Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Nanophotonics

Editor-in-Chief: Sorger, Volker

12 Issues per year


CiteScore 2017: 6.57

IMPACT FACTOR 2017: 6.014
5-year IMPACT FACTOR: 7.020


In co-publication with Science Wise Publishing

Open Access
Online
ISSN
2192-8614
See all formats and pricing
More options …
Volume 4, Issue 1

Luminescent tracks of high-energy photoemitted electrons accelerated by plasmonic fields

Marcel Di Vece
  • Corresponding author
  • Nanophotonics— Physics of Devices, Debye Institute for Nanomaterials Science, Utrecht University, P.O. Box 80000, 3508 TA Utrecht, The Netherlands
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Giorgos Giannakoudakis
  • Corresponding author
  • Nanophotonics— Physics of Devices, Debye Institute for Nanomaterials Science, Utrecht University, P.O. Box 80000, 3508 TA Utrecht, The Netherlands
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Astrid Bjørkøy
  • Corresponding author
  • Department of Physics, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Wingjohn Tang
  • Corresponding author
  • Nanophotonics— Physics of Devices, Debye Institute for Nanomaterials Science, Utrecht University, P.O. Box 80000, 3508 TA Utrecht, The Netherlands
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-12-30 | DOI: https://doi.org/10.1515/nanoph-2015-0029

Abstract

The emission of an electron from a metal nanostructure under illumination and its subsequent acceleration in a plasmonic field forms a platform to extend these phenomena to deposited nanoparticles, which can be studied by state-of-the-art confocal microscopy combined with femtosecond optical excitation. The emitted and accelerated electrons leave defect tracks in the immersion oil, which can be revealed by thermoluminescence. These photographic tracks are read out with the confocal microscope and have a maximum length of about 80 μm, which corresponds to a kinetic energy of about 100 keV. This energy is consistent with the energy provided by the intense laser pulse combined with plasmonic local field enhancement. The results are discussed within the context of the rescattering model by which electrons acquire more energy. The visualization of electron tracks originating from plasmonic field enhancement around a gold nanoparticle opens a new way to study with confocal microscopy both the plasmonic properties of metal nano objects as well as high energy electron interaction with matter.

This article offers supplementary material which is provided at the end of the article.

Keywords: Plasmonics; gold nanoparticle; femtosecond excitation; electron emission; luminescence; confocal microscopy

References

  • [1] Ozbay, E. Merging Photonics and Electronics at Nanoscale Dimensions. Science 2006;311:189-193. Google Scholar

  • [2] Novotny L. Hecht, B.; Principles of Nano-Optics, Cambridge University Press, 2008. Google Scholar

  • [3] Kauranen, M. Zayats, A.V. Nonlinear plasmonics. Nat. Photon. 2012;6:737. CrossrefGoogle Scholar

  • [4] Deeb, C. Zhou, X. Miller, R. Gray, S.K. Marguet, S. Plain, J. Wiederrecht, G.P. Bachelor, R. Size Dependence of the Plasmonic Near-Field Measured via Single-Nanoparticle Photoimaging. J. Phys. Chem. C 2012;116:24734-24740. CrossrefWeb of ScienceGoogle Scholar

  • [5] Ciracě, C. Hill, R.T. Mock, J.J. Urzhumov, Y. Fernández- Domínguez, A.I. Maier, S.A. Pendry, J.B. Chilkoti, A. Smith, D.R. Probing the Ultimate Limits of Plasmonic Enhancement. Science 2012;337:1072-1074. Web of ScienceGoogle Scholar

  • [6] Nie, S. Emory, S.R. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science 1997;275:1102-1106. Google Scholar

  • [7] Michaels, A.M. Jiang, J. Brus, L. Ag Nanocrystal Junctions as the Site for Surface-Enhanced Raman Scattering of Single Rhodamine 6G Molecules. J. Phys. Chem. B 2000;104:11965-11971. CrossrefGoogle Scholar

  • [8] García-Martín, A. Ward, D.R. Natelson, D. Cuevas, J.C. Field enhancement in subnanometer metallic gaps. Phys. Rev. B 2011;83:193404-193404-4. Web of ScienceCrossrefGoogle Scholar

  • [9] Nien, L.W. Lin, S.C. Chao, B.K. Chen, M.J. Li, J.H. Hsueh, C.H. Giant Electric Field Enhancement and Localized Surface Plasmon Resonance by Optimizing Contour Bowtie Nanoantennas. J. Phys. Chem. C 2013;117:25004-25011. CrossrefWeb of ScienceGoogle Scholar

  • [10] Hao E. Schatz, G.C. Electromagnetic fields around silver nanoparticles and dimers. J. Chem. Phys. 2004;120:357-366. Google Scholar

  • [11] Yurtsever A. Zewail, A.H. Direct Visualization of Near-Fields in Nanoplasmonics and Nanophotonics. Nano Lett. 2012;12:3334- 3338. Web of ScienceCrossrefGoogle Scholar

  • [12] Herink, G. Solli, D.R. Ropers, C. Field-driven photoemission from nanostructures quenches the quiver motion. Nature 2012;483:190-193. Web of ScienceGoogle Scholar

  • [13] Grubisic, A. Ringe, E. Cobley, C.M. Xia, Y.Marks, L.D. Van Duyne, R.P. Nesbitt, D.J. Plasmonic Near-Electric Field Enhancement Effects in Ultrafast Photoelectron Emission: Correlated Spatial and Laser Polarization Microscopy Studies of Individual Ag Nanocubes. Nano Lett. 2012;12:4823-4829. CrossrefWeb of ScienceGoogle Scholar

  • [14] Dombi, P. Hörl, A. Rácz, P. Márton, I. Trügler, A. Krenn, J.R. Hohenester, U. Ultrafast Strong-Field Photoemission from Plasmonic Nanoparticles. Nano Lett. 2013;13:674-678. CrossrefWeb of ScienceGoogle Scholar

  • [15] Einstein A. Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Ann. Phys. 1905;17:132-148. CrossrefGoogle Scholar

  • [16] Keldysh, L.V. Ionization in the Field of a Strong Electromagnetic Wave. Sov. Phys. JETP 1965;20:1307-1314. Google Scholar

  • [17] Zherebtsov, S. Fennel, T. Plenge, J. Antonsson, E. Znakovskaya1, I. Wirth, A. Herrwerth, O. Süßmann, F. Peltz, C. Ahmad, I. Trushin, S.A. Pervak, V. Karsch, S. Vrakking, M.J.J.J. Langer, B. Graf, C. Stockman, M.I. Krausz, F. Rühl, E. and Kling M.F. Controlled near field enhanced electron acceleration from dielectric nanospheres with intense few cycle laser fields. Nat. Phys.2011;7:656-662 Web of ScienceGoogle Scholar

  • [18] Süßmann F. Seiffert, L. Zherebtsov, S. Mondes, V. Stierle, J. Arbeiter, M. Plenge, J. Rupp, P. Peltz, C. Kessel, A. Trushin, S.A. Ahn, B. Kim, D. Graf, C. Rühl, E. Kling M.F. Fennel, T. Field propagation-induced directionality of carrier-envelope phasecontrolled photoemission from nanospheres. Nat. Commun. 2015;6:7944-7953 Web of ScienceCrossrefGoogle Scholar

  • [19] Passig, J. Irsig, R. Truong, N.X. Fennel, Th. Tiggesbäumker, J. Meiwes-Broer, K.H. Nanoplasmonic electron acceleration in silver clusters studied by angular-resolved electron spectroscopy. New J. Phys. 2012;14:085020-085020-13. CrossrefGoogle Scholar

  • [20] Davidovits, P. Egger, M.D. Scanning Laser Microscope. Nature 1969;223:831-831. Web of ScienceGoogle Scholar

  • [21] Haberland, H.Mail, M. Mossier, M. Oiang, Y. Reiners, T. Thurner, Y. Filling of micron-sized contact holes with copper by energetic cluster impact. J. Vac. Sci. Technol. A. 1994;12:2925-2930. CrossrefGoogle Scholar

  • [22] de Heer, W.A. The physics of simple metal clusters: experimental aspects and simple models. Rev. Mod. Phys. 1993;65:611- 676. CrossrefGoogle Scholar

  • [23] Wegner, K. Piseri, P. Tafreshi, H.V. Milani, P. Cluster beam deposition: a tool for nanoscale science and technology. J. Phys. D: Appl. Phys. 2006;39:R439–R459. CrossrefGoogle Scholar

  • [24] Polking, M.J. Umbach, C.C. Radiation-induced surface conductivity in an alkaline-earth boroaluminosilicate glass measured with elevated-temperature scanning probe microscopy. J. Am. Ceram. Soc. 2005;88:2442–2446. CrossrefGoogle Scholar

  • [25] Kreibig, U. Vollmer, M. Optical Properties of Metal Clusters. Springer, Berlin, 1995. Google Scholar

  • [26] Dulkeith, E. Niedereichholz, T. Klar, T.A. Feldmann, J. von Plessen, G. Gittins, D.I. Mayya, K.S. Caruso, F. Plasmon emission in photoexcited gold nanoparticles. Phys Rev. B. 2004;70:205424-205424-4. CrossrefGoogle Scholar

  • [27] Fennel, Th. Döppner, T. Passig, J. Schaal, Ch. Tiggesbäumker, J. Meiwes-Broer, K.H. Plasmon-Enhanced Electron Acceleration in Intense Laser Metal-Cluster Interactions. Phys. Rev. Lett. 2007;98:143401-143401-4. CrossrefGoogle Scholar

  • [28] Fang, Z. Zhen, Y.Z. Neumann, O. Polman, A. García de Abajo, F.J. Nordlander, P. Halas, N.J. Evolution of Light-Induced Vapor Generation at a Liquid-Immersed Metallic Nanoparticle. Nano Lett. 2013;13:1736-1742. Web of ScienceCrossrefGoogle Scholar

  • [29] Lukianova-Hleb,E. Hu, Y. Latterini, L. Tarpani, L. Lee, S. Drezek, R.A. Hafner, J.H. Lapotko, D.O. Plasmonic Nanobubbles as Transient Vapor Nanobubbles Generated around Plasmonic Nanoparticles. ACS Nano 2010;4:2109–2123. CrossrefWeb of ScienceGoogle Scholar

  • [30] Boustead, I. Charlesby, A. Thermoluminescence in polyethylene. I. Electron traps. Proc. Roy. Soc. Lond. A. 1970;316:291- 302. CrossrefGoogle Scholar

  • [31] Charlesby, A. Partridge, R.H. The thermoluminescence of irradiated polyethylene and other polymers. Proc. Roy. Soc. Lond. A., 1963;271:170-187. Google Scholar

  • [32] Linkens, A. Vanderschueren, J. Experimental studies on the relationship between thermoluminescence and molecular relaxation processes in polymers. Journal of Electrostatics, 1977;3:149-154. CrossrefGoogle Scholar

  • [33] Boustead, I, Thermoluminescence in polyethylene: II. Dose kinetics. Proc. Roy. Soc. Lond. A, 1970;318:459-471. Google Scholar

  • [34] Nyswander R.E. Cohn, B. Measurement of Thermoluminescence of glass exposed to light. J. Opt. Soc. A 1930;20:131-136. CrossrefGoogle Scholar

  • [35] Johns H.E, Laughlin J.S. Interaction of radiation with matter.In: Hine G, Brownell G, eds. Radiation Dosimetry.NewYork, NY: Academic Press; 1956;49. Google Scholar

  • [36] Thompson, A.C. Vaughan, D. Google Scholar

  • [Eds.], X-ray Data Booklet, second ed., Lawrence Berkeley National Laboratory, Berkeley, 2001. Google Scholar

  • [37] Herz, R.H. The Recording of Electron Tracks in Photographic Emulsions. Phys. Rev. 1949;75:479-485. Google Scholar

  • [38] Hofer, K.G. Biophysical Aspects of Auger Processes. Acta Oncologica 1996;35:189-196. Google Scholar

  • [39] Egerton, R.F.; Electron energy-loss spectroscopy in the TEM. Rep. Prog. Phys. 2009;72:016502-25. Web of ScienceCrossrefGoogle Scholar

  • [40] Hovington, P. Druiin, D. Gauvin, R. CASINO: A new Monte Carlo code in C language for electron beam interaction —part I: Description of the program. Scanning 1997;19:1–14. Google Scholar

  • [41] National Institute of Standards and Technology, estar database Google Scholar

  • [42] Herink, G. Solli, D.R. Ropers, C. Field-driven photoemission from nanostructures quenches the quiver motion. Nature 2012;483:190-193. Web of ScienceGoogle Scholar

  • [43] Muskens, O. Christofilos, D. Del Fatti, N. Vallée, F. Optical response of a single noble metal nanoparticle. J. Opt. A: Pure Appl. Opt. 2006;8:S264–S272. CrossrefGoogle Scholar

  • [44] Corkum, Plasma Perspective on Strong-Field Multiphoton Ionisation. Phys. Rev. Lett. 1993;71:1994-1997 CrossrefGoogle Scholar

  • [45] Saalman, U. Rost, J.M. Rescattering for Extended Atomic Systems. Phys. Rev. Lett. 2008;100: 133006-130007-4 CrossrefGoogle Scholar

  • [46] Fennel, Th. Meiwes-Broer, K.-H. Tiggesbäumker, J. Reinhard P.- G. Dinh P. M. and Suraud E. Laser-driven nonlinear cluster dynamics. Rev. Mod. Phys. 2010:82;1793-1842 Web of ScienceGoogle Scholar

  • [47] Herrmann, L.O. Valev, V.K. Tserkezis, C. Barnard, J.S. Kasera, S. Scherman, O.A. Aizpurua, J. Baumberg, J.J. Threading plasmonic nanoparticle strings with light. Nat. Commun. 2014;5:4568- 4568-6. Web of ScienceGoogle Scholar

About the article

Received: 2015-08-05

Accepted: 2015-11-11

Published Online: 2015-12-30


Citation Information: Nanophotonics, Volume 4, Issue 1, Pages 511–519, ISSN (Online) 2192-8614, ISSN (Print) 2192-8606, DOI: https://doi.org/10.1515/nanoph-2015-0029.

Export Citation

© 2015 Marcel Di Vece et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in