Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Editor-in-Chief: Sorger, Volker

IMPACT FACTOR 2018: 6.908
5-year IMPACT FACTOR: 7.147

CiteScore 2018: 6.72

In co-publication with Science Wise Publishing

Open Access
See all formats and pricing
More options …
Volume 5, Issue 1


Colloidal nanocrystals for quality lighting and displays: milestones and recent developments

Talha Erdem
  • Department of Electrical and Electronics Engineering, Department of Physics, Institute of Materials Science and Nanotechnology, and UNAM-National Nanotechnology Research Center, Bilkent, Ankara Turkey 06800
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hilmi Volkan Demir
  • Corresponding author
  • Department of Electrical and Electronics Engineering, Department of Physics, Institute of Materials Science and Nanotechnology, and UNAM-National Nanotechnology Research Center, Bilkent, Ankara Turkey 06800 and Luminous! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-06-11 | DOI: https://doi.org/10.1515/nanoph-2016-0009


Recent advances in colloidal synthesis of nanocrystals have enabled high-quality high-efficiency light-emitting diodes, displays with significantly broader color gamut, and optically-pumped lasers spanning the whole visible regime. Here we review these colloidal platforms covering the milestone studies together with recent developments. In the review, we focus on the devices made of colloidal quantum dots (nanocrystals), colloidal quantum rods (nanorods), and colloidal quantum wells (nanoplatelets) as well as those of solution processed perovskites and phosphor nanocrystals. The review starts with an introduction to colloidal nanocrystal photonics emphasizing the importance of colloidal materials for light-emitting devices. Subsequently,we continue with the summary of important reports on light-emitting diodes, in which colloids are used as the color converters and then as the emissive layers in electroluminescent devices. Also,we review the developments in color enrichment and electroluminescent displays. Next, we present a summary of important reports on the lasing of colloidal semiconductors. Finally, we summarize and conclude the review presenting a future outlook.


  • [1] Lu, Z.; Yin, Y. Colloidal Nanoparticle Clusters: Functional Materials by Design. Chem. Soc. Rev.2012, 41 (21), 6874-6887.CrossrefGoogle Scholar

  • [2] Shirasaki, Y.; Supran, G. J.; Bawendi, M. G.; Bulović, V. Emergence of Colloidal Quantum-Dot Light-Emitting Technologies. Nat. Photonics2013, 7 (12), 933-933.Google Scholar

  • [3] Velegol, D. Assembling Colloidal Devices by Controlling Interparticle Forces. J. Nanophotonics2007, 1 (1), 012502.CrossrefGoogle Scholar

  • [4] Furumi, S.; Fudouzi, H.; Sawada, T. Self-Organized Colloidal Crystals for Photonics and Laser Applications. Laser Photonics Rev.2010, 4 (2), 205-220.CrossrefGoogle Scholar

  • [5] Sargent, E. H. Colloidal Quantum Dot Solar Cells. Nat. Photonics2012, 6 (3), 133-135.CrossrefGoogle Scholar

  • [6] Kim, S.-H.; Lee, S. Y.; Yang, S.-M.; Yi, G.-R. Self-Assembled Colloidal Structures for Photonics. NPG AsiaMater.2011, 3 (1), 25-33.Google Scholar

  • [7] Sappala, T. J. Samsung’s high-end TVs use nanocrystals for better color, efficiency http://www.engadget.com/2015/01/05/ces2015-samsung-suhd/ (accessed Dec 11, 2015).Google Scholar

  • [8] Nanosys. Welcome to a revolution in color http://www.nanosysinc.com/lcd-revolution/ (accessed Dec 11, 2015).Google Scholar

  • [9] Kim, J. Y.; Voznyy, O.; Zhitomirsky, D.; Sargent, E. H. Colloidal Quantum Dot Materials and Devices: A Quarter-Century of Advances. Adv. Mater.2013, 25 (36), 4986-5010.CrossrefGoogle Scholar

  • [10] Nizamoglu, S.; Erdem, T.; Wei Sun, X.; Volkan Demir, H. Warm- White Light-Emitting Diodes Integrated with Colloidal Quantum Dots for High Luminous Eflcacy and Color Rendering: Reply to Comment. Opt. Lett.2011, 36 (15), 2852.CrossrefGoogle Scholar

  • [11] Erdem, T.; Kelestemur, Y.; Soran-Erdem, Z.; Ji, Y.; Demir, H. V. Energy-Saving Quality Road Lighting with Colloidal Quantum Dot Nanophosphors. Nanophotonics2014, 3 (6).Google Scholar

  • [12] Erdem, T.; Nizamoglu, S.; Sun, X. W.; Demir, H. V. A Photometric Investigation of Ultra-Eflcient LEDs with High Color Rendering Index and High Luminous Eflcacy Employing Nanocrystal Quantum Dot Luminophores. Opt. Express2010, 18 (1), 340-347.CrossrefGoogle Scholar

  • [13] Graydon, O. The New Oil? Nat. Photonics2011, 5 (1), 1.Google Scholar

  • [14] Erdem, T.; Demir, H. V. Semiconductor Nanocrystals as Rare- Earth Alternatives. Nat. Photonics2011, 5 (1), 126.CrossrefGoogle Scholar

  • [15] Erdem, T.; Demir, H. V. Color Science of Nanocrystal Quantum Dots for Lighting and Displays. Nanophotonics2013, 2 (1), 57-81.Google Scholar

  • [16] Luo, Z.; Xu, D.; Wu, S.; Paper, I. Emerging Quantum-Dots- Enhanced LCDs. J. Disp. Technol.2014, 10 (7), 526-539.Google Scholar

  • [17] Klimov, V. I.; Mikhailovsky, A. A.; Xu, S.; Malko, A.; Hollingsworth, J. A.; Leatherdale, C. A.; Eisler, H.-J.; Bawendi, M. G. Optical Gain and Stimulated Emission in Nanocrystal Quantum Dots. Science (80-.).2000, 290 (5490), 314-317.Google Scholar

  • [18] Whitaker, T. Osram Opto demonstrates 142 lm/W warm-white LED http://www.ledsmagazine.com/articles/2011/03/osramopto-demonstrates-142-lm-w-warm-white-led.html (accessed Dec 11, 2015).Google Scholar

  • [19] Kim, K.; Woo, J. Y.; Jeong, S.; Han, C. S. Photoenhancement of a Quantum Dot Nanocomposite via Uv Annealing and Its Application to White LEDs. Adv. Mater.2011, 23 (7), 911-914.CrossrefGoogle Scholar

  • [20] Liang, R.; Yan, D.; Tian, R.; Yu, X.; Shi,W.; Li, C.; Wei, M.; Evans, D. G.; Duan, X. Quantum Dots-Based Flexible Films and Their Application as the Phosphor in White Light-Emitting Diodes. Chem. Mater.2014, 26 (8), 2595-2600.CrossrefGoogle Scholar

  • [21] Erdem, T.; Nizamoglu, S.; Demir, H. V. Computational Study of Power Conversion and Luminous Efficiency Performance for Semiconductor Quantum Dot Nanophosphors on Light- Emitting Diodes. Opt. Express2012, 20 (3), 3275-3295.CrossrefGoogle Scholar

  • [22] Zhao, B.; Zhang, D.; Sun, K.; Wang, X.; Mao, R.; Li, W. Intrinsic Quantum Dot Based White-Light-Emitting Diodes with a Layered Coating Structure for Reduced Reabsorption of Multiphase Phosphors. RSC Adv.2014, 4 (85), 45155-45158.CrossrefGoogle Scholar

  • [23] Zhang, Z.; Luan, S.; Huang, K.; Zhang, Y.; Shi, Z.; Xie, R.; Yang,W. Single-Phase Dual Emissive Cu:CdS-ZnSe Core-shell Nanocrystals with “zero Self-Absorption” and Their Application in White Light Emitting Diodes. J. Mater. Chem. C2015, 3 (15), 3614-3622.CrossrefGoogle Scholar

  • [24] Xuan, T.-T.; Liu, J.-Q.; Xie, R.-J.; Li, H.-L.; Sun, Z. Microwave- Assisted Synthesis of CdS/ZnS:Cu Quantum Dots for White Light-Emitting Diodes with High Color Rendition. Chem. Mater.2015, 27 (4), 1187-1193.CrossrefGoogle Scholar

  • [25] Zhao, Y.; Riemersma, C.; Pietra, F.; Koole, R.; de Mello Donega, C.; Meijerink, a. High-Temperature Luminescence Quenching of Colloidal QuantumDots. ACS Nano2012, 6 (10), 9058-9067.CrossrefGoogle Scholar

  • [26] Jun, S.; Lee, J.; Jang, E. Highly Luminescent and Photostable Quantum Dot-Silica Monolith and Its Application to Light- Emitting Diodes. ACS Nano2013, 7 (2), 1472-1477.CrossrefGoogle Scholar

  • [27] Alejandro-Arellano, M.; Ung, T.; Blanco, Á.; Mulvaney, P.; Liz- Marzán, L. M. Silica-Coated Metals and Semiconductors. Stabilization and Nanostructuring. Pure Appl. Chem.2000, 72 (1-2), 257-267.Google Scholar

  • [28] Yoo, H.; Jang, H. S.; Lee, K.; Woo, K. Quantum Dot-Layer- Encapsulated and Phenyl-Functionalized Silica Spheres for Highly Luminous, Colour Rendering, and Stable White Light- Emitting Diodes. Nanoscale2015, 7 (30), 12860-12867.CrossrefGoogle Scholar

  • [29] Otto, T.; Müller, M.; Mundra, P.; Lesnyak, V.; Demir, H. V.; Gaponik, N.; Eychmüller, A. Colloidal Nanocrystals Embedded inMacrocrystals: Robustness, Photostability, and Color Purity. Nano Lett.2012, 12 (10), 5348-5354.CrossrefGoogle Scholar

  • [30] Erdem, T.; Soran-Erdem, Z.; Hernandez-Martinez, P. L.; Sharma, V. K.; Akcali, H.; Akcali, I.; Gaponik, N.; Eychmüller, A.; Demir, H. V. Sweet Plasmonics: Sucrose Macrocrystals of Metal Nanoparticles. Nano Res.2014, 8 (3), 860-869.Google Scholar

  • [31] Yuan, X.;Ma, R.; Zhang,W.; Hua, J.; Meng, X.; Zhong, X.; Zhang, J.; Zhao, J.; Li, H. Dual Emissive Manganese and Copper Co- Doped Zn-In-S Quantum Dots as a Single Color-Converter for High Color Rendering White-Light-Emitting Diodes. ACS Appl. Mater. Interfaces2015, 7, 8659-8666.CrossrefGoogle Scholar

  • [32] Dang, C.; Lee, J.; Zhang, Y.; Han, J.; Breen, C.; Steckel, J. S.; Coe-Sullivan, S.; Nurmikko, A. A Wafer-Level Integrated White- Light-Emitting Diode Incorporating Colloidal Quantum Dots as a Nanocomposite Luminescent Material. Adv. Mater.2012, 24 (44), 5915-5918.CrossrefGoogle Scholar

  • [33] Kalytchuk, S.; Zhovtiuk, O.; Rogach, A. L. Sodium Chloride Protected CdTe QuantumDot Based Solid-State Luminophores with High Color Quality and Fluorescence Efficiency. Appl. Phys. Lett.2013, 103 (10), 103105.CrossrefGoogle Scholar

  • [34] Müller, M.; Kaiser, M.; Stachowski, G. M.; Resch-Genger, U.; Gaponik, N.; Eychmüller, A. Photoluminescence QuantumYield and Matrix-Induced Luminescence Enhancement of Colloidal Quantum Dots Embedded in Ionic Crystals. Chem. Mater.2014, 26 (10), 3231-3237.CrossrefGoogle Scholar

  • [35] Erdem, T.; Soran-Erdem, Z.; Sharma, V. K.; Kelestemur, Y.; Adam, M.; Gaponik, N.; Demir, H. V. Stable and Eflcient Colour Enrichment Powders of Nonpolar Nanocrystals in LiCl. Nanoscale2015, 7 (42), 17611-17616.CrossrefGoogle Scholar

  • [36] Ye, L.; Yong, K.-T.; Liu, L.; Roy, I.; Hu, R.; Zhu, J.; Cai, H.; Law, W.-C.; Liu, J.; Wang, K.; et al. A Pilot Study in Non-Human Primates Shows No Adverse Response to Intravenous Injection of Quantum Dots. Nat. Nanotechnol.2012, 7 (7), 453-458.CrossrefGoogle Scholar

  • [37] Chen, B.; Zhou, Q.; Li, J.; Zhang, F.; Liu, R.; Zou, B. Red Emissive CuInS2 -Based Nanocrystals: A Potential Phosphor for Warm White Light- Emitting Diodes. Opt. Express2013, 21 (8), 10105-10110.CrossrefGoogle Scholar

  • [38] Chen, B.; Zhong, H.; Wang, M.; Liu, R.; Zou, B. Integration of CuInS2-Based Nanocrystals for High Efficiency and High Colour Rendering White Light-Emitting Diodes. Nanoscale2013, 5 (8), 3514-3519.CrossrefGoogle Scholar

  • [39] Kim, J.-H.; Yang, H. White Lighting Device from Composite Films Embedded with Hydrophilic Cu(In, Ga)S2/ZnS and Hydrophobic InP/ZnS Quantum Dots. Nanotechnology2014, 25 (22), 225601.CrossrefGoogle Scholar

  • [40] Yoon, H. C.; Oh, J. H.; Ko, M.; Yoo, H.; Do, Y. R. Synthesis and Characterization of Green Zn-Ag-In-S and Red Zn-Cu-In-S Quantum Dots for Ultrahigh Color Quality of down-Converted White LEDs. ACS Appl. Mater. Interfaces2015, 7 (13), 7342-7350.CrossrefGoogle Scholar

  • [41] Huang, B.; Dai, Q.; Zhuo, N.; Jiang, Q.; Shi, F.;Wang, H.; Zhang, H.; Liao, C.; Cui, Y.; Zhang, J. Bicolor Mn-Doped CuInS2/ZnS Core/shell Nanocrystals for White Light-Emitting Diode with High Color Rendering Index. J. Appl. Phys.2014, 116 (9), 094303.CrossrefGoogle Scholar

  • [42] Yuan, X.; Hua, J.; Zeng, R.; Zhu, D.; Ji, W.; Jing, P.; Meng, X.; Zhao, J.; Li, H. Eflcient White Light Emitting Diodes Based on Cu-Doped ZnInS/ZnS Core/shell Quantum Dots. Nanotechnology2014, 25 (43), 435202.CrossrefGoogle Scholar

  • [43] Zhang, Z.; Liu, D.; Li, D.; Huang, K.; Zhang, Y.; Shi, Z.; Xie, R.; Han, M.-Y.; Wang, Y.; Yang, W. Dual Emissive Cu:InP/ZnS/InP/ZnS Nanocrystals: Single-Source “Greener” Emitters with Flexibly Tunable Emission from Visible to Near- Infrared and Their Application in White Light-Emitting Diodes. Chem. Mater.2015, 27 (4), 1405-1411.CrossrefGoogle Scholar

  • [44] Shang, C.; Shang, X.; Qu, Y.; Li, M. Investigation on the Red Shift of Charge Transfer Excitation Spectra for Nano-Sized Y2O3:Eu3+. Chem. Phys. Lett.2011, 501 (4-6), 480-484.CrossrefGoogle Scholar

  • [45] Dai, Q.; Foley, M.; Breshike, C. Ligand-Passivated Eu: Y2O3 Nanocrystals as a Phosphor for White Light Emitting Diodes. J. Am. Chem. Soc.2011, 133 (39), 15475-15486.CrossrefGoogle Scholar

  • [46] Lü, Y.; Tang, X.; Yan, L.; Li, K.; Liu, X.; Shang, M.; Li, C.; Lin, J. Synthesis and Luminescent Properties of GdNbO 4?:RE 3+ (RE = Tm, Dy) Nanocrystalline Phosphors via the Sol-Gel Process. J. Phys. Chem. C2013, 117 (42), 21972-21980.CrossrefGoogle Scholar

  • [47] Wang, T.; Li, P.; Li, H. Color-Tunable Luminescence of Organoclay-Based Hybrid Materials Showing Potential Applications in White LED and Thermosensors. ACS Appl. Mater. Interfaces2014, 6 (15), 12915-12921.CrossrefGoogle Scholar

  • [48] Bai, X.; Caputo, G.; Hao, Z.; Freitas, V. T.; Zhang, J.; Longo, R. L.; Malta, O. L.; Ferreira, R. A. S.; Pinna, N. Eflcient and Tuneable Photoluminescent Boehmite Hybrid Nanoplates Lacking Metal Activator Centres for Single-Phase White LEDs. Nat. Commun.2014, 5, 5702.CrossrefGoogle Scholar

  • [49] Koo, W. H.; Jeong, S. M.; Araoka, F.; Ishikawa, K.; Nishimura, S.; Toyooka, T.; Takezoe, H. Light Extraction from Organic Light- Emitting Diodes Enhanced by Spontaneously Formed Buckles. Nat. Photonics2010, 4 (4), 222-226.Google Scholar

  • [50] Kim, J. B.; Lee, J. H.; Moon, C. K.; Kim, S. Y.; Kim, J. J. Highly Enhanced Light Extraction from Surface Plasmonic Loss Minimized Organic Light-Emitting Diodes. Adv.Mater.2013, 25 (26), 3571-3577.CrossrefGoogle Scholar

  • [51] Peng, H. J.; Ho, Y. L.; Yu, X. J.; Kwok, H. S. Enhanced Coupling of Light from Organic Light Emitting Diodes Using Nanoporous Films. J. Appl. Phys.2004, 96 (3), 1649-1654.CrossrefGoogle Scholar

  • [52] Matioli, E.; Weisbuch, C. Impact of Photonic Crystals on LED Light Extraction Efficiency: Approaches and Limits to Vertical Structure Designs. J. Phys. D. Appl. Phys.2010, 43 (35), 354005.CrossrefGoogle Scholar

  • [53] Lin, C. F.; Yang, Z. J.; Zheng, J. H.; Dai, J. J. Enhanced Light Output in Nitride-Based Light-Emitting Diodes by Roughening the Mesa Sidewall. IEEE Photonics Technol. Lett.2005, 17 (10), 2038-2040.Google Scholar

  • [54] Truong, T. A.; Campos, L. M.; Matioli, E.; Meinel, I.; Hawker, C. J.; Weisbuch, C.; Petroff, P. M. Light Extraction from GaNBased Light Emitting Diode Structures with a Noninvasive Two- Dimensional Photonic Crystal. Appl. Phys. Lett.2009, 94 (2), 023101.CrossrefGoogle Scholar

  • [55] Kim, T. S.; Kim, S. M.; Jang, Y. H.; Jung, G. Y. Increase of Light Extraction from GaN Based Light Emitting Diodes Incorporating Patterned Structure by Colloidal Lithography. Appl. Phys. Lett.2007, 91 (17), 171114.CrossrefGoogle Scholar

  • [56] Diana, F. S.; David, A.; Meinel, I.; Sharma, R.; Weisbuch, C.; Nakamura, S.; Petroff, P. M. Photonic Crystal-Assisted Light Extraction from a Colloidal Quantum Dot/GaN Hybrid Structure. Nano Lett.2006, 6 (6), 1116-1120.CrossrefGoogle Scholar

  • [57] Yang, X.; Dev, K.; Wang, J.; Mutlugun, E.; Dang, C.; Zhao, Y.; Liu, S.; Tang, Y.; Tan, S. T.; Sun, X. W.; et al. Light Extraction Efficiency Enhancement of Colloidal Quantum Dot Light- Emitting Diodes Using Large-Scale Nanopillar Arrays. Adv. Funct. Mater.2014, 24 (38), 5977-5984.CrossrefGoogle Scholar

  • [58] Zhu, R.; Luo, Z.; Wu, S.-T. Light Extraction Analysis and Enhancement in a Quantum Dot Light Emitting Diode. Opt. Express2014, 22 (S7), A1783-A1798.CrossrefGoogle Scholar

  • [59] Liang, H.; Zhu, R.; Dong, Y.;Wu, S.-T.; Li, J.;Wang, J.; Zhou, J. Enhancing the Outcoupling Efficiency of Quantum Dot LEDs with Internal Nano-Scattering Pattern. Opt. Express2015, 23 (10), 12910-12922.CrossrefGoogle Scholar

  • [60] Hu, R.; Fu, X.; Zou, Y.; Luo, X. A Complementary Study to “toward Scatter-Free Phosphors in White Phosphor-Converted Light-Emitting Diodes:” Comment. Opt. Express2013, 21 (4), 5071-5073.CrossrefGoogle Scholar

  • [61] Fang, C. Y.; Liu, Y. L.; Lee, Y. C.; Chen, H. L.; Wan, D. H.; Yu, C. C. Nanoparticle Stacks with Graded Refractive Indices Enhance the Omnidirectional Light Harvesting of Solar Cells and the Light Extraction of Light-Emitting Diodes. Adv. Funct. Mater.2013, 23 (11), 1412-1421.CrossrefGoogle Scholar

  • [62] Colvin, V. L.; Schlamp, M. C.; Alivisatos, a P. Light-Emitting- Diodes Made from Cadmium Selenide Nanocrystals and a Semiconducting Polymer. Nature1994, 370 (6488), 354-357.Google Scholar

  • [63] Dai, X.; Zhang, Z.; Jin, Y.; Niu, Y.; Cao, H.; Liang, X.; Chen, L.; Wang, J.; Peng, X. Solution-Processed, High-Performance Light-Emitting Diodes Based on Quantum Dots. Nature2014, 515 (7525), 96-99.Google Scholar

  • [64] Anikeeva, P. O.; Halpert, J. E.; Bawendi, M. G.; Bulović, V. Quantum Dot Light-Emitting Devices with Electroluminescence Tunable over the Entire Visible Spectrum. Nano Lett.2009, 9 (7), 2532-2536.CrossrefGoogle Scholar

  • [65] Bae, W. K.; Park, Y.-S.; Lim, J.; Lee, D.; Padilha, L. a; McDaniel, H.; Robel, I.; Lee, C.; Pietryga, J. M.; Klimov, V. I. Controlling the Influence of Auger Recombination on the Performance of Quantum-Dot Light-Emitting Diodes. Nat. Commun.2013, 4, 2661.Google Scholar

  • [66] Mashford, B.; Stevenson, M.; Popovic, Z. High-Efficiency Quantum-Dot Light-Emitting Devices with Enhanced Charge Injection. Nat. Photonics2013, 7 (4), 407-412.CrossrefGoogle Scholar

  • [67] Lim, J.; Park, M.; Bae, W. K.; Lee, D.; Lee, S.; Lee, C.; Char, K. Highly Eflcient Cadmium-Free Quantum Dot Light-Emitting Diodes Enabled by the Direct Formation of Excitons within InP@ZnSeS QuantumDots. ACS Nano2013, 7 (10), 9019-9026.CrossrefGoogle Scholar

  • [68] Wang, J.; Wang, N.; Jin, Y.; Si, J.; Tan, Z.-K.; Du, H.; Cheng, L.; Dai, X.; Bai, S.; He, H.; et al. Interfacial Control Toward Eflcient and Low-Voltage Perovskite Light-Emitting Diodes. Adv. Mater.2015, 27 (14), 2311-2316.CrossrefGoogle Scholar

  • [69] Coe, S.; Woo, W.-K.; Bawendi, M.; Bulovic, V. Electroluminescence from Single Monolayers of Nanocrystals in Molecular Organic Devices. Nature2002, 420 (6917), 800-803.Google Scholar

  • [70] Coe-Sullivan, S.; Steckel, J. S.; Woo, W. K.; Bawendi, M. G.; Bulovic, V. Large-Area Ordered Quantum-Dot Monolayers via Phase Separation during Spin-Casting. Adv. Funct. Mater.2005, 15 (7), 1117-1124.Google Scholar

  • [71] Anikeeva, P. O.; Halpert, J. E.; Bawendi, M. G.; Bulović, V. Electroluminescence from a Mixed Red-Green-Blue Colloidal Quantum Dot Monolayer. Nano Lett.2007, 7 (8), 2196-2200.CrossrefGoogle Scholar

  • [72] Caruge, J. M.; Halpert, J. E.; Wood, V.; Bulović, V.; Bawendi, M. G. Colloidal Quantum-Dot Light-Emitting Diodes with Metal- Oxide Charge Transport Layers. Nat. Photonics2008, 2 (4), 247-250.CrossrefGoogle Scholar

  • [73] Woo, W. K.; Shimizu, K. T.; Jarosz, M. V.; Neuhauser, R. G.; Leatherdale, C. A.; Rubner, M. A.; Bawendi, M. G. Reversible Charging of CdSe Nanocrystals in a Simple Solid-State Device. Adv. Mater.2002, 14 (15), 1068-1071.CrossrefGoogle Scholar

  • [74] Galland, C.; Ghosh, Y.; Steinbrück, A.; Sykora, M.; Hollingsworth, J. A.; Klimov, V. I.; Htoon, H. Two Types of Luminescence Blinking Revealed by Spectroelectrochemistry of Single Quantum Dots. Nature2011, 479 (7372), 203-207.Google Scholar

  • [75] Dong, Y.; Caruge, J.-M.; Zhou, Z.; Hamilton, C.; Popovic, Z.; Ho, J.; Stevenson, M.; Liu, G.; Bulovic, V.; Bawendi, M.; et al. Ultra- Bright, Highly Eflcient, Low Roll-Off Inverted Quantum-Dot Light Emitting Devices (QLEDs). SID Symp. Dig. Tech. Pap.2015, 46 (1), 270-273.CrossrefGoogle Scholar

  • [76] Lim, J.; Bae,W. K.; Lee, D.; Nam, M. K.; Jung, J.; Lee, C.; Char, K.; Lee, S. InP@ZnSeS, Core@composition Gradient Shell Quantum Dots with Enhanced Stability. Chem. Mater.2011, 23 (20), 4459-4463.CrossrefGoogle Scholar

  • [77] Yang, X.; Zhao, D.; Leck, K. S.; Tan, S. T.; Tang, Y. X.; Zhao, J.; Demir, H. V.; Sun, X. W. Full Visible Range Covering InP/ZnS Nanocrystalswith High Photometric Performance and Their Application to White Quantum Dot Light-Emitting Diodes. Adv. Mater.2012, 24 (30), 4180-4185.CrossrefGoogle Scholar

  • [78] Tan, Z.-K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D.; et al. Bright Light-Emitting Diodes Based on Organometal Halide Perovskite. Nat. Nanotechnol.2014, 9, 687-692.CrossrefGoogle Scholar

  • [79] Kim, Y.-H.; Cho, H.; Heo, J. H.; Kim, T.-S.;Myoung, N.; Lee, C.-L.; Im, S. H.; Lee, T.-W.Multicolored Organic/Inorganic Hybrid Perovskite Light-Emitting Diodes. Adv. Mater.2015, 27 (7), 1248-1254.CrossrefGoogle Scholar

  • [80] Jaramillo-Quintero, O. a.; Sánchez, R. S.; Rincón, M.; Mora- Sero, I. Bright Visible-Infrared Light Emitting Diodes Based on Hybrid Halide Perovskite with Spiro-OMeTAD as a Hole Injecting Layer. J. Phys. Chem. Lett.2015, 6 (10), 1883-1890.CrossrefGoogle Scholar

  • [81] Li, G.; Tan, Z.-K.; Di, D.; Lai, M. L.; Jiang, L.; Lim, J. H.; Friend, R. H.; Greenham, N. C. Eflcient Light-Emitting Diodes Based on Nano-Crystalline Perovskite in a Dielectric Polymer Matrix. Nano Lett.2015, 15 (4), 2640-2644.CrossrefGoogle Scholar

  • [82] Chen, Z.; Nadal, B.; Mahler, B.; Aubin, H.; Dubertret, B. Quasi-2D Colloidal Semiconductor Nanoplatelets for Narrow Electroluminescence. Adv. Funct. Mater.2014, 24 (3), 295-302.CrossrefGoogle Scholar

  • [83] Vitukhnovsky, A. G.; Lebedev, V. S.; Selyukov, A. S.; Vashchenko, A. A.; Vasiliev, R. B.; Sokolikova, M. S. Electroluminescence from Colloidal Semiconductor CdSe Nanoplatelets in Hybrid Organic-inorganic Light Emitting Diode. Chem. Phys. Lett.2015, 619, 185-188.Google Scholar

  • [84] Fan, F.; Kanjanaboos, P.; Saravanapavanantham, M.; Beauregard, E.; Ingram, G.; Yassitepe, E.; Adachi, M. M.; Voznyy, O.; Johnston, A. K.; Walters, G.; et al. Colloidal CdSe 1- X S X Nanoplatelets with Narrow and Continuously-Tunable Electroluminescence. Nano Lett.2015, 15 (7), 4611-4615.Google Scholar

  • [85] Jang, E.; Jun, S.; Jang, H.; Lim, J.; Kim, B.; Kim, Y. White-Light- Emitting Diodeswith QuantumDot Color Converters for Display Backlights. Adv. Mater.2010, 22 (28), 3076-3080.CrossrefGoogle Scholar

  • [86] Chen, K.-J.; Chen, H.-C.; Tsai, K.-A.; Lin, C.-C.; Tsai, H.-H.; Chien, S.-H.; Cheng, B.-S.; Hsu, Y.-J.; Shih, M.-H.; Tsai, C.-H.; et al. Resonant-Enhanced Full-Color Emission of Quantum-Dot- Based Display Technology Using a Pulsed Spray Method. Adv. Funct. Mater.2012, 22 (24), 5138-5143.CrossrefGoogle Scholar

  • [87] Luo, Z.; Chen, Y.; Wu, S.-T. Wide Color Gamut LCD with a Quantum Dot Backlight. Opt. Express2013, 21 (22), 26269-26284.CrossrefGoogle Scholar

  • [88] Zhang, F.; Zhong, H.; Chen, C.; Wu, X.; Hu, X.; Huang, H. Brightly Luminescent and Color- (X = Br, I, Cl) Quantum Dots?: Potential Alternatives for Display Technology. ACS Nano2015, 3 (4), 4533-4542.CrossrefGoogle Scholar

  • [89] Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX 3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright EmissionwithWide Color Gamut. Nano Lett.2015, 15 (6), 3692-3696.CrossrefGoogle Scholar

  • [90] Kim, L.; Anikeeva, P. O.; Coe-Sullivan, S. a.; Steckel, J. S.; Bawendi, M. G.; Bulović, V. Contact Printing of Quantum Dot Light-Emitting Devices. Nano Lett.2008, 8 (12), 4513-4517.CrossrefGoogle Scholar

  • [91] Kim, T.-H.; Cho, K.-S.; Lee, E. K.; Lee, S. J.; Chae, J.; Kim, J. W.; Kim, D. H.; Kwon, J.-Y.; Amaratunga, G.; Lee, S. Y.; et al. Full- Colour Quantum Dot Displays Fabricated by Transfer Printing. Nat. Photonics2011, 5 (3), 176-182.CrossrefGoogle Scholar

  • [92] Choi, M. K.; Yang, J.; Kang, K.; Kim, D. C.; Choi, C.; Park, C.; Kim, S. J.; Chae, S. I.; Kim, T.-H.; Kim, J. H.; et al. Wearable Red-green-blue Quantum Dot Light-Emitting Diode Array Using High-Resolution Intaglio Transfer Printing. Nat. Commun. 2015, 6, 7149.CrossrefGoogle Scholar

  • [93] Haverinen, H. M.; Myllyla, R. a.; Jabbour, G. E. Inkjet Printed RGB QuantumDot-Hybrid LED. J. Disp. Technol.2010, 6 (3), 87-89.CrossrefGoogle Scholar

  • [94] Kong, Y. L.; Tamargo, I. a; Kim, H.; Johnson, B. N.; Gupta, M. K.; Koh, T.-W.; Chin, H.-A.; Steingart, D. a; Rand, B. P.; Mcalpine, M. C. 3D Printed Quantum Dot Light-Emitting Diodes. Nano Lett.2014, 14 (12), 7017-7023.Google Scholar

  • [95] Kim, B. H.; Onses, M. S.; Lim, J. Bin; Nam, S.; Oh, N.; Kim, H.; Yu, K. J.; Lee, J.W.; Kim, J.-H.; Kang, S.-K.; et al. High-Resolution Patterns of Quantum Dots Formed by Electrohydrodynamic Jet Printing for Light-Emitting Diodes. Nano Lett.2015, 15 (2), 969-973.CrossrefGoogle Scholar

  • [96] Bae, W. K.; Lim, J.; Lee, D.; Park, M.; Lee, H.; Kwak, J.; Char, K.; Lee, C.; Lee, S. R/G/B/Natural White Light Thin Colloidal Quantum Dot-Based Light-Emitting Devices. Adv. Mater.2014, 26 (37), 6387-6393.CrossrefGoogle Scholar

  • [97] Oh, J. H.; Lee, K.-H.; Yoon, H. C.; Yang, H.; Do, Y. R. Color-by- Blue Display Using Blue Quantum Dot Light-Emitting Diodes and Green/red Color Converting Phosphors. Opt. Express2014, 22 (S2), A511-A520.Google Scholar

  • [98] Dang, C.; Lee, J.; Breen, C.; Steckel, J. S.; Coe-Sullivan, S.; Nurmikko, A. Red, Green and Blue Lasing Enabled by Single- Exciton Gain in Colloidal Quantum Dot Films. Nat. Nanotechnol. 2012, 7 (5), 335-339.CrossrefGoogle Scholar

  • [99] Klimov, V. I. Quantization ofMultiparticle Auger Rates in Semiconductor QuantumDots. Science2000, 287 (5455), 1011-1013.Google Scholar

  • [100] Eisler, H. J.; Sundar, V. C.; Bawendi, M. G.;Walsh, M.; Smith, H. I.; Klimov, V. Color-Selective Semiconductor Nanocrystal Laser. Appl. Phys. Lett.2002, 80 (24), 4614-4616.CrossrefGoogle Scholar

  • [101] Malko, A. V.; Mikhailovsky, A. A.; Petruska, M. A.; Hollingsworth, J. A.; Htoon, H.; Bawendi, M. G.; Klimov, V. I. From Amplified Spontaneous Emission to Microring Lasing Using Nanocrystal Quantum Dot Solids. Appl. Phys. Lett.2002, 81 (7), 1303-1305.CrossrefGoogle Scholar

  • [102] Chan, Y.; Steckel, J. S.; Snee, P. T.; Caruge, J. M.; Hodgkiss, J. M.; Nocera, D. G.; Bawendi, M. G. Blue Semiconductor Nanocrystal Laser. Appl. Phys. Lett.2005, 86 (7), 073102.CrossrefGoogle Scholar

  • [103] Zhang, C.; Zhang, F.; Cheng, A.; Kimball, B.; Wang, A. Y.; Xu, J. Frequency Upconverted Lasing of Nanocrystal Quantum Dots in Microbeads. Appl. Phys. Lett.2009, 95 (18), 10-13.Google Scholar

  • [104] Dang, C.; Lee, J.; Roh, K.; Kim, H.; Ahn, S.; Jeon, H.; Breen, C.; Steckel, J. S.; Coe-Sullivan, S.; Nurmikko, a. Highly Eflcient, Spatially Coherent Distributed Feedback Lasers from Dense Colloidal Quantum Dot Films. Appl. Phys. Lett.2013, 103 (17), 8-13.Google Scholar

  • [105] Roh, K.; Dang, C.; Lee, J.; Chen, S.; Steckel, J. S.; Coe-Sullivan, S.; Nurmikko, A. Surface-Emitting Red, Green, and Blue Colloidal Quantum Dot Distributed Feedback Lasers. Opt. Express2014, 22 (15), 18800-18806.CrossrefGoogle Scholar

  • [106] Wang, Y.; Leck, K. S.; Ta, V. D.; Chen, R.; Nalla, V.; Gao, Y.; He, T.; Demir, H. V.; Sun, H. Blue Liquid Lasers from Solution of CdZnS/ZnS Ternary Alloy Quantum Dots with Quasi- Continuous Pumping. Adv. Mater.2015, 27 (1), 169-175.CrossrefGoogle Scholar

  • [107] Guzelturk, B.; Kelestemur, Y.; Gungor, K.; Yeltik, A.; Akgul, M. Z.;Wang, Y.; Chen, R.; Dang, C.; Sun, H.; Demir, H. V. Stable and Low-Threshold Optical Gain in CdSe/CdS Quantum Dots: An All-Colloidal Frequency Up-Converted Laser. Adv. Mater.2015, 27 (17), 2741-2746.CrossrefGoogle Scholar

  • [108] Guzelturk, B.; Kelestemur, Y.; Olutas, M.; Delikanli, S.; Demir, H. V. Amplified Spontaneous Emission and Lasing in Colloidal Nanoplatelets. ACS Nano2014, 8 (7), 6599-6605.CrossrefGoogle Scholar

  • [109] Deschler, F.; Price, M.; Pathak, S.; Klintberg, L. E.; Jarausch, D. D.; Higler, R.; Hüttner, S.; Leijtens, T.; Stranks, S. D.; Snaith, H. J.; et al. High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors. J. Phys. Chem. Lett.2014, 5 (8), 1421-1426.CrossrefGoogle Scholar

  • [110] Guzelturk, B.; Kelestemur, Y.; Akgul, M. Z.; Sharma, V. K.; Demir, H. V. Ultralow Threshold One-Photon- and Two-Photon- Pumped Optical Gain Media of Blue-Emitting Colloidal Quantum Dot Films. J. Phys. Chem. Lett.2014, 5 (13), 2214-2218.CrossrefGoogle Scholar

  • [111] Wang, Y.; Ta, V. D.; Gao, Y.; He, T. C.; Chen, R.; Mutlugun, E.; Demir, H. V.; Sun, H. D. Stimulated Emission and Lasing from CdSe/CdS/ZnS Core-Multi-Shell Quantum Dots by Simultaneous Three-Photon Absorption. Adv.Mater.2014, 26 (18), 2954-2961.CrossrefGoogle Scholar

  • [112] Xing, G.; Liao, Y.; Wu, X.; Chakrabortty, S.; Liu, X.; Yeow, E. K. L.; Chan, Y.; Sum, T. C. Ultralow-Threshold Two-Photon Pumped Amplified Spontaneous Emission and Lasing from Seeded CdSe/CdS Nanorod Heterostructures. ACS Nano2012, 6 (12), 10835-10844.CrossrefGoogle Scholar

  • [113] Gao, Y.; Ta, V. D.; Zhao, X.; Wang, Y.; Chen, R.; Mutlugun, E.; Fong, K. E.; Tan, S. T.; Dang, C.; Sun, X. W.; et al. Observation of Polarized Gain from Aligned Colloidal Nanorods. Nanoscale2015, 7 (15), 6481-6486.CrossrefGoogle Scholar

  • [114] Di Stasio, F.; Grim, J. Q.; Lesnyak, V.; Rastogi, P.; Manna, L.; Moreels, I.; Krahne, R. Single-Mode Lasing from Colloidal Water-Soluble CdSe/CdS Quantum Dot-in-Rods. Small2014, 11 (11), 1328-1334.Google Scholar

  • [115] She, C.; Fedin, I.; Dolzhnikov, D. S.; Demortičre, A.; Schaller, R. D.; Pelton, M.; Talapin, D. V. Low-Threshold Stimulated Emission Using Colloidal Quantum Wells. Nano Lett.2014, 14 (5), 2772-2777.CrossrefGoogle Scholar

  • [116] García-Santamaría, F.; Chen, Y.; Vela, J.; Schaller, R. D.; Hollingsworth, J. A.; Klimov, V. I. Suppressed Auger Recombination in “Giant” Nanocrystals Boosts Optical Gain Performance. Nano Lett.2009, 9 (10), 3482-3488.CrossrefGoogle Scholar

  • [117] Olutas, M.; Guzelturk, B.; Kelestemur, Y.; Yeltik, A.; Delikanli, S.; Demir, H. V. Lateral Size-Dependent Spontaneous and Stimulated Emission Properties. ACS Nano2015, 9 (5), 5041-5050.CrossrefGoogle Scholar

  • [118] Grim, J. Q.; Christodoulou, S.; Di Stasio, F.; Krahne, R.; Cingolani, R.; Manna, L.; Moreels, I. Continuous-Wave Biexciton Lasing at Room Temperature Using Solution-Processed Quantum Wells. Nat. Nanotechnol.2014, 9 (11), 891-895.CrossrefGoogle Scholar

  • [119] Xing, G.; Mathews, N.; Lim, S. S.; Yantara, N.; Liu, X.; Sabba, D.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Low-Temperature Solution-Processed Wavelength-Tunable Perovskites for Lasing. Nat. Mater.2014, 13 (5), 476-480.CrossrefGoogle Scholar

  • [120] Sutherland, B. R.; Hoogland, S.; Adachi, M. M.; Wong, C. T. O.; Sargent, E. H.; Al, S. E. T. Conformal Organohalide Perovskites Enable Lasing on Spherical Resonators. ACS Nano2014, 8 (10), 10947-10952. CrossrefGoogle Scholar

About the article

Received: 2015-10-01

Accepted: 2015-10-01

Published Online: 2016-06-11

Published in Print: 2016-06-01

Citation Information: Nanophotonics, Volume 5, Issue 1, Pages 74–95, ISSN (Online) 2192-8614, ISSN (Print) 2192-8606, DOI: https://doi.org/10.1515/nanoph-2016-0009.

Export Citation

© 2016. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Qilin Yuan, Xin Guan, Xulan Xue, Dengbao Han, Haizheng Zhong, Han Zhang, Hanzhuang Zhang, and Wenyu Ji
physica status solidi (RRL) - Rapid Research Letters, 2018, Page 1800575
Sushant Shendre, Savas Delikanli, Mingjie Li, Didem Dede, Zhenying Pan, Son Tung Ha, Yuan Hsing Fu, Pedro L. Hernández-Martínez, Junhong Yu, Onur Erdem, Arseniy I. Kuznetsov, Cuong Dang, Tze Chien Sum, and Hilmi Volkan Demir
Nanoscale, 2019
Manuel A. Triana, Hao Chen, Dandan Zhang, Rubén J. Camargo, Tianshu Zhai, Steffen Duhm, and Yajie Dong
Journal of Materials Chemistry C, 2018
Ehsan Soheyli, Reza Sahraei, Gholamreza Nabiyouni, Ali Asghar Hatamnia, Arman Rostamzad, and Saman Soheyli
Journal of Colloid and Interface Science, 2018
Yanzhao Li, Zhuo Chen, Boris Kristal, Yuanming Zhang, Dong Li, Gang Yu, Xiyuan Wang, Long Wang, Yongming Shi, Zhiliang Wang, Youru Chen, Jing Yu, and Yuedi He
SID Symposium Digest of Technical Papers, 2018, Volume 49, Number 1, Page 1076
Hyein Yoo and Kyoungja Woo
The Journal of Physical Chemistry Letters, 2018, Page 2106
Yossef E. Panfil, Meirav Oded, and Uri Banin
Angewandte Chemie International Edition, 2018
Yossef E. Panfil, Meirav Oded, and Uri Banin
Angewandte Chemie, 2018
Julian Schneider, Tetiana Dudka, Yuan Xiong, Zhenguang Wang, Nikolai Gaponik, and Andrey L. Rogach
The Journal of Physical Chemistry C, 2017
Quan Chen, Fan Yang, Renzhuo Wan, and Dong Fang
Applied Physics Letters, 2017, Volume 111, Number 24, Page 243505
Maya Isarov, Liang Z Tan, Jenya Tilchin, Freddy T Rabouw, Maryna I Bodnarchuk, Relinde J A van Dijk-Moes, Rotem Carmi, Yahel Barak, Alyssa Kostadinov, Itay Meir, Daniel Vanmaekelbergh, Maksym V Kovalenko, Andrew M Rappe, and Efrat Lifshitz
Journal of Physics B: Atomic, Molecular and Optical Physics, 2017, Volume 50, Number 21, Page 214001
Fu-Xing Yu, Yue Zhang, Zi-Yang Xiong, Xing-Juan Ma, Ping Chen, Zu-Hong Xiong, and Chun-Hong Gao
Organic Electronics, 2017
Miguel F. Leitao, Joao M. M. Santos, Benoit Guilhabert, Scott Watson, Anthony E. Kelly, Mohamed S. Islim, Harald Haas, Martin D. Dawson, and Nicolas Laurand
IEEE Journal of Selected Topics in Quantum Electronics, 2017, Volume 23, Number 5, Page 1
Shuai Chang, Xin Zhang, Ziwei Wang, Dengbao Han, Jialun Tang, Zelong Bai, and Haizheng Zhong
IEEE Journal of Selected Topics in Quantum Electronics, 2017, Volume 23, Number 5, Page 1
Reza Sahraei, Farnaz Mohammadi, Ehsan Soheyli, and Mahmoud Roushani
Journal of Luminescence, 2017, Volume 187, Page 421
Daqin Chen, Yang Zhou, and Jiasong Zhong
RSC Adv., 2016, Volume 6, Number 89, Page 86285

Comments (0)

Please log in or register to comment.
Log in