Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Editor-in-Chief: Sorger, Volker

CiteScore 2017: 6.57

IMPACT FACTOR 2017: 6.014
5-year IMPACT FACTOR: 7.020

In co-publication with Science Wise Publishing

Open Access
See all formats and pricing
More options …
Volume 5, Issue 1


Enhancing radiative energy transfer through thermal extraction

Yixuan Tan
  • Corresponding author
  • Department of Electrical and Computer Engineering, University of Wisconsin, Wisconsin, Madison, 53706, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Baoan Liu / Sheng Shen / Zongfu Yu
  • Department of Electrical and Computer Engineering, University of Wisconsin, Wisconsin, Madison, 53706, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-06-11 | DOI: https://doi.org/10.1515/nanoph-2016-0008


Thermal radiation plays an increasingly important role in many emerging energy technologies, such as thermophotovoltaics, passive radiative cooling and wearable cooling clothes [1]. One of the fundamental constraints in thermal radiation is the Stefan-Boltzmann law, which limits the maximum power of far-field radiation to P0 = σT4S, where σ is the Boltzmann constant, S and T are the area and the temperature of the emitter, respectively (Fig. 1a). In order to overcome this limit, it has been shown that near-field radiations could have an energy density that is orders of magnitude greater than the Stefan-Boltzmann law [2-7]. Unfortunately, such near-field radiation transfer is spatially confined and cannot carry radiative heat to the far field. Recently, a new concept of thermal extraction was proposed [8] to enhance far-field thermal emission, which, conceptually, operates on a principle similar to oil immersion lenses and light extraction in light-emitting diodes using solid immersion lens to increase light output [62].Thermal extraction allows a blackbody to radiate more energy to the far field than the apparent limit of the Stefan-Boltzmann law without breaking the second law of thermodynamics.

Thermal extraction works by using a specially designed thermal extractor to convert and guide the near-field energy to the far field, as shown in Fig. 1b. The same blackbody as shown in Fig. 1a is placed closely below the thermal extractor with a spacing smaller than the thermal wavelength. The near-field coupling transfers radiative energy with a density greater than σT4. The thermal extractor, made from transparent and high-index or structured materials, does not emit or absorb any radiation. It transforms the near-field energy and sends it toward the far field. As a result, the total amount of far-field radiative heat dissipated by the same blackbody is greatly enhanced above SσT4, where S is the area of the emitter. This paper will review the progress in thermal extraction. It is organized as follows. In Section 1, we will discuss the theory of thermal extraction [8]. In Section 2, we review an experimental implementation based on natural materials as the thermal extractor [8]. Lastly, in Section 3, we review the experiment that uses structured metamaterials as thermal extractors to enhance optical density of states and far-field emission [9].


  • [1] Tong, J., et al. Infrared-transparent visible-opaque Fabrics for wearable personal thermal management. ACS Photonics,2 (2015): 769CrossrefGoogle Scholar

  • [2] Guo, Y., et al. Broadband super-Planckian thermal emission from hyperbolic metamaterials. Applied Physics Letters,101 (2012): 131106.CrossrefGoogle Scholar

  • [3] Volokitin, A. I., et al. Near-field radiative heat transfer and noncontact friction. Reviews of Modern Physics, 79 (2007): 1291.CrossrefGoogle Scholar

  • [4] Hu, L., et al. Near-field thermal radiation between two closely spaced glass plates exceeding Planck’s blackbody radiation law. Applied Physics Letters, 92(2008): 133106.CrossrefGoogle Scholar

  • [5] Narayanaswamy, A.,et al. Near-field radiative heat transfer between a sphere and a substrate.Physical Review B, 78 (2008): 115303.CrossrefGoogle Scholar

  • [6] Joulain, K., el al. Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field. Surface Science Reports, 57 (2005): 59-112.CrossrefGoogle Scholar

  • [7] Zhang, Zhuomin M. Nano/microscale heat transfer. New York: McGraw-Hill, 2007.Google Scholar

  • [8] Yu, Z., et al. Enhancing far-field thermal emission with thermal extraction. Nature Communications,4 (2013): 1730CrossrefGoogle Scholar

  • [9] Shi, J., et al. Near-field energy extraction with hyperbolic metamaterials. Nano Letters,15 (2015): 1217CrossrefGoogle Scholar

  • [10] Greffet, J. -J. Applied physics: controlled incandescence. Nature478( 2011): 191-192.Google Scholar

  • [11] Cornelius, C. M. & Dowling, J. P. Modification of Planck blackbody radiation by photonic band-gap structures. Physical Review A,59 (1999): 4736-4746.CrossrefGoogle Scholar

  • [12] Maruyama, S., et al. Thermal radiation from two-dimensionally confined modes in microcavities. Applied Physics Letters. 79 (2001): 1393-1395.CrossrefGoogle Scholar

  • [13] Greffet, J. -J. et al. Coherent emission of light by thermal sources. Nature416 (2002):61-64.Google Scholar

  • [14] Pralle, M. U. et al. Photonic crystal enhanced narrow-band infrared emitters. Applied Physics Letters. 81 (2002): 4685-4687.CrossrefGoogle Scholar

  • [15] Fleming, J. G., et al. All-metallic three-dimensional photonic crystalswith a large infrared bandgap. Nature417 (2002):52-55.Google Scholar

  • [16] Lin, S. Y., et al. Three-dimensional photonic-crystal emission through thermal excitation. Optics Letters28 (2003): 1909-1911.CrossrefGoogle Scholar

  • [17] Luo, C., et al. Thermal radiation from photonic crystals: a direct calculation. Physical Review Letters93 (2004): 213905.CrossrefGoogle Scholar

  • [18] Lee, B. J., et al. Coherent thermal emission from onedimensional photonic crystals. Applied Physics Letters. 87 (2005): 071904-071903.CrossrefGoogle Scholar

  • [19] Celanovic, I., et al. Resonant-cavity enhanced thermal emission. Physical Review B,72 (2005): 075127.CrossrefGoogle Scholar

  • [20] Laroche, M., et al. Highly directional radiation generated by a tungsten thermal source. Optics Letters. 30 (2005): 2623-2625.CrossrefGoogle Scholar

  • [21] Dahan, N., et al. Enhanced coherency of thermal emission: beyond the limitation imposed by delocalized surface waves. Physical Review B,76 (2007): 045427.CrossrefGoogle Scholar

  • [22] Wang, C. -M., et al. Reflection and emission properties of an infrared emitter. Optics Express15 (2007): 14673-14678.CrossrefGoogle Scholar

  • [23] Puscasu, I. &Schaich,W. L. Narrow-band, tunable infrared emission from arrays of microstrip patches. Applied Physics Letters, 92 (2008): 233102.CrossrefGoogle Scholar

  • [24] Rephaeli, E. & Fan, S. Absorber and emitter for solar thermophotovoltaic systems to achieve eflciency exceeding the Shockley-Queisser limit. Optics Express,17 (2009): 15145-15159.CrossrefGoogle Scholar

  • [25] Liu, X., et al. Taming the Blackbody with infrared metamaterials as selective thermal emitters. Physical Review Letters,107 (2011): 045901.CrossrefGoogle Scholar

  • [26] Yeng, Y. X., et al. Enabling high-temperature nanophotonics for energy applications. Proceedings of the National Academy of Science, USA, (2012) 1120149109.Google Scholar

  • [27] De Zoysa, M. et al. Conversion of broadband to narrowband thermal emission through energy recycling. Nature Photonics,6 (2012): 535-539.CrossrefGoogle Scholar

  • [28] Schuller, J. A., et al. Optical antenna thermal emitters. Nature Photonics. 3 (2009): 658-661.CrossrefGoogle Scholar

  • [29] Polder, D. & Van Hove, M. Theory of radiative heat transfer between closely spaced bodies. Physical Review B,4 (1971): 3303-3314.CrossrefGoogle Scholar

  • [30] Pendry, J. Radiative exchange of heat between nanostructures. Journal of Physics: Condensed Matter,11 (1999): 6621-6633.CrossrefGoogle Scholar

  • [31] Rousseau, E. et al. Radiative heat transfer at the nanoscale. Nature Photonics. 3 (2009)514-517.CrossrefGoogle Scholar

  • [32] Shen, S., et al. Surface phonon polaritons mediated energy transfer between nanoscale gaps. Nano Letters,9 (2009): 2909-2913.CrossrefGoogle Scholar

  • [33] Winston, R., et al. Nonimaging Optics, 18 (AcademicPress, 2004).Google Scholar

  • [34] Carr, W. N. & Pittman, G. E. One-watt GaAs p-n junction infrared source. Applied Physics Letters. 3 (1963): 173-175.CrossrefGoogle Scholar

  • [35] Moreno, I., et al. Light-emitting diode spherical packages: an equation for the light transmission eflciency. Applied Optics,49 (2010): 12-20.CrossrefGoogle Scholar

  • [36] Terris, B. D., et al. Near-field optical data storage using a solid immersion lens. Applied Physics Letters. 65 (1994): 388-390.CrossrefGoogle Scholar

  • [37] Siegel, R. & Howell, J. R. Thermal Radiation Heat Transfer, 37 (Hemisphere Publishing Corporation, 1992) & (Taylor & Francis: London, 2001).Google Scholar

  • [38] Yu, Z., Raman, A. & Fan, S. Fundamental limit of nanophotonic light trapping for solar cells. Proceedings of the National Academy of Science, USA,107 (2010): 17491-17496.CrossrefGoogle Scholar

  • [39] Yablonovitch, E. Statistical ray optics. Journal of Optical Society of America A,72 (1982): 899-907.Google Scholar

  • [40] Campbell, P. & Green, M. A. Light trapping properties of pyramidally textured surfaces. Journal of Applied Physics. 62 (1987): 243-249.CrossrefGoogle Scholar

  • [41] Catalanotti, S. et al. The radiative cooling of selective surfaces. Solar Energy,17 (1975):83-89.CrossrefGoogle Scholar

  • [42] Liu, B., et al. Broadband near-field radiative thermal emitter/ absorber based on hyperbolic metamaterials: Direct numerical simulation by theWiener chaos expansion method. Physical Review B,87 (2013): 115403.CrossrefGoogle Scholar

  • [43] Otey, C. R. et al. Phys. Rev. Lett. 2010, 104, 154301.CrossrefGoogle Scholar

  • [44] Byrnes, S. J, et al. Harvesting renewable energy from Earth’s mid-infrared emissions. Proceedings of the National Academy of Science, USA. 111 (2014): 3927-3932.CrossrefGoogle Scholar

  • [45] Padture, N. P, et al.Thermal Barrier Coatings for Gas-Turbine Engine Applications. Science. 296 (2002): 280-284.CrossrefGoogle Scholar

  • [46] Ben-Abdallah, P., et al. Near-Field Thermal Transistor. Physical Review Letters.112 (2014): 044301.CrossrefGoogle Scholar

  • [47] Biehs, S.-A, et al. Mesoscopic Description of Radiative Heat Transfer at the Nanoscale. Physical Review Letters. 105 (2015): 234301.CrossrefGoogle Scholar

  • [48] Messina, R., et al. Graphene-based photovoltaic cells for nearfield thermal energy conversion. Scientific Reports. 3 (2013): 1383.Google Scholar

  • [49] Guha, B., et al. Near-Field Radiative Cooling of Nanostructures. Nano Letters. 12 (2012): 4546-4550.CrossrefGoogle Scholar

  • [50] De Wilde, Y., et al. Thermal radiation scanning tunnelling microscopy. Nature.444 (2006): 740-743.Google Scholar

  • [51] Challener, W. A.,et al. Heat-assisted magnetic recording by a near-field transducer with eflcient optical energy transfer. Nature Photonics.3 (2009): 220-224.CrossrefGoogle Scholar

  • [52] Poddubny, A., et al. Hyperbolic metamaterials. Nature Photonics. 7 (2013): 948-957.CrossrefGoogle Scholar

  • [53] Shvets, G., et al. Guiding, Focusing, and Sensing on the Subwavelength Scale Using Metallic Wire Arrays. Physical Review Letters.99 (2007): 053903.CrossrefGoogle Scholar

  • [54] Joulain, K., et al. Definition and measurement of the local density of electromagnetic states close to an interface. Physical Review B,68 (2003): 245405.CrossrefGoogle Scholar

  • [55] Barnes, J. R., et al. A femtojoule calorimeter using micromechanical sensors. Review of Scientific Instruments.65 (1994): 3793-3798.CrossrefGoogle Scholar

  • [56] Narayanaswamy, A.; Gu, N. Heat Transfer From Freely Suspended Bimaterial Microcantilevers. Journal of Heat Transfer. 133 (2011): 042401.CrossrefGoogle Scholar

  • [57] Yao, J., et al. Design, fabrication and characterization of indefinite metamaterials of nanowires. Mathematical, Physical and Engineering Science. 369 (2011): 3434-3446.Google Scholar

  • [58] Nielsch, K., et al. Uniform Nickel Deposition into Ordered Alumina Pores by Pulsed Electrodeposition. Advanced Materials. 12 (2000): 582-586.CrossrefGoogle Scholar

  • [59] Chen, R., et al. Nanowires for Enhanced Boiling Heat Transfer. Nano Letters. 9 (2009): 548-553.CrossrefGoogle Scholar

  • [60] Du, T., et al. Chemical mechanical polishing of nickel for applications in MEMS devices. Microelectronic Engineering.75 (2004): 234-241.CrossrefGoogle Scholar

  • [61] Shi, J., et al. Tuning near field radiation by doped silicon. Applied Physics Letters. 102 (2013): 183114.CrossrefGoogle Scholar

  • [62] Carr, W. N. & Pittman, G. E. One-watt GaAs p-n junction infrared source. Applied Physics Letters.3 (1963): 173-175. CrossrefGoogle Scholar

About the article

Received: 2015-09-30

Accepted: 2016-01-12

Published Online: 2016-06-11

Published in Print: 2016-06-01

Citation Information: Nanophotonics, Volume 5, Issue 1, Pages 22–30, ISSN (Online) 2192-8614, ISSN (Print) 2192-8606, DOI: https://doi.org/10.1515/nanoph-2016-0008.

Export Citation

© 2016. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Claire Li, Valentina Krachmalnicoff, Patrick Bouchon, Julien Jaeck, Nathalie Bardou, Riad Haïdar, and Yannick De Wilde
Physical Review Letters, 2018, Volume 121, Number 24

Comments (0)

Please log in or register to comment.
Log in