Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Editor-in-Chief: Sorger, Volker

IMPACT FACTOR 2018: 6.908
5-year IMPACT FACTOR: 7.147

CiteScore 2018: 6.72

In co-publication with Science Wise Publishing

Open Access
See all formats and pricing
More options …
Volume 5, Issue 1


Plasmonic hot carrier dynamics in solid-state and chemical systems for energy conversion

Prineha Narang
  • Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena CA 91125 USA
  • Thomas J. Watson Laboratories of Applied Physics, California Institute of Technology, Pasadena CA 91125 USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ravishankar Sundararaman
  • Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena CA 91125 USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Harry A. Atwater
  • Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena CA 91125 USA
  • Thomas J. Watson Laboratories of Applied Physics, California Institute of Technology, Pasadena CA 91125 USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-06-11 | DOI: https://doi.org/10.1515/nanoph-2016-0007


Surface plasmons provide a pathway to efficiently absorb and confine light in metallic nanostructures, thereby bridging photonics to the nano scale. The decay of surface plasmons generates energetic ‘hot’ carriers, which can drive chemical reactions or be injected into semiconductors for nano-scale photochemical or photovoltaic energy conversion. Novel plasmonic hot carrier devices and architectures continue to be demonstrated, but the complexity of the underlying processes make a complete microscopic understanding of all the mechanisms and design considerations for such devices extremely challenging.Here,we review the theoretical and computational efforts to understand and model plasmonic hot carrier devices.We split the problem into three steps: hot carrier generation, transport and collection, and review theoretical approaches with the appropriate level of detail for each step along with their predictions.We identify the key advances necessary to complete the microscopic mechanistic picture and facilitate the design of the next generation of devices and materials for plasmonic energy conversion.


  • [1] John Pendry. Playing tricks with light. Science, 285(5434):1687-1688, 09 1999.Google Scholar

  • [2] William L. Barnes, Alain Dereux, and Thomas W. Ebbesen. Surface plasmon subwavelength optics. Nature, 424(6950):824-830, 08 2003.Google Scholar

  • [3] Jon A. Schuller, Edward S. Barnard, Wenshan Cai, Young Chul Jun, Justin S. White, and Mark L. Brongersma. Plasmonics for extreme light concentration and manipulation. Nat Mater, 9(3):193-204, 03 2010.Google Scholar

  • [4] Stefan Alexander Maier. Plasmonics: fundamentals and applications. Springer Science and Business Media, 2007.Google Scholar

  • [5] E. Altewischer, M. P. van Exter, and J. P. Woerdman. Plasmonassisted transmission of entangled photons. Nature, 418(6895):304-306, 07 2002.Google Scholar

  • [6] Dmitri K. Gramotnev and Sergey I. Bozhevolnyi. Plasmonics beyond the diffraction limit. Nat Photon, 4(2):83-91, 02 2010.Google Scholar

  • [7] D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin. Quantum optics with surface plasmons. Phys. Rev. Lett., 97:053002, Aug 2006.CrossrefGoogle Scholar

  • [8] A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature, 450(7168):402-406, 11 2007.Google Scholar

  • [9] Darrick E. Chang, Anders S. Sorensen, Eugene A. Demler, and Mikhail D. Lukin. A single-photon transistor using nanoscale surface plasmons. Nat Phys, 3(11):807-812, 11 2007.Google Scholar

  • [10] D.C. Marinica, A.K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov. Quantum plasmonics: Nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer. Nano Letters, 12(3):1333-1339, 2012.CrossrefGoogle Scholar

  • [11] Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev. Exciton-plasmon-photon conversion in plasmonic nanostructures. Physical Review Letters, 99(13):136802-, 09 2007.CrossrefGoogle Scholar

  • [12] Z. Fang. Graphene-antenna sandwich photodetector. Nano Lett., 12:3808-3813, 2012.CrossrefGoogle Scholar

  • [13] Zheyu Fang, Yumin Wang, Zheng Liu, Andrea Schlather, Pulickel M. Ajayan, Frank H. L. Koppens, Peter Nordlander, and Naomi J. Halas. Plasmon-induced doping of graphene. ACS Nano, 6(11):10222-10228, 2014/08/28 2012.Google Scholar

  • [14] Vincenzo Giannini, Antonio I. Fernández-Domínguez, Susannah C. Heck, and Stefan A. Maier. Plasmonic nanoantennas: Fundamentals and their use in controlling the radiative properties of nanoemitters. Chemical Reviews, 111(6):3888-3912, 2014/08/28 2011.Google Scholar

  • [15] H. Chalabi, D. Schoen, and M. Brongersma. Hot-electron photodetection with a plasmonic nanostripe antenna. Nano Lett., 14:1374-1380, 2014.CrossrefGoogle Scholar

  • [16] Harry A. Atwater and Albert Polman. Plasmonics for improved photovoltaic devices. Nat Mater, 9(3):205-213, 03 2010.Google Scholar

  • [17] Eric W. McFarland and Jing Tang. A photovoltaic device structure based on internal electron emission. Nature, 421(6923):616-618, 02 2003.Google Scholar

  • [18] Giuliana Di Martino, Yannick Sonnefraud, Stéphane Kéna- Cohen, Mark Tame, Şahin K. Özdemir, M. S. Kim, and Stefan A. Maier. Quantum statistics of surface plasmon polari tons in metallic stripe waveguides. Nano Letters, 12(5):2504-2508, 2014/10/20 2012.Google Scholar

  • [19] G. Di Martino, Y. Sonnefraud, M. S. Tame, S. Kéna-Cohen, F. Dieleman, Ş. K. Özdemir, M. S. Kim, and S. A. Maier. Observation of quantum interference in the plasmonic hong-oumandel effect. Phys. Rev. Applied, 1:034004, Apr 2014.CrossrefGoogle Scholar

  • [20] James S. Fakonas, Hyunseok Lee, Yousif A. Kelaita, and Harry A. Atwater. Two-plasmon quantum interference. Nat Photon, 8(4):317-320, 04 2014.Google Scholar

  • [21] M. S. Tame, K. R. McEnery, S. K. Ozdemir, J. Lee, S. A. Maier, and M. S. Kim. Quantum plasmonics. Nat Phys, 9(6):329-340, 06 2013.CrossrefGoogle Scholar

  • [22] M. S. Tame, C. Lee, J. Lee, D. Ballester, M. Paternostro, A. V. Zayats, and M. S. Kim. Single-photon excitation of surface plasmon polaritons. Physical Review Letters, 101(19):190504-, 11 2008.CrossrefGoogle Scholar

  • [23] D. Ballester, M. S. Tame, C. Lee, J. Lee, and M. S. Kim. Longrange surface-plasmon-polariton excitation at the quantum level. Physical Review A, 79(5):053845-, 05 2009.CrossrefGoogle Scholar

  • [24] S. Kuhn, U. Hakanson, L. Rogobete, and V. Sandoghdar. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett., 97:017402, 2006.CrossrefGoogle Scholar

  • [25] Pascal Anger, Palash Bharadwaj, and Lukas Novotny. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett., 96:113002, Mar 2006.CrossrefGoogle Scholar

  • [26] R. D. Artuso and G. W. Bryant. Strongly coupled quantum dot-metal nanoparticle systems: exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects. Phys. Rev. B, 82:195419, 2010.CrossrefGoogle Scholar

  • [27] Shaunak Mukherjee, Florian Libisch, Nicolas Large, Oara Neumann, Lisa V. Brown, Jin Cheng, J. Britt Lassiter, Emily A. Carter, Peter Nordlander, and Naomi J. Halas. Hot electrons do the impossible: Plasmon-induced dissociation of h2 on au. Nano Letters, 13(1):240-247, 2013/07/23 2012.CrossrefGoogle Scholar

  • [28] Yukina Takahashi and Tetsu Tatsuma. Solid state photovoltaic cells based on localized surface plasmon-induced charge separation. Applied Physics Letters, 99(18):182110-3, 10 2011.CrossrefGoogle Scholar

  • [29] Fuming Wang and Nicholas A. Melosh. Plasmonic energy collection through hot carrier extraction. Nano Letters, 11(12):5426-5430, 2013/07/23 2011.Google Scholar

  • [30] P. James Schuck. Nanoimaging: Hot electrons go through the barrier. Nat Nano, 8(11):799-800, 11 2013.CrossrefGoogle Scholar

  • [31] Syed Mubeen, Joun Lee, Nirala Singh, Stephan Kramer, Galen D. Stucky, and Martin Moskovits. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat Nano, 8(4):247-251, 04 2013.CrossrefGoogle Scholar

  • [32] Suljo Linic, Phillip Christopher, and David B. Ingram. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater, 10(12):911-921, 12 2011.CrossrefGoogle Scholar

  • [33] S. Mubeen, G. Hernandez-Sosa, D. Moses, J. Lee, and M. Moskovits. Plasmonic photosensitization of a wide band gap semiconductor: converting plasmons to charge carriers. Nano Lett., 11:5548-5552, 2011.CrossrefGoogle Scholar

  • [34] J. Adleman, D. Boyd, D. Goodwin, and D. Psaltis. Heterogenous catalysis mediated by plasmon heating. Nano Lett., 9:4417-4423, 2009. CrossrefGoogle Scholar

  • [35] K. Awazu. Plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. J. Am. Chem. Soc., 130:1676-1680, 2008.CrossrefGoogle Scholar

  • [36] L. Brus. Noble metal nanocrystals: Plasmon electron transfer photochemistry and single-molecule raman spectroscopy. Acc. Chem. Res., 41:1742-1749, 2008.CrossrefGoogle Scholar

  • [37] S. Buntin, L. Richter, R. Cavanagh, and D. King. Optically driven surface reactions: Evidence for the role of hot electrons. Phys. Rev. Lett., 61:1321-1324, 1988.CrossrefGoogle Scholar

  • [38] P. Christopher, D. B. Ingram, and S. Linic. Enhancing photochemical activity of semiconductor nanoparticles with optically active ag nanostructures: Photochemistry mediated by ag surface plasmons. J. Phys. Chem. C, 19:9173-9177, 2010.CrossrefGoogle Scholar

  • [39] P. Christopher, H. Xin, and S. Linic. Visible light enhanced catalytic oxidation reactions on plasmonic ag nanostructures. Nature Chem., 3:467-472, 2011.Google Scholar

  • [40] J-J. Chen, J. C. S. Wu, P. C. Wu, and D. P. Tsai. Plasmonic photocatalyst for h2 evolution in photocatalytic water splitting. J. Phys. Chem. C, 115:210-216, 2011.CrossrefGoogle Scholar

  • [41] S. K. Cushing. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J. Am. Chem. Soc, 134:15033-15041, 2012.CrossrefGoogle Scholar

  • [42] S. K. Cushing and N. Q. Wu. Plasmon-enhanced solar energy harvesting. Interface, 22:63-67, 2013.Google Scholar

  • [43] C. Frischkorn and M. Wolf. Femtochemistry at metal surfaces: Nonadiabatic reaction dynamics. Chem. Rev., 106:4207-4233, 2006.CrossrefGoogle Scholar

  • [44] Cesar Clavero. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat Photon, 8(2):95-103, 02 2014.CrossrefGoogle Scholar

  • [45] Martin Moskovits. The case for plasmon-derived hot carrier devices. Nat Nano, 10(1):6-8, 01 2015.CrossrefGoogle Scholar

  • [46] Mark L. Brongersma, Naomi J. Halas, and Peter Nordlander. Plasmon-induced hot carrier science and technology. Nat Nano, 10(1):25-34, 01 2015.Google Scholar

  • [47] Viktoriia E. Babicheva, Sergei V. Zhukovsky, Renat Sh. Ikhsanov, Igor E. Protsenko, Igor V. Smetanin, and Alexander Uskov. Hot electron photoemission from plasmonic nanostructures: The role of surface photoemission and transition absorption. ACS Photonics, 07 2015.Google Scholar

  • [48] Hui Zhang and Alexander O. Govorov. Optical generation of hot plasmonic carriers in metal nanocrystals: The effects of shape and field enhancement. The Journal of Physical Chemistry C, 118(14):7606-7614, 2014.CrossrefGoogle Scholar

  • [49] Bob Y. Zheng, Hangqi Zhao, Alejandro Manjavacas, Michael McClain, Peter Nordlander, and Naomi J. Halas. Distinguishing between plasmon-induced and photoexcited carriers in a device geometry. Nat Commun, 6, 07 2015.Google Scholar

  • [50] Zubin Jacob and Vladimir M. Shalaev. Plasmonics goes quantum. Science, 334(6055):463-464, 10 2011.Google Scholar

  • [51] Denis Jacquemin, Benedetta Mennucci, and Carlo Adamo. Excited-state calculations with td-dft: from benchmarks to simulations in complex environments. Physical Chemistry Chemical Physics, 13(38):16987-16998, 2011.CrossrefGoogle Scholar

  • [52] J D Whitfield, M-H Yung, D G Tempel, S Boixo, and A Aspuru- Guzik. Computational complexity of time-dependent density functional theory. New Journal of Physics, 16(8):083035, 2014. CrossrefGoogle Scholar

  • [53] P. Song, P. Nordlander, and S. Gao. Quantum mechanical study of the coupling of plasmon excitations to atomic-scale electron transport. J Chem Phys, 134(7):074701, Feb 2011.Google Scholar

  • [54] J. Zuloaga, E. Prodan, and P. Nordlander. Quantum description of the plasmon resonances of a nanoparticle dimer. Nano Lett., 9(2):887-891, Feb 2009.CrossrefGoogle Scholar

  • [55] A. Manjavacas, F. J. Garcia de Abajo, and P. Nordlander. Quantum plexcitonics: strongly interacting plasmons and excitons. Nano Lett., 11(6):2318-2323, Jun 2011.CrossrefGoogle Scholar

  • [56] Ruben Esteban, Andrei G. Borisov, Peter Nordlander, and Javier Aizpurua. Bridging quantum and classical plasmonics with a quantum-corrected model. Nat Commun, 3:825, 05 2012.CrossrefGoogle Scholar

  • [57] Jun Yan, Karsten W. Jacobsen, and Kristian S. Thygesen. Conventional and acoustic surface plasmons on noble metal surfaces: A time-dependent density functional theory study. Phys. Rev. B, 86:241404, Dec 2012.CrossrefGoogle Scholar

  • [58] Christine M. Aikens, Shuzhou Li, and George C. Schatz. From discrete electronic states to plasmons: Tddft optical absorption properties of ag n ( n = 10, 20, 35, 56, 84, 120) tetrahedral clusters. The Journal of Physical Chemistry C, 112(30):11272-11279, 07 2008.Google Scholar

  • [59] Nicola Durante, Alessandro Fortunelli, Michel Broyer, and Mauro Stener. Optical properties of au nanoclusters from td-dft calculations. The Journal of Physical Chemistry C, 115(14):6277-6282, 2013/11/11 2011.Google Scholar

  • [60] Gyun-Tack Bae and Christine M. Aikens. Time-dependent density functional theory studies of optical properties of au nanoparticles: Octahedra, truncated octahedra, and icosahedra. The Journal of Physical Chemistry C, 09 2015.Google Scholar

  • [61] P. Bharadwaj, B. Deutsch, and L. Novotny. Optical antennas. Adv. Opt. Photon., 1:438-483, 2009.CrossrefGoogle Scholar

  • [62] L. Landau. On the vibration of the electronic plasma. J. Phys. USSR, 10, 1946.Google Scholar

  • [63] Alexander O. Govorov, Hui Zhang, and Yurii K. Gun’ko. Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules. The Journal of Physical Chemistry C, 117(32):16616-16631, 2013/11/11 2013.Google Scholar

  • [64] Alejandro Manjavacas, Jun G. Liu, Vikram Kulkarni, and Peter Nordlander. Plasmon-induced hot carriers in metallic nanoparticles. ACS Nano, 8(8):7630-7638, 2014/08/28 2014.CrossrefGoogle Scholar

  • [65] A. O. Govorov, H. Zhang, H. V. Demir, and Y. K. Gun’ko. Photogeneration of hot plasmonic electrons with metal nanocrystals: Quantum description and potential applications. Nano Today, 9:85-101, 2014.CrossrefGoogle Scholar

  • [66] Ravishankar Sundararaman, Prineha Narang, Adam S. Jermyn, William A. Goddard III, and Harry A. Atwater. Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat. Commun., 5:5788, 2014.CrossrefGoogle Scholar

  • [67] Ana M. Brown, Ravishankar Sundararaman, Prineha Narang, III William A. Goddard, and Harry A. Atwater. Nonradiative plasmon decay and hot carrier dynamics: Effects of phonons, surfaces, and geometry. ACS Nano, 10:957, 2016.Google Scholar

  • [68] M. Bernardi, J. Mustafa, J.B. Neaton, and S.G. Louie. Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals. Nat. Commun., In press, 2015.Google Scholar

  • [69] Jesse Noffsinger, Emmanouil Kioupakis, Chris G. Van de Walle, Steven G. Louie, and Marvin L. Cohen. Phononassisted optical absorption in silicon from first principles. Phys. Rev. Lett., 108:167402, Apr 2012.CrossrefGoogle Scholar

  • [70] Emmanouil Kioupakis, Patrick Rinke, André Schleife, Friedhelm Bechstedt, and Chris G. Van de Walle. Free-carrier absorption in nitrides from first principles. Phys. Rev. B, 81:241201, Jun 2010.CrossrefGoogle Scholar

  • [71] Carlo Jacoboni. Theory of Electron Transport in Semiconductors. Springer Series in Solid-State Sciences. Springer-Verlag Berlin Heidelberg, 2010.Google Scholar

  • [72] F. Chen and N. J. Tao. Electron transport in single molecules: From benzene to graphene. Accounts of Chemical Research, 42(3):429-438, 2009. PMID: 19253984.Google Scholar

  • [73] R Landauer. Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM Journal of Research and Development, 1(3):223-231, 1957.CrossrefGoogle Scholar

  • [74] A Nitzan and MA Ratner. Electron transport in molecular wire junctions. SCIENCE, 300(5624):1384-1389, MAY 30 2003.Google Scholar

  • [75] The Boltzmann Equation and Its Applications. Applied Mathematical Sciences. Springer New York, 1988.Google Scholar

  • [76] Carlo Jacoboni and Lino Reggiani. The monte carlo method for the solution of charge transport in semiconductors with applications to covalent materials. Rev. Mod. Phys., 55:645-705, Jul 1983.Google Scholar

  • [77] Gregory V. Hartland. Optical studies of dynamics in noble metal nanostructures. Chemical Reviews, 111(6):3858-3887, 06 2011.Google Scholar

  • [78] Hayk Harutyunyan, Alex B. F. Martinson, Daniel Rosenmann, Larousse Khosravi Khorashad, Lucas V. Besteiro, Alexander O. Govorov, and Gary P. Wiederrecht. Anomalous ultrafast dynamics of hot plasmonic electrons in nanostructures with hot spots. Nat Nano, 10(9):770-774, 09 2015.CrossrefGoogle Scholar

  • [79] Florian Ladstädter, Ulrich Hohenester, Peter Puschnig, and Claudia Ambrosch-Draxl. First-principles calculation of hotelectron scattering in metals. Phys. Rev. B, 70:235125, Dec 2004.CrossrefGoogle Scholar

  • [80] Zhibin Lin, Leonid V. Zhigilei, and Vittorio Celli. Electronphonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium. Phys. Rev. B, 77:075133, Feb 2008.Google Scholar

  • [81] A. Brown, R. Sundararaman, P. Narang, W. A. Goddard III, and H. A. Atwater. Ab initio phonon coupling and optical response of hot electrons in plasmonic metals. preprint: arXiv:1602.00625Google Scholar

  • [82] Ashutosh Giri, John T. Gaskins, Brian M. Foley, Ramez Cheaito, and Patrick E. Hopkins. Experimental evidence of excited electron number density and temperature effects on electron-phonon coupling in gold films. Journal of Applied Physics, 117(4):-, 2015.Google Scholar

  • [83] N. Del Fatti, C. Voisin, M. Achermann, S. Tzortzakis, D. Christofilos, and F. Vallée. Nonequilibrium electron dynamics in noble metals. Phys. Rev. B, 61:16956-16966, Jun 2000.CrossrefGoogle Scholar

  • [84] E. Carpene. Ultrafast laser irradiation of metals: Beyond the two-temperature model. Phys. Rev. B, 74:024301, Jul 2006.CrossrefGoogle Scholar

  • [85] Talin Avanesian and Phillip Christopher. Adsorbate specificity in hot electron driven photochemistry on catalytic metal surfaces. The Journal of Physical Chemistry C, 118(48):28017-28031, 2014. CrossrefGoogle Scholar

  • [86] Hamidreza Chalabi, David Schoen, and Mark L. Brongersma. Hot-electron photodetection with a plasmonic nanostripe antenna. Nano Letters, 14(3):1374-1380, 2014. PMID: 24502677.Google Scholar

  • [87] A. J. Leenheer, P. Narang, N. S. Lewis, and H. A. Atwater. Solar energy conversion via hot electron internal photoemission in metallic nanostructures: efficiency estimates. J. Appl. Phys., 115:134301, 2014.CrossrefGoogle Scholar

  • [88] K. Wu, J. Chen, J. R. McBride, and T. Lian. Efficient hotelectron transfer by a plasmon-induced interfacial chargetransfer transition. Science, 349(6248):632-635, 08 2015.Google Scholar

  • [89] Suljo Linic, Umar Aslam, Calvin Boerigter, and Matthew Morabito. Photochemical transformations on plasmonic metal nanoparticles. Nat Mater, 14(6):567-576, 06 2015.CrossrefGoogle Scholar

  • [90] R. H. Fowler. The analysis of photoelectric sensitivity curves for clean metals at various temperatures. Physical Review, 38(1):45-56, 07 1931.CrossrefGoogle Scholar

  • [91] V. L. Dalal. Simple model for internal photoemission. J. Appl. Phys., 42:2274-2279, 1971.CrossrefGoogle Scholar

  • [92] Mark W. Knight, Heidar Sobhani, Peter Nordlander, and Naomi J. Halas. Photodetection with active optical antennas. Science, 332(6030):702-704, 05 2011.Google Scholar

  • [93] Mark W. Knight, Yumin Wang, Alexander S. Urban, Ali Sobhani, Bob Y. Zheng, Peter Nordlander, and Naomi J. Halas. Embedding plasmonic nanostructure diodes enhances hot electron emission. Nano Letters, 13(4):1687-1692, 2013/07/23 2013.Google Scholar

  • [94] D. Peters. An infrared detector utilizing internal photoemission. Proc. IEEE, 55:704-705, 1967.CrossrefGoogle Scholar

  • [95] A Sobhani. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device. Nature Commun., 4:1643, 2013.CrossrefGoogle Scholar

  • [96] D. G. Busch and W. Ho. Direct observation of the crossover from single to multiple excitations in femtosecond surface photochemistry. Phys. Rev. Lett., 77:1338-1341, 1996.CrossrefGoogle Scholar

  • [97] Dietrich Menzel and Robert Gomer. Desorption from metal surfaces by low-energy electrons. The Journal of Chemical Physics, 41(11):3311-3328, 1964.CrossrefGoogle Scholar

  • [98] D. N. Denzler, C. Frischkorn, C. Hess, M. Wolf, and G. Ertl. Electronic excitation and dynamic promotion of a surface reaction. Phys. Rev. Lett., 91:226102, 2003.CrossrefGoogle Scholar

  • [99] R. A. Wolkow and M. Moskovits. Enhanced photochemistry on silver surfaces. J. Chem. Phys., 87:5858-5869, 1987.Google Scholar

  • [100] S. Mubeen. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nature Nanotechnol, 8:247-251, 2013.CrossrefGoogle Scholar

  • [101] S. Linic, P. Christopher, and D. B. Ingram. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nature Mater., 10:911-921, 2011.CrossrefGoogle Scholar

  • [102] W. J. Youngblood. Photoassisted overall water splitting in a visible light-absorbing dye-sensitized photoelectrochemical cell. J. Am. Chem. Soc., 131:926-927, 2009.CrossrefGoogle Scholar

  • [103] X. Zhang. Experimental and theoretical investigation of the distance dependence of localized surface plasmon coupled förster resonance energy transfer. ACS Nano, 8:1273-1283, 2014.CrossrefGoogle Scholar

  • [104] Takashi Fuse, Toshiaki Fujino, Jeong-Tak Ryu, Mitsuhiro Katayama, and Kenjiro Oura. Electron-stimulated desorption of hydrogen from h/si(001)-1×1 surface studied by time of-flight elastic recoil detection analysis. Surface Science, 420(1):81-86, 1 1999.Google Scholar

  • [105] J. W. Gadzuk, L. J. Richter, S. A. Buntin, D. S. King, and R. R. Cavanagh model applied to no/pt(111). Surf.Sci., 235:317-333, 1990CrossrefGoogle Scholar

  • [106] J. W. Gadzuk. Hot-electron femtochemistry at surfaces: on the role of multiple electron processes in desorption. Chem. Phys., 251:87-97, 2000.CrossrefGoogle Scholar

  • [107] J-P Gauyacq, A G Borisov, and A K Kazansky. Theoretical study of excited electronic states at surfaces, link with photo-emission and photo-desorption experiments. Journal of Physics: Conference Series, 133(1):012009, 2008.Google Scholar

  • [108] S. R. Hatch, X-Y. Zhu, J. M. White, and A. Campion. Photoinduced pathways to dissociation and desorption of dioxygen on ag(110) and pt(111). J. Phys Chem., 95:1759-1768, 1991.CrossrefGoogle Scholar

  • [109] K. Fukutani and Y. Murata. Photoexcited processes at metal and alloy surfaces: electronic structure and adsorption site. Surface Science, 390(1-3):164-173, 11 1997.Google Scholar

  • [110] P. Avouris and R. E. Walkup. Fundamental mechanisms of desorption and fragmentation induced by electronic transitions at surfaces. Annu. Rev. Phys. Chem., 40:173-206, 1989.CrossrefGoogle Scholar

  • [111] M. Bonn. Phonon- versus electron-mediated desorption and oxidation of co on ru(0001). Science, 285:1042-1045, 1999.Google Scholar

  • [112] W. D. Mieher and W. Ho. Bimolecular surface photochemistry: mechanisms of co oxidation on pt(111) at 85 k. J. Chem. Phys., 99:9279-9295, 1993.Google Scholar

  • [113] J. A. Misewich, S. Nakabayashi, P. Weigand, M. Wolf, and T. F. Heinz. Anomalous branching ratio in the femtosecond surface chemistry of o2pd(111). Surface Science, 363(1-3):204-213, 8 1996.Google Scholar

  • [114] J. A. Prybyla, T. F. Heinz, J. A. Misewich, M. M. T. Loy, and J. H. Glownia. Desorption induced by femtosecond laser pulses. Phys. Rev. Lett., 64:1537-1540, 1990.CrossrefGoogle Scholar

  • [115] W. Ho. Reactions at metal surfaces induced by femtosecond lasers, tunneling electrons and heating. J. Phys. Chem., 100:13050-13060, 1996.CrossrefGoogle Scholar

  • [116] P. Christopher, H. Xin, A. Marimuthu, and S. Linic. Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. Nature Mater., 11:1044-1050, 2012.Google Scholar

  • [117] T. Olsen, J. Gavnholt, and J. Schiotz. Hot-electron-mediated desorption rates calculated from excited state potential energy surfaces. Phys. Rev. B, 79:035403, 2009.CrossrefGoogle Scholar

  • [118] T. Olsen and J. Schiotz. Origin of power laws for reactions at metal surfaces mediated by hot electrons. Phys. Rev. Lett., 103:238301, 2009.CrossrefGoogle Scholar

  • [119] J. Gavnholt, A. Rubio, T. Olsen, K. Thygesen, and J. Schiotz. Hot-electron-assisted femtochemistry at surfaces: A timedependent density functional theory approach. Phys. Rev. B, 79:195405, 2009.CrossrefGoogle Scholar

  • [120] Peter Elliott and Neepa T. Maitra. Propagation of initially excited states in time-dependent density-functional theory. Phys. Rev. A, 85:052510, May 2012.CrossrefGoogle Scholar

  • [121] Hideyuki Inouye, Koichiro Tanaka, Ichiro Tanahashi, and Kazuyuki Hirao. Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system. Phys. Rev. B, 57:11334-11340, May 1998. CrossrefGoogle Scholar

  • [122] G. Baffou, R. Quidant, and C. Girard. Heat generation in plasmonic nanostructures: Influence of morphology. Appl. Phys. Lett., 94:153109, 2009.CrossrefGoogle Scholar

  • [123] G. Baffou, R. Quidant, and F. J. Garcia de Abajo. Nanoscale control of optical heating in complex plasmonic systems. ACS Nano, 4:709-716, 2010.CrossrefGoogle Scholar

  • [124] D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit. Photothermal imaging of nanometer-sized metal particles among scatterers. Science, 297:1160-1163, 2002.CrossrefGoogle Scholar

  • [125] Hrvoje Petek, Miles J. Weida, Hisashi Nagano, and Susumu Ogawa. Real-time observation of adsorbate atom motion above a metal surface. Science, 288(5470):1402-1404, 2000.Google Scholar

  • [126] Hrvoje Petek. Photoexcitation of adsorbates on metal surfaces: One-step or three-step. The Journal of Chemical Physics, 137(9), 2012.Google Scholar

  • [127] Matthew J. Kale, Talin Avanesian, Hongliang Xin, Jun Yan, and Phillip Christopher. Controlling catalytic selectivity on metal nanoparticles by direct photoexcitation of adsorbate-metal bonds. Nano Letters, 14(9):5405-5412, 09 2014.Google Scholar

  • [128] Run Long and Oleg V Prezhdo. Instantaneous generation of charge-separated state on tio2 surface sensitized with plasmonic nanoparticles. Journal of the American Chemical Society, 136(11):4343-4354, 03 2014. Google Scholar

About the article

Received: 2015-10-22

Accepted: 2016-01-14

Published Online: 2016-06-11

Published in Print: 2016-06-01

Citation Information: Nanophotonics, Volume 5, Issue 1, Pages 96–111, ISSN (Online) 2192-8614, ISSN (Print) 2192-8606, DOI: https://doi.org/10.1515/nanoph-2016-0007.

Export Citation

© 2016. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Cheng Zhang, Qinyu Qian, Linling Qin, Xin Zhu, Chinhua Wang, and Xiaofeng Li
ACS Photonics, 2018
Xinyuan You, S. Ramakrishna, and Tamar Seideman
The Journal of Chemical Physics, 2018, Volume 149, Number 17, Page 174304
Cheng Zhang, Guoyang Cao, Shaolong Wu, Weijia Shao, Vincenzo Giannini, Stefan A. Maier, and Xiaofeng Li
Nano Energy, 2018
Jonathan C. Luque-Ceballos, Luca Sementa, Edoardo Aprà, Alessandro Fortunelli, and Alvaro Posada-Amarillas
The Journal of Physical Chemistry C, 2018
Xu Li, Chenjie Zhang, Qian Wu, Jing Zhang, Minmin Xu, Yaxian Yuan, and Jianlin Yao
Journal of Raman Spectroscopy, 2018
Lang Shen, George N. Gibson, Nirakar Poudel, Bingya Hou, Jihan Chen, Haotian Shi, Ernest Guignon, Nathaniel C. Cady, William D. Page, Arturo Pilar, and Stephen B. Cronin
Applied Physics Letters, 2018, Volume 113, Number 11, Page 113104
Giulia Tagliabue, Adam S. Jermyn, Ravishankar Sundararaman, Alex J. Welch, Joseph S. DuChene, Ragip Pala, Artur R. Davoyan, Prineha Narang, and Harry A. Atwater
Nature Communications, 2018, Volume 9, Number 1
Rifat Kamarudheen, Gabriel W. Castellanos, Leon P. J. Kamp, Herman J. H. Clercx, and Andrea Baldi
ACS Nano, 2018
Qiaoping Zhang, Cheng Zhang, Linling Qin, and Xiaofeng Li
Optics Letters, 2018, Volume 43, Number 14, Page 3325
Jeonga Kim, Ho Yeon Son, and Yoon Sung Nam
Scientific Reports, 2018, Volume 8, Number 1
Youngsang Kim, Erin B. Creel, Elizabeth R. Corson, Bryan D. McCloskey, Jeffrey J. Urban, and Robert Kostecki
Advanced Energy Materials, 2018, Page 1800363
Adela Habib, Fred Florio, and Ravishankar Sundararaman
Journal of Optics, 2018, Volume 20, Number 6, Page 064001
Mayra Matamoros-Ambrocio, María Ruiz-Peralta, Ernesto Chigo-Anota, Jesús García-Serrano, Armando Pérez-Centeno, Manuel Sánchez-Cantú, Efraín Rubio-Rosas, and Alejandro Escobedo-Morales
Catalysts, 2018, Volume 8, Number 4, Page 161
Joshua P. McClure, Kyle N. Grew, David R. Baker, Eric Gobrogge, Naresh Das, and Deryn Chu
Nanoscale, 2018
Stefano Dal Forno, Luigi Ranno, and Johannes Lischner
The Journal of Physical Chemistry C, 2018
Garikoitz Aguirregabiria, Dana Codruta Marinica, Ruben Esteban, Andrey K. Kazansky, Javier Aizpurua, and Andrei G. Borisov
Physical Review B, 2018, Volume 97, Number 11
Silke R. Kirchner, Kyle W. Smith, Benjamin S. Hoener, Sean S. E. Collins, Wenxiao Wang, Yi-Yu Cai, Calum Kinnear, Heyou Zhang, Wei-Shun Chang, Paul Mulvaney, Christy F. Landes, and Stephan Link
The Journal of Physical Chemistry C, 2018
Xiao Zhang, Xueqian Lucy Li, Matthew Ellis Reish, Du Zhang, Neil Qiang Su, Yael Gutierrez Vela, F. Moreno, Weitao Yang, Henry O. Everitt, and Jie Liu
Nano Letters, 2018
Tejendra Dixit, I. A. Palani, and Vipul Singh
RSC Advances, 2018, Volume 8, Number 13, Page 6820
Svetlana V. Rempel, Yulia V. Kuznetsova, and Andrey A. Rempel
Mendeleev Communications, 2018, Volume 28, Number 1, Page 96
Hilal Cansizoglu, Ekaterina Ponizovskaya Devine, Yang Gao, Soroush Ghandiparsi, Toshishige Yamada, Aly F. Elrefaie, Shih-Yuan Wang, and M. Saif Islam
IEEE Transactions on Electron Devices, 2018, Volume 65, Number 2, Page 372
Xinyuan You, S. Ramakrishna, and Tamar Seideman
The Journal of Physical Chemistry Letters, 2017, Page 141
Patrick J. Straney, Nathan A. Diemler, Ashley M. Smith, Zachary E. Eddinger, Matthew S. Gilliam, and Jill E. Millstone
Langmuir, 2017
Ravishankar Sundararaman, Kendra Letchworth-Weaver, Kathleen A. Schwarz, Deniz Gunceler, Yalcin Ozhabes, and T.A. Arias
SoftwareX, 2017, Volume 6, Page 278
Lang Shen, Nirakar Poudel, George N. Gibson, Bingya Hou, Jihan Chen, Haotian Shi, Ernest Guignon, William D. Page, Arturo Pilar, and Stephen B. Cronin
Nano Research, 2017
Lucas V. Besteiro, Xiang-Tian Kong, Zhiming Wang, Gregory Hartland, and Alexander O. Govorov
ACS Photonics, 2017
Matthew E. Sykes, Jon W. Stewart, Gleb M. Akselrod, Xiang-Tian Kong, Zhiming Wang, David J. Gosztola, Alex B. F. Martinson, Daniel Rosenmann, Maiken H. Mikkelsen, Alexander O. Govorov, and Gary P. Wiederrecht
Nature Communications, 2017, Volume 8, Number 1
Maxim Sukharev and Abraham Nitzan
Journal of Physics: Condensed Matter, 2017, Volume 29, Number 44, Page 443003
Emanuele Minutella, Florian Schulz, and Holger Lange
The Journal of Physical Chemistry Letters, 2017, Page 4925
Daniel C Ratchford, Adam D. Dunkelberger, I. Vurgaftman, Jeffrey Owrutsky, and Pehr E Pehrsson
Nano Letters, 2017
S. V. Rempel, Yu. V. Kuznetsova, E. Yu. Gerasimov, and A. A. Rempel’
Physics of the Solid State, 2017, Volume 59, Number 8, Page 1629
Silvia Peruch, Andres Neira, Gregory A. Wurtz, Brian Wells, Viktor A. Podolskiy, and Anatoly V. Zayats
Advanced Optical Materials, 2017, Volume 5, Number 15, Page 1700299
Gregory V. Hartland, Lucas V. Besteiro, Paul Johns, and Alexander O. Govorov
ACS Energy Letters, 2017, Volume 2, Number 7, Page 1641
Emiliano Cortés
Advanced Optical Materials, 2017, Volume 5, Number 15, Page 1700191
Yi Tian, Francisco Pelayo García de Arquer, Cao-Thang Dinh, Gael Favraud, Marcella Bonifazi, Jun Li, Min Liu, Xixiang Zhang, Xueli Zheng, Md. Golam Kibria, Sjoerd Hoogland, David Sinton, Edward H. Sargent, and Andrea Fratalocchi
Advanced Materials, 2017, Volume 29, Number 27, Page 1701165
Phillip Christopher and Martin Moskovits
Annual Review of Physical Chemistry, 2017, Volume 68, Number 1, Page 379
Minho Kim, Mouhong Lin, Jiwoong Son, Hongxing Xu, and Jwa-Min Nam
Advanced Optical Materials, 2017, Volume 5, Number 15, Page 1700004
Emiliano Cortés, Wei Xie, Javier Cambiasso, Adam S. Jermyn, Ravishankar Sundararaman, Prineha Narang, Sebastian Schlücker, and Stefan A. Maier
Nature Communications, 2017, Volume 8, Page 14880
Prineha Narang, Litao Zhao, Steven Claybrook, and Ravishankar Sundararaman
Advanced Optical Materials, 2017, Volume 5, Number 15, Page 1600914
Xin-Hao Li, Jeffrey B. Chou, Wei Lek Kwan, Asma M. Elsharif, and Sang-Gook Kim
Optics Express, 2017, Volume 25, Number 8, Page A264
Ana M. Brown, Ravishankar Sundararaman, Prineha Narang, Adam M. Schwartzberg, William A. Goddard, and Harry A. Atwater
Physical Review Letters, 2017, Volume 118, Number 8
Xiao Zhang, Xueqian Li, Du Zhang, Neil Qiang Su, Weitao Yang, Henry O. Everitt, and Jie Liu
Nature Communications, 2017, Volume 8, Page 14542
Wonmi Ahn, Daniel C. Ratchford, Pehr E. Pehrsson, and Blake S. Simpkins
Nanoscale, 2017, Volume 9, Number 9, Page 3010
Jason Codrington, Noor Eldabagh, Kimberly Fernando, and Jonathan J. Foley
ACS Photonics, 2017, Volume 4, Number 3, Page 552
Tejendra Dixit, I. A. Palani, and Vipul Singh
The Journal of Physical Chemistry C, 2017, Volume 121, Number 6, Page 3540
Cheng Zhang, Kai Wu, Vincenzo Giannini, and Xiaofeng Li
ACS Nano, 2017, Volume 11, Number 2, Page 1719
Tao Gong and Jeremy N. Munday
Applied Physics Letters, 2017, Volume 110, Number 2, Page 021117
Bingya Hou, Lang Shen, Haotian Shi, Rehan Kapadia, and Stephen B. Cronin
Phys. Chem. Chem. Phys., 2017, Volume 19, Number 4, Page 2877
Jamie M. Fitzgerald, Prineha Narang, Richard V. Craster, Stefan A. Maier, and Vincenzo Giannini
Proceedings of the IEEE, 2016, Volume 104, Number 12, Page 2307
Xiang-Tian Kong, Zhiming Wang, and Alexander O. Govorov
Advanced Optical Materials, 2017, Volume 5, Number 15
Lucas V. Besteiro and Alexander O. Govorov
The Journal of Physical Chemistry C, 2016, Volume 120, Number 34, Page 19329
Prineha Narang, Ravishankar Sundararaman, Adam S. Jermyn, William A. Goddard, and Harry A. Atwater
The Journal of Physical Chemistry C, 2016, Volume 120, Number 37, Page 21056

Comments (0)

Please log in or register to comment.
Log in