar T. A., Feldmann J., Nano Lett 2008, 8, 485. CrossrefGoogle Scholar

  • [82] Zhang Z. L., Yang P. F., Xu H. X., Zheng H. R., Surface enhanced fluorescence and Raman scattering by gold nanoparticle dimers and trimers, J Appl Phys 2013, 113,033102(1–3). CrossrefGoogle Scholar

  • [83] Zhang Y. X., Dragan A., Geddes C. D., Wavelength Dependence of Metal-Enhanced Fluorescence, J. Phys Chem C 2009, 113, 12095–12100. CrossrefGoogle Scholar

  • [84] Zhang X., Marocico C. A., Lunz M., Gerard V. A., Gun’ko Y. K., Experimental and theoretical investigation of the distance dependence of localized surface Plasmon coupled Förster resonance energy transfer, ACS Nano 2014, 8, 1273–1283. CrossrefGoogle Scholar

  • [85] Bujak Ł., Olejnik M., Brotosudarmo T. H. P., Schmidt M. K., Czechowski N., Piatkowski D., Aizpurua J., Cogdell R. J., Heisse W., Mackowski S., Polarization control of metal-enhanced fluorescence in hybrid assemblies of photosynthetic complexes and gold nanorods, Phys Chem Chem Phys 2014, 16, 9015– 9022. CrossrefGoogle Scholar

  • [86] Reineck P., Gómez D., Ng S. H., Karg M., Bell T., Mulvaney P., Bach U., Distance and Wavelength Dependent Quenching of Molecular Fluorescence by Au@SiO2 Core-Shell Nanoparticles, ACS Nano 2013, 7(8), 6636–6648. CrossrefGoogle Scholar

  • [87] Cheng D., Xu Q. H., Separation distance dependent fluorescence enhancement of fluorescein isothiocyanate by silver nanoparticles, Chem Commun 2007, 3, 248–250. CrossrefGoogle Scholar

  • [88] Guerrero A. R., Aroca R. F., Surface-Enhanced Fluorescence with Shell-Isolated Nanoparticles(SHINEF), Angew Chem Int Ed 2011, 50, 665–668. CrossrefGoogle Scholar

  • [89] Abadeer N. S., Brennan M. R., Wilson W. L., Murphy C. J., Distance and Plasmon Wavelength Dependent Fluorescence of Molecules Bound to Silica-Coated Gold Nanorods, ACS Nano 2014, 8, 8392–8406. CrossrefGoogle Scholar

  • [90] Wang L., Song Q. W., Liu Q. L., He D. C., Ouyang J., Plasmon- Enhanced Fluorescence-Based Core–Shell Gold Nanorods as a near-IR Fluorescent Turn-On Sensor for the Highly Sensitive Detection of Pyrophosphate in Aqueous Solution, Adv FunctMater 2015, DOI: 10.1002/adfm.201503326 CrossrefGoogle Scholar

  • [91] Stöckle R. M., Suh Y. D., Deckert V., Zenobi R., Nanoscale chemical analysis by tip-enhanced Raman spectroscopy, Chem Phys Lett 2000, 318, 131–136. CrossrefGoogle Scholar

  • [92] Zhang R., Zhang Y., Dong Z. C., Jiang S., Zhang C., Chen L. G., Zhang L., Liao Y., Aizpurua J., Luo Y., Yang J. L., Hou J. G., Chemical mapping of a single molecule by plasmon-enhanced Raman scattering, Nature 2013, 498, 82–86. CrossrefGoogle Scholar

  • [93] Bailo E., Deckert V., Tip-Enhanced Raman Spectroscopy of Single RNA Strands: Towards a Novel Direct-Sequencing Method, Angew Chem Int Edit 2008, 47, 1658–1661. CrossrefGoogle Scholar

  • [94] Sun M. T., Zhang Z. L., Zheng H. R., Xu H. X., In-situ plasmon-driven chemical reactions revealed by high vacuum tip-enhanced Raman spectroscopy, Sci. Rep. 2012, 2, 647. Google Scholar

  • [95] Sun M. T., Zhang Z. L., Chen L., Sheng S. X., Xu H. X., Plasmonic Gradient Effects on High Vacuum Tip-Enhanced Raman Spectroscopy, Adv Optical Mater. 2014, 2, 74–80. CrossrefGoogle Scholar

  • [96] Snchez E. J., Novotny L., Xie X. S., Near-Field Fluorescence Microscopy Based on Two-Photon Excitation with Metal Tips, Phys Rev Lett 1999, 82, 4014–4017. CrossrefGoogle Scholar

  • [97] Betzig E., Trautman J. K., Near-Field Optics – Microscopy, Spectroscopy, and Surface Modification Beyond the Diffraction Limit, Science 1992, 257, 189–195. CrossrefGoogle Scholar

  • [98] Gerton J. M., Wade L. A., Lessard G. A., Ma Z., Quake S. R., Tipenhanced fluorescence microscopy at 10 nanometer resolution, Phys Rev Lett 2004, 93, 180801. Google Scholar

  • [99] Frey H. G., Witt S., Felderer K., Guckenberger R., High- Resolution Imaging of Single Fluorescent Molecules with the Optical Near-Field of a Metal Tip, Phys Rev Lett 2004, 93, 200801. CrossrefGoogle Scholar

  • [100] Dong Z. C., Guo X. L., Trifonov A. S., Dorozhkin P. S., Miki K., Vibrationally resolved fluorescence from organic molecules near metal surfaces in a scanning tunneling microscope, Phys Rev Lett 2004, 92, 086801. CrossrefGoogle Scholar

  • [101] Mauser N., Hartschuh A., Tip-enhanced near-field optical microscopy, Chem Soc Rev 2014, 43, 1248–1262. CrossrefGoogle Scholar

  • [102] Bharadwaj P., Deutsch B., Novotny L., Optical Antennas. Adv Opt Photonics 2009, 1, 438–483. CrossrefGoogle Scholar

  • [103] Anger P., Bharadwaj P., Novotny L., Enhancement and Quenching of Single-Molecule Fluorescence, Phys Rev Lett 2006, 96, 113002. CrossrefGoogle Scholar

  • [104] Hartschuh A., Beversluis M. R., Bouhelier A., Novotny L., Tipenhanced optical spectroscopy, Phil Trans R Soc Lond A 2004, 362, 807–819. CrossrefGoogle Scholar

  • [105] Ma Z. Y., Gerton J. M., Wade L. A., Quake S. R., Fluorescence near-field microscopy of DNA at sub-10 nm resolution, Phys Rev Lett. 2006, 97, 260801. Google Scholar

  • [106] Frey H. G., Paskarbeit J., Anselmetti D., Tip-enhanced single molecule fluorescence near-field microscopy in aqueous environment, Appl Phys Lett 2009, 94, 241116. CrossrefGoogle Scholar

  • [107] Hayazawa N., Furusawa K., Taguchi A., Abe H., Kawata S., Tipenhanced two-photon excited fluorescence microscopy with a silicon tip, Appl Phys Lett 2009, 94, 193112. CrossrefGoogle Scholar

  • [108] Hu D., Micic M., Klymyshyn N., Suh Y. D., Lu H. P., Correlated topographic and spectroscopic imaging beyond diffraction limit by atomic force microscopy metallic tip enhanced near field fluorescence lifetime microscopy, Rev Sci Instrum2003, 74, 3347– 3355. CrossrefGoogle Scholar

  • [109] Krug J. T., Sánchez E. J., Xie X. S., Fluorescence quenching in tip-enhanced nonlinear optical microscopy, Appl Phys Lett 2005, 87, 183101(1–3). Google Scholar

  • [110] Chiang N., Jiang N., Chulhai D. V., Pozzi E. A., Hersam M. C., Jensen L., Seideman T., Van Duyne R. P., Molecular-Resolution Interrogation of a Porphyrin Monolayer by Ultrahigh Vacuum Tip-Enhanced Raman and Fluorescence Spectroscopy, Nano Lett 2015, 15(6), 4114–4120. CrossrefGoogle Scholar

  • [111] Zhang H., Li Y. J., Ivanov I. A., Qu Y. Q., Huang Y., Duan X. F., Plasmonic modulation of the upconversion fluorescence in NaYF4:Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells, Angew Chem Int Ed 2011, 49, 2865–2868. Google Scholar

  • [112] Sudheendra L., Ortalan V., Dey S., Browning N. D., Kennedy I. M., Plasmonic Enhanced Emissions from Cubic NaYF4:Yb:Er/Tm Nanophosphors, Chem Mater 2011, 23, 2987–2993. CrossrefGoogle Scholar

  • [113] Lee K. T., Park J. H., Kwon S. J., et.al., Simultaneous Enhancement of Upconversion and Downshifting Luminescence via Plasmonic Structure, Nano Lett 2015, 15, 2491–2497. CrossrefGoogle Scholar

  • [114] Lin J. H., Liou H. Y., Wang C. D., Tseng C. Y., Lee C. T., Ting C. C., Kan H. C., Hsu C. C., Giant Enhancement of Upconversion Fluorescence of NaYF4:Yb3+,Tm3+ Nanocrystals with Resonant Waveguide Grating Substrate, ACS Photonics 2015, 2, 530–536. CrossrefGoogle Scholar

  • [115] Saboktakin M., Ye X., Chettiar U. K., Engheta N., Murray C. B., Kagan C. R., Plasmonic Enhancement of Nanophosphor Upconversion Luminescence in Au Nanohole Arrays, ACS Nano 2013, 7, 7186–7192. CrossrefGoogle Scholar

  • [116] Wang P. H., Li Z. Q., Salcedo W. J., Sun Z., Huang S. M., Brolo A. G., Surface plasmon enhanced up-conversion from NaYF4:Yb/Er/Gd nano-rods, Phys Chem Chem Phys 2015, 17, 16170–16177. CrossrefGoogle Scholar

  • [117] Sun Q. C.,Mundoor H., Ribot J. C., Singh V., Smalyukh I. I., Nagpal P., Plasmon-Enhanced Energy Transfer for Improved Upconversion of Infrared Radiation in Doped-Lanthanide Nanocrystals, Nano Lett 2014, 14, 101–106. CrossrefGoogle Scholar

  • [118] He E. J., Moskovits M., Dong J., Gao W., Han Q. Y., Zheng H. R., Liu N., Luminescence Enhancement Mechanism of Lanthanide- Doped Hybrid Nanostructures Decorated by Silver Nanocrystals, Plasmonics 2015, 10, 357–368. CrossrefGoogle Scholar

  • [119] Feng A. L., You M. L., Tian L., Singamaneni S., Liu M., Duan Z., Lu T. J., Xu F., Lin M., Distance-Dependent Plasmon-Enhanced Fluorescence of Upconversion Nanoparticles using polyelectrolyte Multilayers as Tunable Spacers, Scientific Reports 2014, 5, 7779. Google Scholar

  • [120] Schietinger S., Aichele T., Wang H. Q., Nann T., Benson O., Plasmon-Enhanced Upconversion in Single NaYF4:Yb3+/Er3+ Codoped Nanocrystals, Nano Lett 2010, 10, 134–138. CrossrefGoogle Scholar

  • [121] Mauser N., Piatkowski D.,Mancabelli T., Nyk M.,Mackowski S., Hartschuh A., Tip Enhancement of Upconversion Photoluminescence from Rare Earth Ion Doped Nanocrystals, ACS Nano 2015, 9, 3617–3626. CrossrefGoogle Scholar

About the article

Received: 2015-09-20

Accepted: 2015-11-13

Published Online: 2015-12-30


Citation Information: Nanophotonics, Volume 4, Issue 1, Pages 472–490, ISSN (Online) 2192-8614, ISSN (Print) 2192-8606, DOI: https://doi.org/10.1515/nanoph-2015-0028.

Export Citation

© 2015 J. Dong et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Guoqing Hu, Kai Guan, Libin Lu, Jiaru Zhang, Nie Lu, and Yingchun Guan
Engineering, 2018
[2]
Wenwen Zhang, Zhaoxin Wu, Jun Dong, Xuewen Yan, Wei Gao, Ruiqiong Ma, and Xun Hou
physica status solidi (a), 2018, Page 1800326
[3]
Lixia Zhou, Kuan-Jen Chen, Jacob D. Ramsey, C. Kyle Almlie, and Sean M. Burrows
The Journal of Physical Chemistry C, 2018
[4]
Yong Wei, Huan Pei, Li Li, and Yanying Zhu
Journal of Physics: Condensed Matter, 2018, Volume 30, Number 24, Page 245302
[5]
Jianxia Qi, Runcai Miao, Caixia Li, Mingdi Zhang, Yanni Wu, Chi Wang, and Jun Dong
Optics Communications, 2018, Volume 421, Page 19
[7]
Jiaming Chen, Longhua Guo, Bin Qiu, Zhenyu Lin, and Tie Wang
Materials Chemistry Frontiers, 2018
[8]
Qingyan Han, Wei Gao, Chengyun Zhang, Xiaohu Mi, Xing Zhao, Zhenglong Zhang, Jun Dong, and Hairong Zheng
Journal of Alloys and Compounds, 2018
[9]
[10]
Marcin Szalkowski, Karolina Sulowska, Justyna Grzelak, Joanna Niedziółka-Jönsson, Ewa Roźniecka, Dorota Kowalska, and Sebastian Maćkowski
Sensors, 2018, Volume 18, Number 1, Page 290
[11]
You Chen, Jianxia Qi, Wei Gao, Qingyan Han, Xuewen Yan, Xing Zhao, and Jun Dong
Optik - International Journal for Light and Electron Optics, 2018
[12]
Weihua Lin, Ying Shi, Xianzhong Yang, Jing Li, En Cao, Xuefeng Xu, Tonu Pullerits, Wenjie Liang, and Mengtao Sun
Materials Today Physics, 2017, Volume 3, Page 33
[13]
Lingyan Meng and Mengtao Sun
Photonics Research, 2017, Volume 5, Number 6, Page 745
[14]
Youyao Liu and Xiaoshan Yu
Applied Optics, 2017, Volume 56, Number 22, Page 6263
[15]
Victoria Benavente Llorente, Volodymyr M. Dzhagan, Nikolai Gaponik, Rodrigo A. Iglesias, Dietrich R. T. Zahn, and Vladimir Lesnyak
The Journal of Physical Chemistry C, 2017, Volume 121, Number 33, Page 18244
[16]
Hiroshi Sugimoto and Minoru Fujii
Advanced Optical Materials, 2017, Page 1700332
[17]
You Chen, Jun Dong, Wei Gao, Jianxia Qi, Xuewen Yan, and Xiangqiao Kong
Journal of Optics, 2017
[18]
Jeong-Eun Park, Jiyeon Kim, and Jwa-Min Nam
Chem. Sci., 2017, Volume 8, Number 7, Page 4696
[19]
Hiroshi Sugimoto, Yusuke Ozaki, and Minoru Fujii
ACS Applied Materials & Interfaces, 2017, Volume 9, Number 22, Page 19135
[20]
Qingyan Han, Longxiang Yan, Chengyun Zhang, Mindi Zhang, Tingting Zhang, and Hairong Zheng
Journal of Alloys and Compounds, 2017, Volume 715, Page 322
[21]
Feng Jin, Liang Xu, Mei-Ling Zheng, Jing-Xia Wang, Xian-Zi Dong, Zhen-Sheng Zhao, Yan-Lin Song, and Xuan-Ming Duan
RSC Adv., 2017, Volume 7, Number 32, Page 19737
[22]
Jianxia Qi, Runcai Miao, and Jun Dong
Optical Review, 2017, Volume 24, Number 3, Page 297
[23]
Hang Yuan, Jie Liu, Yuexiang Lu, Zhe Wang, Guoyu Wei, Tianhao Wu, Gang Ye, Jing Chen, Sichun Zhang, and Xinrong Zhang
Analytical Chemistry, 2017, Volume 89, Number 2, Page 1045
[24]
Zhaojin Wang, Chi Wang, Qingyan Han, Gang Wang, Mingdi Zhang, Jing Zhang, Wei Gao, and Hairong Zheng
Materials Research Bulletin, 2017, Volume 88, Page 182
[25]
Chengyun Zhang, Qingyan Han, Caixia Li, Mingdi Zhang, Longxiang Yan, and Hairong Zheng
Applied Optics, 2016, Volume 55, Number 32, Page 9131
[26]
Caixia Li, Chi Wang, Qingyan Han, Yanni Wu, and Hairong Zheng
Plasmonics, 2016
[27]
Zhenglong Zhang, Shaoxiang Sheng, Rongming Wang, and Mengtao Sun
Analytical Chemistry, 2016, Volume 88, Number 19, Page 9328
[28]
C Wang, C X Li, Y N Wu, Z J Wang, Q Y Han, H R Zheng, and J Dong
Journal of Physics: Condensed Matter, 2016, Volume 28, Number 35, Page 354002
[29]
Zhaojin Wang, Wei Gao, Ruibo Wang, Jun Shao, Qingyan Han, Chi Wang, Jing Zhang, Tingting Zhang, Jun Dong, and Hairong Zheng
Materials Research Bulletin, 2016, Volume 83, Page 515
[30]
Qingyan Han, Chengyun Zhang, Wei Gao, Zhihang Han, Tingzhuo Liu, Caixia Li, Zhaojin Wang, Enjie He, and Hairong Zheng
Sensors and Actuators B: Chemical, 2016, Volume 231, Page 609

Comments (0)

Please log in or register to comment.
Log in