Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Editor-in-Chief: Sorger, Volker

CiteScore 2017: 6.57

IMPACT FACTOR 2017: 6.014
5-year IMPACT FACTOR: 7.020

In co-publication with Science Wise Publishing

Open Access
See all formats and pricing
More options …
Volume 5, Issue 1


Heat meets light on the nanoscale

Svetlana V. Boriskina
  • Corresponding author
  • Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jonathan K. Tong
  • Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Wei-Chun Hsu
  • Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bolin Liao
  • Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yi Huang
  • Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vazrik Chiloyan
  • Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gang Chen
  • Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-06-11 | DOI: https://doi.org/10.1515/nanoph-2016-0010


We discuss the state-of-the-art and remaining challenges in the fundamental understanding and technology development for controlling light-matter interactions in nanophotonic environments in and away from thermal equilibrium. The topics covered range from the basics of the thermodynamics of light emission and absorption to applications in solar thermal energy generation, thermophotovoltaics, optical refrigeration, personalized cooling technologies, development of coherent incandescent light sources, and spinoptics.

Keywords: thermal emission; absorption; spectral selectivity; angular selectivity; optical refrigeration; solar thermal energy conversion; thermophotovoltaics; nearfield heat transfer; photon density of states; thermal upconversion; radiative cooling


  • [1] Planck M., The theory of heat radiation, P. Blackston’s sons co (1914).Google Scholar

  • [2] Landau L., Lifshitz E., Statistical Physics, Part 1, Course Theor. Physics, vol. 5, Institute of Physical Problems, USSR Academy of Sciences, Moscow (1980).Google Scholar

  • [3] Landsberg P. T., Tonge G., Thermodynamic energy conversion efficiencies, J. Appl. Phys. 51(7), R1-R20 (1980).CrossrefGoogle Scholar

  • [4] Ruppel W., Wurfel P., Upper limit for the conversion of solar energy, IEEE Trans. Electron Dev. 27(4), 877-882 (1980).CrossrefGoogle Scholar

  • [5] De Vos A., Pauwels H., On the thermodynamic limit of photovoltaic energy conversion, Appl. Phys. A Mater. Sci. Process. 25(2), 119-125, Springer Berlin / Heidelberg (1981).Google Scholar

  • [6] Landau L., On the thermodynamics of photoluminescence, J. Phys. 10, 503-506 (1946).Google Scholar

  • [7] Rytov S. M. M., Theory of electric fluctuations and thermal radiation, Air Force Cambridge Research Center, Bedford, MA (1959).Google Scholar

  • [8] Rytov S. M., Kravtsov Y. A.., Tatarskii V. I., Principles of statistical radiophysics, Springer-Verlag, New York (1987).Google Scholar

  • [9] Wurfel P., The chemical potential of radiation, J. Phys. C Solid State Phys. 15(18), 3967, IOP Publishing (1982).CrossrefGoogle Scholar

  • [10] Wurfel P., Ruppel W., The flow equilibrium of a body in a radiation field, J. Phys. C Solid State Phys. 18(15), 2987-3000, IOP Publishing (1985).CrossrefGoogle Scholar

  • [11] Ries H., Thermodynamics of Quantum Conversion of Light, Zeitschrift für Phys. Chemie 1(1), 133-140 (1998).Google Scholar

  • [12] Rousseau E., Siria A., Jourdan G., Volz S., Comin F., Chevrier J., Greffet J.-J., Radiative heat transfer at the nanoscale, Nat Phot. 3(9), 514-517, Nature Publishing Group (2009).CrossrefGoogle Scholar

  • [13] Song B., Fiorino A., Meyhofer E., Reddy P., Near-field radiative thermal transport: From theory to experiment, AIP Adv. 5(5), 053503, AIP Publishing (2015).Google Scholar

  • [14] Bermel P., Boriskina S. V., Yu Z., Joulain K., Control of radiative processes for energy conversion and harvesting, Opt. Express 23(24), A1533-A1540, Optical Society of America (2015).CrossrefGoogle Scholar

  • [15] Boriskina S. V., Green M. A., Catchpole K., Yablonovitch E., Beard M. C., Okada Y., Lany S., Gershon T., Zakutayev A., et al., Roadmap on optical energy conversion, J. Opt. (2016).Google Scholar

  • [16] Inoue T., De Zoysa M., Asano T., Noda S., Realization of narrowband thermal emission with optical nanostructures, Optica 2(1), 27, Optical Society of America (2015).CrossrefGoogle Scholar

  • [17] Levi A. F. J., Applied quantum mechanics, Cambridge Univ. Press (2006).Google Scholar

  • [18] Chen G., Nanoscale energy transfer and conversion, Oxford University Press (2005).Google Scholar

  • [19] Allen L., Padgett M. J., Babiker M., Wolf E., IV The Orbital Angular Momentum of Light, [Progress in Optics], Elsevier, 291-372 (1999).Google Scholar

  • [20] Mazilu M., Optical eigenmodes; spin and angular momentum, J. Opt. 13(6), 064009, IOP Publishing (2011).Google Scholar

  • [21] Bliokh K. Y., Rodriguez-Fortuno F. J., Nori F., Zayats A. V., Spinorbit interactions of light, Optics, 23 (2015).Google Scholar

  • [22] Yablonovitch E., Statistical ray optics, J. Opt. Soc. Am. 72(7), 899-907 (1982).CrossrefGoogle Scholar

  • [23] Landsberg P. T., Photons at non-zero chemical potential, J. Phys. C Solid State Phys. 14(32), L1025-L1027, IOP Publishing (1981).CrossrefGoogle Scholar

  • [24] Ries H., Mcevoy A. J. J., Rles H., Mcevoy A. J. J., Chemical potential and temperature of light aFA, J. Photochem. Photobiol. A Chem. 59(1), 11-18 (1991).CrossrefGoogle Scholar

  • [25] Badescu V., Time-dependent and steady-state statistics of photons at nonzero chemical potential, J. Phys. Condens. Matter 3(33), 6509-6521, IOP Publishing (1991).CrossrefGoogle Scholar

  • [26] Green M. A., Third Generation Photovoltaics: Advanced Solar Energy Conversion (Springer Series in Photonics), Springer (2005).Google Scholar

  • [27] Klaers J., Schmitt J., Vewinger F., Weitz M., Bose-Einstein condensation of photons in an optical microcavity., Nature 468(7323), 545-548, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. (2010).Google Scholar

  • [28] Green M., Energy, entropy and efficiency, [Third Generation Photovoltaics], T. Kamiya, B. Monemar and H. Venghaus, Eds., Springer Berlin Heidelberg, 21-34 (2006).Google Scholar

  • [29] Henry C. H., Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells, J. Appl. Phys. 51(8), 4494-4500 (1980).CrossrefGoogle Scholar

  • [30] Markvart T., The thermodynamics of optical étendue, J. Opt. A Pure Appl. Opt. 10(1), 015008 (2008).CrossrefGoogle Scholar

  • [31] Hafezi M., Adhikari P., Taylor J. M., A chemical potential for light, Quantum Physics; Statistical Mechanics; Optics, 7 (2014).Google Scholar

  • [32] Shockley W., Queisser H. J., Detailed balance limit of efficiency of p-n junction solar cells, J. Appl. Phys. 32(3), 510-519 (1961).CrossrefGoogle Scholar

  • [33] Harder P. N., Green M. A., Thermophotonics, Semicond. Sci. Technol. 18(5), S270 (2003).CrossrefGoogle Scholar

  • [34] Farrell D. J., Sodabanlu H., Wang Y., Sugiyama M., Okada Y., Can a Hot-Carrier Solar Cell also be an Efficient Upconverter?, IEEE J. Photovoltaics 5(2), 571-576 (2015).CrossrefGoogle Scholar

  • [35] Farrell D. J., Sodabanlu H., Wang Y., Sugiyama M., Okada Y., A hot-electron thermophotonic solar cell demonstrated by thermal up-conversion of sub-bandgap photons., Nat. Commun. 6, 8685, Nature Publishing Group (2015).CrossrefGoogle Scholar

  • [36] Xue J., Zhao Y., Oh S.-H., Herrington W. F., Speck J. S., Den- Baars S. P., Nakamura S., Ram R. J., Thermally enhanced blue light-emitting diode, Appl. Phys. Lett. 107(12), 121109, AIP Publishing (2015).CrossrefGoogle Scholar

  • [37] Strandberg R., Theoretical efficiency limits for thermoradiative energy conversion, J. Appl. Phys. 117(5), 055105, AIP Publishing (2015).CrossrefGoogle Scholar

  • [38] Ross R. T., Nozik A. J., Efficiency of hot-carrier solar energy converters, J. Appl. Phys. 53(5), 3813, American Institute of Physics (1982).CrossrefGoogle Scholar

  • [39] Joshi S., Moddel G., Efficiency limits of rectenna solar cells: Theory of broadband photon-assisted tunneling, Appl. Phys. Lett. 102(8), 083901, AIP Publishing (2013).CrossrefGoogle Scholar

  • [40] Lerner P. B., Miskovsky N. M., Cutler P. H., Mayer A., Chung M. S., Thermodynamic analysis of high frequency rectifying devices: Determination of the efficiency and other performance parameters, Nano Energy 2(3), 368-376 (2013).CrossrefGoogle Scholar

  • [41] Ruan X. L., Rand S. C., Kaviany M., Entropy and efficiency in laser cooling of solids, Phys. Rev. B 75(21), 214304 (2007).CrossrefGoogle Scholar

  • [42] Epstein R. I., Buchwald M. I., Edwards B. C., Gosnell T. R.., Mungan C. E., Observation of laser-induced fluorescent cooling of a solid, Nature 377(6549), 500-503 (1995).Google Scholar

  • [43] Mashaal H., Gordon J. M., Basic limit for the efficiency of coherence-limited solar power conversion, Opt. Lett. 39(17), 5130-5133, Optical Society of America (2014).CrossrefGoogle Scholar

  • [44] Landsberg P. T., Evans D. A., Thermodynamic Limits for Some Light-Producing Devices, Phys. Rev. 166(2), 242-246, American Physical Society (1968).CrossrefGoogle Scholar

  • [45] Gordon J. M., A simple derivation of work and efficiency limits for blackbody radiation converters, Am. J. Phys. 61(9), 821, American Association of Physics Teachers (1993).CrossrefGoogle Scholar

  • [46] Boriskina S. V., Tong J. K., Ferry V. E., Michel J., Kildishev A. V., Breaking the limits of optical energy conversion, Opt. Photonics News(July/Aug), 50-53 (2015).Google Scholar

  • [47] Alharbi F. H., Kais S., Theoretical limits of photovoltaics efficiency and possible improvements by intuitive approaches learned from photosynthesis and quantum coherence, Renew. Sustain. Energy Rev. 43, 1073-1089 (2015). CrossrefGoogle Scholar

  • [48] Luque A., Martí A., Theoretical limits of photovoltaic conversion, [Handbook of Photovoltaic Sci. Eng.], John Wiley & Sons, Ltd, 113-151 (2003).Google Scholar

  • [49] Harder N.-P., Wurfel P., Theoretical limits of thermophotovoltaic solar energy conversion, Semicond. Sci. Tech. 18(5), S151 (2003).CrossrefGoogle Scholar

  • [50] Pringsheim P., Zwei Bemerkungen über den Unterschied von Lumineszenz und Temperaturstrahlung, Z. Phys. 57, 739-746 (1929).CrossrefGoogle Scholar

  • [51] Sheik-Bahae M., Epstein R. I., Optical refrigeration, Nat. Photonics 1(12), 693-699, Nature Publishing Group (2007).CrossrefGoogle Scholar

  • [52] Nemova G., Kashyap R., Laser cooling of solids, Reports Prog. Phys. 73(8), 086501 (2010).CrossrefGoogle Scholar

  • [53] Carnot N. L. S., Reflections on the motive power of heat (1824).Google Scholar

  • [54] Ries H., Complete and reversible absorption of radiation, Appl. Phys. B Photophysics Laser Chem. 32(3), 153-156 (1983).CrossrefGoogle Scholar

  • [55] De Vos A., Pauwels H., Comment on a thermodynamical paradox presented by P. Wurfel, J. Phys. C Solid State Phys. 16(36), 6897 (1983).CrossrefGoogle Scholar

  • [56] Wurfel P., Physics of solar cells: from principles to new concepts, WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim (2005).Google Scholar

  • [57] Yu Z., Sandhu S., Fan S., Efficiency above the Shockley- Queisser limit by using nanophotonic effects to create multiple effective bandgaps with a single semiconductor., Nano Lett. 14(1), 66-70, American Chemical Society (2014).CrossrefGoogle Scholar

  • [58] Purcell E. M., Spontaneous emission probabilities at radio frequencies, Phys. Rev. 69(11-12), 674, American Physical Society (1946).Google Scholar

  • [59] Bohren C. F., Huffman D. R., Absorption and scattering of light by small particles, Wiley-VCH 98, Weinheim, Germany (1983).Google Scholar

  • [60] Luo C., Narayanaswamy A., Chen G., Joannopoulos J. D., Thermal Radiation from Photonic Crystals: A Direct Calculation, Phys. Rev. Lett. 93(21), 213905 (2004).CrossrefGoogle Scholar

  • [61] Joulain K., Mulet J.-P., Marquier F., Carminati R., Greffet J.-J., Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field, Surf. Sci. Reports 57(3-4), 59-112 (2005).CrossrefGoogle Scholar

  • [62] Boriskina S. V., Tong J., Weinstein L., Hsu W.-C., Huang Y.., Chen G., Thermal emission shaping and radiative cooling with thermal wells, wires and dots, Adv. Photonics 2015, IT2A.3, OSA, Washington, D.C. (2015).Google Scholar

  • [63] Boriskina S. V., Ghasemi H., Chen G., Plasmonic materials for energy: From physics to applications, Mater. Today 16(10), 375-386 (2013).CrossrefGoogle Scholar

  • [64] Khurgin Y., Improving the efficiency of laser cooling of semiconductors by means of bandgap engineering in electronic and photonic domains, [Optical refrigeration], R. I. Epstein and M. Sheik-Bahae, Eds., WILEY-VCH Verlag, 169-196 (2009).Google Scholar

  • [65] Jacob Z., Smolyaninov I. I., Narimanov E. E., Broadband Purcell effect: Radiative decay engineering with metamaterials, Appl. Phys. Lett. 100(18), 181104-181105, AIP (2012).Google Scholar

  • [66] Callahan D. M., Munday J. N., Atwater H. A., Solar cell light trapping beyond the ray optic limit, Nano Lett. 12(1), 214-218, American Chemical Society (2012).CrossrefGoogle Scholar

  • [67] van Roosbroeck W., Shockley W., Photon-Radiative Recombination of Electrons and Holes in Germanium, Phys. Rev. 94(6), 1558-1560 (1954).CrossrefGoogle Scholar

  • [68] Lasher G., Stern F., Spontaneous and Stimulated Recombination Radiation in Semiconductors, Phys. Rev. 133(2A), A553-A563 (1964).CrossrefGoogle Scholar

  • [69] Bhattacharya R., Pal B., Bansal B., On conversion of luminescence into absorption and the van Roosbroeck-Shockley relation, Appl. Phys. Lett. 100(22), 222103, AIP Publishing (2012).CrossrefGoogle Scholar

  • [70] De Zoysa M., Asano T., Mochizuki K., Oskooi A., Inoue T., Noda S., Conversion of broadband to narrowband thermal emission through energy recycling, Nat. Photonics 6(8), 535-539, Nature Publishing Group (2012).CrossrefGoogle Scholar

  • [71] Inoue T., De Zoysa M., Asano T., Noda S., Single-peak narrowbandwidth mid-infrared thermal emitters based on quantum wells and photonic crystals, Appl. Phys. Lett. 102(19), 191110, AIP Publishing (2013).CrossrefGoogle Scholar

  • [72] Boriskina S., Tong J., Huang Y., Zhou J., Chiloyan V., Chen G., Enhancement and Tunability of Near-Field Radiative Heat Transfer Mediated by Surface Plasmon Polaritons in Thin Plasmonic Films, Photonics 2(2), 659-683, Multidisciplinary Digital Publishing Institute (2015).CrossrefGoogle Scholar

  • [73] Manor A., Martin L. L., Rotschild C., Optical refrigeration for ultra-efficient photovoltaics, SPIE OPTO, R. I. Epstein, D. V. Seletskiy and M. Sheik-Bahae, Eds., 93800L, International Society for Optics and Photonics (2015).Google Scholar

  • [74] Manor A., Martin L., Rotschild C., Conservation of photon rate in endothermic photoluminescence and its transition to thermal emission, Optica 2(6), 585, Optical Society of America (2015).CrossrefGoogle Scholar

  • [75] Yu Z. F., Raman A., Fan S. H., Fundamental limit of nanophotonic light trapping in solar cells, Proc. Natl. Acad. Sci. USA 107(41), 17491-17496 (2010).CrossrefGoogle Scholar

  • [76] Yu Z., Raman A., Fan S., Fundamental limit of light trapping in grating structures, Opt. Express 18(S3), A366-A380, OSA (2010).CrossrefGoogle Scholar

  • [77] Yu Z., Sergeant N. P., Skauli T. T., Zhang G., Wang H., Fan S., Enhancing far-field thermal emission with thermal extraction, Nat. Commun. 4, 1730, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved (2013).CrossrefGoogle Scholar

  • [78] Shi J., Liu B., Li P., Ng L. Y., Shen S., Near-field energy extraction with hyperbolic metamaterials, Nano Lett 15(2), 1217-1221, American Chemical Society (2015).CrossrefGoogle Scholar

  • [79] Biehs S.-A., Lang S., Petrov A. Y., Eich M., Ben-Abdallah P., Blackbody Theory for Hyperbolic Materials, Phys. Rev. Lett. 115(17), 174301 (2015).CrossrefGoogle Scholar

  • [80] Saeta P. N., Ferry V. E., Pacifici D., Munday J. N., Atwater H. A., How much can guided modes enhance absorption in thin solar cells?, Opt. Express 17(23), 20975-20990, OSA (2009).CrossrefGoogle Scholar

  • [81] Grandidier J., Callahan D. M., Munday J. N., Atwater H. A., Gallium Arsenide Solar Cell Absorption Enhancement Using Whispering Gallery Modes of Dielectric Nanospheres, IEEE J. Photovoltaics 2(2), 123-128 (2012).CrossrefGoogle Scholar

  • [82] Jacob Z., Kim J. Y., Naik G. V., Boltasseva A., Narimanov E. E., Shalaev V. M., Engineering photonic density of states using metamaterials, Appl. Phys. B 100(1), 215-218 (2010).CrossrefGoogle Scholar

  • [83] Shen S., Narayanaswamy A., Chen G., Surface phonon polaritons mediated energy transfer between nanoscale gaps., Nano Lett. 9(8), 2909-2913, American Chemical Society (2009).CrossrefGoogle Scholar

  • [84] Bohren C. F., How can a particle absorb more than the light incident on it?, Am. J. Phys. 51(4), 323-327, AAPT (1983).CrossrefGoogle Scholar

  • [85] Tong J., Mercedes A., Chen G., Boriskina S. V., Local field topology behind light localization and metamaterial topological transitions, [Singular and Chiral Nanoplasmonics], S. V. Boriskina and N. I. Zheludev, Eds., Pan Stanford, 259-284 (2014).Google Scholar

  • [86] Bliokh K. Y., Nori F., Transverse spin of a surface polariton, Phys. Rev. A 85(6), 061801 (2012).CrossrefGoogle Scholar

  • [87] Rosenblatt G., Feigenbaum E., Orenstein M., Circular motion of electromagnetic power shaping the dispersion of Surface Plasmon Polaritons, Opt. Express 18(25), 25861-25872, OSA (2010).CrossrefGoogle Scholar

  • [88] Volokitin A. I., Persson B. N. J., Near-field radiative heat transfer and noncontact friction, Rev. Mod. Phys. 79(4), 1291-1329, American Physical Society (2007).CrossrefGoogle Scholar

  • [89] Pendry J. B., Radiative exchange of heat between nanostructures, J. Phys. Condens. Matter 11(35), 6621 (1999).CrossrefGoogle Scholar

  • [90] Narayanaswamy A., Shen S., Hu L., Chen X. Y., Chen G., Breakdown of the Planck blackbody radiation law at nanoscale gaps, Appl. Phys. A. Mater. Sci. Proces. 96(2), 357-362 (2009).CrossrefGoogle Scholar

  • [91] Biehs S.-A., Rousseau E., Greffet J.-J., Mesoscopic description of radiative heat transfer at the nanoscale, Phys. Rev. Lett. 105(23), 234301 (2010).CrossrefGoogle Scholar

  • [92] Ben-Abdallah P., Joulain K., Drevillon J., Domingues G., Nearfield heat transfer mediated by surface wave hybridization between two films, J. Appl. Phys. 106(4), 044306 (2009).Google Scholar

  • [93] Basu S., Francoeur M., Maximum near-field radiative heat transfer between thin films, Appl. Phys. Lett. 98(24), 243120, AIP (2011).CrossrefGoogle Scholar

  • [94] Basu S., Zhang Z. M., Fu C. J., Review of near-field thermal radiation and its application to energy conversion, Int. J. Energy Res. 33(13), 1203-1232 (2009).CrossrefGoogle Scholar

  • [95] Basu S., Zhang Z. M., Maximum energy transfer in near-field thermal radiation at nanometer distances, J. Appl. Phys. 105(9), 093535, AIP Publishing (2009).CrossrefGoogle Scholar

  • [96] van Zwol P. J., Joulain K., Ben-Abdallah P., Chevrier J., Phonon polaritons enhance near-field thermal transfer across the phase transition of VO2, Phys. Rev. B 84(16), 161413 (2011).CrossrefGoogle Scholar

  • [97] Poddubny A., Iorsh I., Belov P., Kivshar Y., Hyperbolic metamaterials, Nat. Photonics 7(12), 948-957, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. (2013).CrossrefGoogle Scholar

  • [98] Guo Y., Jacob Z., Thermal hyperbolic metamaterials, Opt. Express 21(12), 15014-15019 (2013).CrossrefGoogle Scholar

  • [99] Biehs S.-A., Tschikin M., Messina R., Ben-Abdallah P., Super-Planckian near-field thermal emission with phononpolaritonic hyperbolic metamaterials, Appl. Phys. Lett. 102(13), 131106, AIP Publishing (2013).CrossrefGoogle Scholar

  • [100] Noginov M. A., Li H., Barnakov Y. A., Dryden D., Nataraj G., Zhu G., Bonner C. E., Mayy M., Jacob Z., et al., Controlling spontaneous emission with metamaterials, Opt. Lett. 35(11), 1863-1865, OSA (2010).CrossrefGoogle Scholar

  • [101] Corrigan T. D., Park D. H., Drew H. D., Guo S.-H., Kolb P. W., Herman W. N., Phaneuf R. J., Broadband and mid-infrared absorber based on dielectric-thin metal film multilayers, Appl. Opt. 51(8), 1109-1114, Optical Society of America (2012).CrossrefGoogle Scholar

  • [102] Sergeant N. P., Pincon O., Agrawal M., Peumans P., Design of wide-angle solar-selective absorbers using aperiodic metaldielectric stacks, Opt. Express 17(25), 22800-22812, Optical Society of America (2009).CrossrefGoogle Scholar

  • [103] Biehs S.-A., Tschikin M., Ben-Abdallah P., Hyperbolic Metamaterials as an Analog of a Blackbody in the Near Field, Phys. Rev. Lett. 109(10), 104301 (2012).CrossrefGoogle Scholar

  • [104] Molesky S., Dewalt C. J., Jacob Z., High temperature epsilonnear- zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics, Opt. Express 21 Suppl 1(January), A96- A110, Optical Society of America (2013).CrossrefGoogle Scholar

  • [105] Tong J. K., Hsu W.-C., Huang Y., Boriskina S. V., Chen G., Thin-film “Thermal Well” emitters and absorbers for high efficiency thermophotovoltaics, Optics, Sci. Reports 5, 10661 (2015).CrossrefGoogle Scholar

  • [106] Kats M. A., Blanchard R., Genevet P., Capasso F., Nanometre optical coatings based on strong interference effects in highly absorbing media, Nat. Mater. 12(1), 20-24, Nature Publishing Group (2013).Google Scholar

  • [107] Narayanaswamy A., Mayo J., Canetta C., Infrared selective emitters with thin films of polar materials, Appl. Phys. Lett. 104(18), 183107, AIP Publishing (2014).CrossrefGoogle Scholar

  • [108] Cao L., White J. S., Park J.-S., Schuller J. A., Clemens B. M., Brongersma M. L., Engineering light absorption in semiconductor nanowire devices, Nat. Mater. 8(8), 643-647, Nature Publishing Group (2009).CrossrefGoogle Scholar

  • [109] Krogstrup P., Jřrgensen H. I., Heiss M., Demichel O., Holm J. V., Aagesen M., Nygard J., Fontcuberta i Morral A., Singlenanowire solar cells beyond the Shockley-Queisser limit, Nat. Photonics 7(4), 306-310, Nature Publishing Group (2013).CrossrefGoogle Scholar

  • [110] Schuller J. A., Taubner T., Brongersma M. L., Optical antenna thermal emitters, Nat. Photonics 3(11), 658-661, Nature Publishing Group (2009).CrossrefGoogle Scholar

  • [111] Tong J. K., Hsu W.-C., Eon Han S., Burg B. R., Zheng R., Shen S., Chen G., Direct and quantitative photothermal absorption spectroscopy of individual particulates, Appl. Phys. Lett. 103(26), 261104 (2013).CrossrefGoogle Scholar

  • [112] Matsko A. B., Ilchenko V. S., Optical resonators with whispering-gallery modes-part I: basics, IEEE J. Sel. Top. Quantum Electron. 12(1), 3-14 (2006).CrossrefGoogle Scholar

  • [113] Ilchenko V. S., Matsko A. B., Optical resonators with whispering-gallery modes-part II: applications, IEEE J. Sel. Top. Quantum Electron. 12(1), 15-32 (2006).CrossrefGoogle Scholar

  • [114] Benson T. M., Boriskina S. V., Sewell P., Vukovic A., Greedy S. C., Nosich A. I., Micro-optical resonators for microlasers and integrated optoelectronics, [Frontiers in Planar Lightwave Circuit Technology, Volume 216 of the series NATO Science Series II: Mathematics, Physics and Chemistry], Springer, 39-70 (2006).Google Scholar

  • [115] Boriskina S. V., Reinhard B. M., Spectrally and spatially configurable superlenses for optoplasmonic nanocircuits, Proc. Natl. Acad. Sci. U. S. A. 108(8), 3147-3151 (2011).CrossrefGoogle Scholar

  • [116] Yablonovitch E., Gmitter T. J., Meade R. D., Rappe A. M., Brommer K. D., Joannopoulos J. D., Donor and acceptor modes in photonic band structure, Phys. Rev. Lett. 67(24), 3380, American Physical Society (1991).CrossrefGoogle Scholar

  • [117] Ben-Abdallah P., Ni B., Single-defect Bragg stacks for highpower narrow-band thermal emission, J. Appl. Phys. 97(10), 104910, AIP Publishing (2005). Google Scholar

  • [118] Vahala K. J., Optical microcavities, Nature 424(6950), 839-846 (2003).Google Scholar

  • [119] Johnson B. R., Theory of morphology-dependent resonances: shape resonances and width formulas, J. Opt. Soc. Am. A 10(2), 343-352, OSA (1993).CrossrefGoogle Scholar

  • [120] Boriskina S. V., Sewell P., Benson T. M., Nosich A. I., Accurate simulation of two-dimensional optical microcavities with uniquely solvable boundary integral equations and trigonometric Galerkin discretization, J. Opt. Soc. Am. A. Opt. Image Sci. Vis. 21(3), 393-402 (2004).CrossrefGoogle Scholar

  • [121] Boriskina S. V., Theoretical prediction of a dramatic Q-factor enhancement and degeneracy removal of whispering gallery modes in symmetrical photonic molecules, Opt. Lett. 31(3), 338-340 (2006).CrossrefGoogle Scholar

  • [122] Boriskina S. V., Tong J. K., Hsu W.-C., Weinstein L., Huang X., Loomis J., Xu Y., Chen G., Hybrid optical-thermal devices and materials for light manipulation and radiative cooling, Proc. SPIE 9546, Act. Photonic Mater. VII, 95461U (2015).Google Scholar

  • [123] Hu L., Chen G., Analysis of optical absorption in silicon nanowire Arrays for photovoltaic applications, Nano Lett. 7(11), 3249-3252 (2007).CrossrefGoogle Scholar

  • [124] Dyachenko P. N., do Rosário J. J., Leib E. W., Petrov A. Y., Störmer M., Weller H., Vossmeyer T., Schneider G. A., Eich M., Tungsten band edge absorber/emitter based on a monolayer of ceramic microspheres, Opt. Express 23(19), A1236, Optical Society of America (2015).CrossrefGoogle Scholar

  • [125] Vernooy D. W., Furusawa A., Georgiades N. P., Ilchenko V. S., Kimble H. J., Cavity QED with high-Q whispering gallery modes, Phys. Rev. A 57(4), R2293, American Physical Society (1998).CrossrefGoogle Scholar

  • [126] Gopinath A., Boriskina S. V., Premasiri W. R., Ziegler L., Reinhard B. M., Dal Negro L., Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing, Nano Lett. 9(11), 3922-3929 (2009).CrossrefGoogle Scholar

  • [127] Benson T. M., Boriskina S. V., Sewell P., Vukovic A., Nosich A. I., Janyani V., Al-Jarro A., Sakhnenko N., Smotrova E. I., et al., Micro-resonators: simulation and application, Proc. CAOL 2005. Second Int. Conf. Adv. Optoelectron. Lasers, 2005. 1 (2005).Google Scholar

  • [128] Wang J., Yang L., Boriskina S. V., Reinhard B. M. B. M., Yan B., Reinhard B. M. B. M., Spectroscopic ultra-trace detection of nitro-aromatic gas vapor on rationally designed nanoparticle cluster arrays, Anal. Chem. 83(6), 2243-2249 (2011).CrossrefGoogle Scholar

  • [129] Muskens O. L., Giannini V., Sanchez-Gil J. A., Gomez Rivas J., Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas, Nano Lett. 7(9), 2871-2875, American Chemical Society (2007).CrossrefGoogle Scholar

  • [130] Pelton M., Modified spontaneous emission in nanophotonic structures, Nat. Photonics 9(7), 427-435, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved (2015).CrossrefGoogle Scholar

  • [131] Giannini V., Fernández-Domínguez A. I., Sonnefraud Y., Roschuk T., Fernández-García R., Maier S. A., Controlling light localization and light-matter interactions with nanoplasmonics, Small 6(22), 2498-2507, WILEY-VCH Verlag (2011).Google Scholar

  • [132] Ahn W., Hong Y., Boriskina S. V., Zhao X., Reinhard B. M., Template-guided self-assembly of discrete optoplasmonic molecules and extended optoplasmonic arrays, Nanophotonics 4(1), 250-260 (2015).Google Scholar

  • [133] Ho C. K., Iverson B. D., Review of high-temperature central receiver designs for concentrating solar power, Renew. Sustain. Energy Rev. 29, 835-846 (2014).CrossrefGoogle Scholar

  • [134] ASTM International West Conshohocken PA., ASTM Standard G173-03: Standard tables for reference solar spectral irradiances: direct normal and hemispherical on 37∘ tilted surface (2008).Google Scholar

  • [135] Badescu V., Spectrally and angularly selective photothermal and photovoltaic converters under one-sun illumination, J. Phys. D Appl. Phys. 38(13), 2166 (2005).CrossrefGoogle Scholar

  • [136] McEnaney K., Kraemer D., Chen G., Direct heat-to-electricity conversion of solar energy, An. Rev. Heat Transf. 15, 179-230 (2012).CrossrefGoogle Scholar

  • [137] Bermel P., Lee J., Joannopoulos J. D., Celanovic I., Soljacic M., Selective solar absorbers, An. Rev. Heat Transf. (2012).Google Scholar

  • [138] Yeng Y. X., Ghebrebrhan M., Bermel P., Chan W. R., Joannopoulos J. D., Soljačić M., Celanovic I., Enabling hightemperature nanophotonics for energy applications, Proc. Natl. Acad. Sci. U. S. A. 109(7), 2280-2285 (2012).CrossrefGoogle Scholar

  • [139] McEnaney K., Modeling of solar thermal selective surfaces and thermoelectric generators, MIT (2010).Google Scholar

  • [140] Shen Y., Ye D., Celanovic I., Johnson S. G., Joannopoulos J. D., Soljačić M., Optical broadband angular selectivity, Science 343(6178), 1499-1501 (2014).Google Scholar

  • [141] Blanco M. J., Marti J. G., Alarcan-Padilla D. C., Theoretical efficiencies of angular-selective non-concentrating solar thermal systems, Sol. Energy 76(6), 683-691 (2004).CrossrefGoogle Scholar

  • [142] Weinstein L., Kraemer D., McEnaney K., Chen G., Optical cavity for improved performance of solar receivers in solarthermal systems, Sol. Energy 108, 69-79 (2014).CrossrefGoogle Scholar

  • [143] Weinstein L. A., Hsu W.-C., Yerci S., Boriskina S. V., Chen G., Enhanced absorption of thin-film photovoltaic cells using an optical cavity, J. Opt. 17(5), 055901, IOP Publishing (2015).Google Scholar

  • [144] Braun A., Katz E. A., Feuermann D., Kayes B. M., Gordon J. M., Photovoltaic performance enhancement by external recycling of photon emission, Energy Environ. Sci. 6(5), 1499, The Royal Society of Chemistry (2013).CrossrefGoogle Scholar

  • [145] Ilic O., Bermel P., Chen G., Joannopoulos J. D., Celanovic I., Soljacic M., Tailoring high temperature radiation and the resurrection of the incandescent source, Nat. Nanotech. (2016).Google Scholar

  • [146] Lenert A., Bierman D. M., Nam Y., Chan W. R., Celanović I., Soljačić M., Wang E. N., A nanophotonic solar thermophotovoltaic device, Nat. Nanotechnol. 9(2), 126-130, Nature Publishing Group (2014).CrossrefGoogle Scholar

  • [147] Bermel P., Harradon M., Soljacic M., Celanovic I., Joannopoulos J. D., Yeng Y., Ghebrebrhan M., Tailoring photonic metamaterial resonances for thermal radiation, Nanoscale Res. Lett. 6, 549 (2011).CrossrefGoogle Scholar

  • [148] Boriskina S. V., Benson T. M., Sewell P., Nosich A. I., Q factor and emission pattern control of the WG modes in notched microdisk resonators, IEEE J. Sel. Top. Quantum Electron. 12(1), 52-88 (2006).CrossrefGoogle Scholar

  • [149] Boriskina S. V., Benson T. M., Sewell P. D., Nosich A. I., Directional emission, increased free spectral range, and mode Q-factors in 2-D wavelength-scale optical microcavity structures, IEEE J. Sel. Top. Quantum Electron. 12(6), 1175-1182 (2006).CrossrefGoogle Scholar

  • [150] Wang Q. J., Yan C., Yu N., Unterhinninghofen J., Wiersig J., Pflügl C., Diehl L., Edamura T., Yamanishi M., et al., tional laser action, Proc. Natl. Acad. Sci. U. S. A. 107(52), 22407-22412 (2010).CrossrefGoogle Scholar

  • [151] Laroche M., Arnold C., Marquier F., Carminati R., Greffet J.-J., Collin S., Bardou N., Pelouard J.-L., Highly directional radiation generated by a tungsten thermal source, Opt. Lett. 30(19), 2623, Optical Society of America (2005).CrossrefGoogle Scholar

  • [152] Arnold C., Marquier F., Garin M., Pardo F., Collin S., Bardou N., Pelouard J.-L., Greffet J.-J., Coherent thermal infrared emission by two-dimensional silicon carbide gratings, Phys. Rev. B 86(3), 035316 (2012).CrossrefGoogle Scholar

  • [153] Bermel P., Ghebrebrhan M., Chan W., Yeng Y. X., Araghchini M., Hamam R., Marton C. H., Jensen K. F., Soljacic M., et al., Design and global optimization of high-efficiency thermophotovoltaic systems, Opt. Express 18(S3), A314-A334, OSA (2010).CrossrefGoogle Scholar

  • [154] Rinnerbauer V., Ndao S., Xiang Yeng Y., Senkevich J. J., Jensen K. F., Joannopoulos J. D., Soljačić M., Celanovic I., Geil R. D., Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 31(1), 011802, American Institute of Physics (2013).CrossrefGoogle Scholar

  • [155] Chen G., Wang E. N., Boriskina S. V., McEnaney K., Ghasemi H., Yerci S., Lenert A., Yang S., Miljkovic N., et al., Internallyheated thermal and externally-cool photovoltaic cascade solar system for the full solar spectrum utilization, US 20150053266 A1 (2015).Google Scholar

  • [156] Kats M. A., Byrnes S. J., Blanchard R., Kolle M., Genevet P., Aizenberg J., Capasso F., Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings, Appl. Phys. Lett. 103(10), 101104, AIP Publishing (2013).CrossrefGoogle Scholar

  • [157] Roberts A. S., Chirumamilla M., Thilsing-Hansen K., Pedersen K., Bozhevolnyi S. I., Near-infrared tailored thermal emission from wafer-scale continuous-film resonators, Opt. Express 23(19), A1111, Optical Society of America (2015).CrossrefGoogle Scholar

  • [158] Jang M. S., Brar V. W., Sherrott M. C., Lopez J. J., Kim L., Kim S., Choi M., Atwater H. A., Tunable large resonant absorption in a midinfrared graphene Salisbury screen, Phys. Rev. B 90(16), 165409 (2014).CrossrefGoogle Scholar

  • [159] Langlais M., Prod’homme P., Bru H., Ben-Abdallah P., High temperature layered absorber for thermo-solar systems, J. Quant. Spectrosc. Radiat. Transf. 149, 8-15 (2014).Google Scholar

  • [160] Zhu L., Raman A., Wang K. X., Anoma M. A., Fan S., Radiative cooling of solar cells, Optica 1(1), 32, Optical Society of America (2014).CrossrefGoogle Scholar

  • [161] Safi T. S., Munday J. N., Improving photovoltaic performance through radiative cooling in both terrestrial and extraterrestrial environments, Opt. Express 23(19), A1120, Optical Society of America (2015).CrossrefGoogle Scholar

  • [162] Nilsson T. M. J., Niklasson G. A., Radiative cooling during the day: simulations and experiments on pigmented polyethylene cover foils, Sol. Energy Mater. Sol. Cells 37(1), 93-118 (1995).CrossrefGoogle Scholar

  • [163] Eriksson T. S., Granqvist C. G., Radiative cooling computed for model atmospheres, Appl. Opt. 21(23), 4381-4388, Optical Society of America (1982).CrossrefGoogle Scholar

  • [164] Granqvist C. G., Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films, J. Appl. Phys. 52(6), 4205, AIP Publishing (1981).CrossrefGoogle Scholar

  • [165] Gentle A. R., Smith G. B., Radiative heat pumping from the Earth using surface phonon resonant nanoparticles, Nano Lett. 10(2), 373-379, American Chemical Society (2010).CrossrefGoogle Scholar

  • [166] Raman A. P., Anoma M. A., Zhu L., Rephaeli E., Fan S., Passive radiative cooling below ambient air temperature under direct sunlight, Nature 515(7528), 540-544, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved, (2014).Google Scholar

  • [167] Rephaeli E., Raman A., Fan S., Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling, Nano Lett. 13(4), 1457-1461, American Chemical Society (2013).Google Scholar

  • [168] Steketee J., Spectral emissivity of skin and pericardium, Phys. Med. Biol. 18(5), 686-694, IOP Publishing (1973).CrossrefGoogle Scholar

  • [169] Tong J. K., Huang X., Boriskina S. V., Loomis J., Xu Y., Chen G., Infrared-transparent visible-opaque fabrics for wearable personal thermal management, ACS Photonics 2(6), 150609075019003, American Chemical Society (2015).Google Scholar

  • [170] Ball P., Material witness: Could polythene clothes be cool?, Nat. Mater. 14(9), 865, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved, (2015).CrossrefGoogle Scholar

  • [171] Feng K., Streyer W., Zhong Y., Hoffman A. J., Wasserman D., Photonic materials, structures and devices for Reststrahlen optics, Opt. Express 23(24), A1418, Optical Society of America (2015).CrossrefGoogle Scholar

  • [172] Laroche M., Carminati R., Greffet J.-J. J., Near-field thermophotovoltaic energy conversion, J. Appl. Phys. 100(6), 063704, AIP (2006).CrossrefGoogle Scholar

  • [173] Narayanaswamy A., Chen G., Surface modes for near field thermophotovoltaics, Appl. Phys. Lett. 82(20), 3544-3546, AIP (2003).CrossrefGoogle Scholar

  • [174] Chester D., Bermel P., Joannopoulos J. D., Soljacic M., Celanovic I., Design and global optimization of high-efficiency solar thermal systems with tungsten cermets, Opt. Express 19 Suppl 3(S3), A245-A257, OSA (2011).CrossrefGoogle Scholar

  • [175] Kano Y., Wolf E., Temporal Coherence of Black Body Radiation, Proc. Phys. Soc. 80(6), 1273-1276, IOP Publishing (1962).CrossrefGoogle Scholar

  • [176] Mehta C. L., Coherence-time and effective bandwidth of blackbody radiation, Nuovo Cim. 28(2), 401-408 (2008).Google Scholar

  • [177] Klein L. J., Hamann H. F., Au Y.-Y., Ingvarsson S., Coherence properties of infrared thermal emission from heated metallic nanowires, Appl. Phys. Lett. 92(21), 213102, AIP Publishing (2008).CrossrefGoogle Scholar

  • [178] Donges A., The coherence length of black-body radiation, Eur. J. Phys. 19(3), 245-249, IOP Publishing (1998).CrossrefGoogle Scholar

  • [179] Carminati R., Greffet J.-J., Near-Field Effects in Spatial Coherence of Thermal Sources, Phys. Rev. Lett. 82(8), 1660-1663 (1999).CrossrefGoogle Scholar

  • [180] Greffet J.-J., Carminati R., Joulain K., Mulet J.-P., Mainguy S., Chen Y., Coherent emission of light by thermal sources, Nature 416(6876), 61-64, Macmillian Magazines Ltd. (2002).Google Scholar

  • [181] Hasman E., Kleiner V., Dahan N., Gorodetski Y., Frischwasser K., Balin I., Manipulation of Thermal Emission by Use of Micro and Nanoscale Structures, J. Heat Transfer 134(3), 031023 (2012).Google Scholar

  • [182] Han S. E., Norris D. J., Beaming thermal emission from hot metallic bull’s eyes, Opt. Express 18(5), 4829-4837, Optical Society of America (2010). CrossrefGoogle Scholar

  • [183] Stanley R., Plasmonics in the mid-infrared, Nat. Photonics 6(7), 409-411, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved, (2012).CrossrefGoogle Scholar

  • [184] Puscasu I., Schaich W. L., Narrow-band, tunable infrared emission from arrays of microstrip patches, Appl. Phys. Lett. 92(23), 233102, AIP Publishing (2008).CrossrefGoogle Scholar

  • [185] Costantini D., Lefebvre A., Coutrot A.-L., Moldovan-Doyen I., Hugonin J.-P., Boutami S., Marquier F., Benisty H., Greffet J.-J., Plasmonic Metasurface for Directional and Frequency- Selective Thermal Emission, Phys. Rev. Appl. 4(1), 014023 (2015).CrossrefGoogle Scholar

  • [186] Liu X., Tyler T., Starr T., Starr A. F., Jokerst N. M., Padilla W. J., Taming the blackbody with infrared metamaterials as selective thermal emitters, Phys. Rev. Lett. 107(4), 45901, American Physical Society (2011).CrossrefGoogle Scholar

  • [187] Hesketh P. J., Zemel J. N., Gebhart B., Polarized spectral emittance from periodic micromachined surfaces. II. Doped silicon: Angular variation, Phys. Rev. B 37(18), 10803-10813 (1988).CrossrefGoogle Scholar

  • [188] Hesketh P. J., Zemel J. N., Gebhart B., Organ pipe radiant modes of periodic micromachined silicon surfaces, Nature 324(6097), 549-551 (1986).Google Scholar

  • [189] Pralle M. U., Moelders N., McNeal M. P., Puscasu I., Greenwald A. C., Daly J. T., Johnson E. A., George T., Choi D. S., et al., Photonic crystal enhanced narrow-band infrared emitters, Appl. Phys. Lett. 81(25), 4685, AIP Publishing (2002).CrossrefGoogle Scholar

  • [190] Sandus O., A Review of Emission Polarization, Appl. Opt. 4(12), 1634, Optical Society of America (1965).CrossrefGoogle Scholar

  • [191] Bimonte G., Cappellin L., Carugno G., Ruoso G., Saadeh D., Polarized thermal emission by thin metal wires, New J. Phys. 11(3), 033014, IOP Publishing (2009).CrossrefGoogle Scholar

  • [192] Öhman Y., Polarized thermal emission from narrow tungsten filaments, Nature 192(4799), 254-254 (1961).CrossrefGoogle Scholar

  • [193] Frischwasser K., Yulevich I., Kleiner V., Hasman E., Rashbalike spin degeneracy breaking in coupled thermal antenna lattices, Opt. Express 19(23), 23475-23482, Optical Society of America (2011).CrossrefGoogle Scholar

  • [194] Dahan N., Gorodetski Y., Frischwasser K., Kleiner V., Hasman E., Geometric Doppler Effect: Spin-Split Dispersion of Thermal Radiation, Phys. Rev. Lett. 105(13), 136402 (2010).CrossrefGoogle Scholar

  • [195] Bliokh K. Y., Niv A., Kleiner V., Hasman E., Geometrodynamics of spinning light, Nat. Photonics 2(12), 748-753, Nature Publishing Group (2008).CrossrefGoogle Scholar

  • [196] Hosten O., Kwiat P., Observation of the Spin Hall effect of light via weak measurements, Science (80-. ). 319(5864), 787-790 (2008).Google Scholar

  • [197] Shitrit N., Bretner I., Gorodetski Y., Kleiner V., Hasman E., Optical Spin Hall Effects in Plasmonic Chains, Nano Lett. 11(5), 2038-2042, American Chemical Society (2011).CrossrefGoogle Scholar

  • [198] Dooghin A. V., Kundikova N. D., Liberman V. S., Zel’dovich B. Y., Optical Magnus effect, Phys. Rev. A 45(11), 8204-8208 (1992).CrossrefGoogle Scholar

  • [199] Bliokh K. Y., Gorodetski Y., Kleiner V., Hasman E., Coriolis effect in optics: Unified geometric phase and Spin-Hall effect, Phys. Rev. Lett. 101(3), 030404 (2008).CrossrefGoogle Scholar

  • [200] Engel M., Steiner M., Lombardo A., Ferrari A. C., v. Lohneysen H., Avouris P., Krupke R., Löhneysen H. V., Avouris P., et al., Light-matter interaction in a microcavity-controlled graphene transistor, Nat. Commun. 3, 906, Nature Publishing Group (2012).CrossrefGoogle Scholar

  • [201] Dorgan V. E., Behnam A., Conley H. J., Bolotin K. I., Pop E., High-field electrical and thermal transport in suspended graphene, Nano Lett. 13(10), 4581-4586, American Chemical Society (2013).CrossrefGoogle Scholar

  • [202] Kim Y. D., Kim H., Cho Y., Ryoo J. H., Park C.-H., Kim P., Kim Y. S., Lee S., Li Y., et al., Bright visible light emission from graphene, Nat. Nanotechnol. 10(8), 676-681, Nature Publishing Group (2015).CrossrefGoogle Scholar

  • [203] Andreev V. M., Vlasov A. S., Khvostikov V. P., Khvostikova O. A., Gazaryan P. Y., Sorokina S. V., Sadchikov N. A., Solar Thermophotovoltaic Converters Based on Tungsten Emitters, J. Sol. Energy Eng. 129(3), 298 (2007).CrossrefGoogle Scholar

  • [204] Swanson R. M., A proposed thermophotovoltaic solar energy conversion system, Proc. IEEE 67(3), 446-447 (1979).CrossrefGoogle Scholar

  • [205] Spirkl W., Ries H., Solar thermophotovoltaics: An assessment, J. Appl. Phys. 57(9), 4409-4414, AIP (1985).CrossrefGoogle Scholar

  • [206] Ungaro C., Gray S. K., Gupta M. C., Solar thermophotovoltaic system using nanostructures, Opt. Express 23(19), A1149, Optical Society of America (2015).CrossrefGoogle Scholar

  • [207] Rephaeli E., Fan S., Absorber and emitter for solar thermophotovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit, Opt. Express 17(17), 15145-15159, OSA (2009).CrossrefGoogle Scholar

  • [208] Boriskina S. V., Chen G., Exceeding the solar cell Shockley- Queisser limit via thermal up-conversion of low-energy photons, Opt. Commun. 314, 71-78 (2014).Google Scholar

  • [209] Seo T. H., Shin G., Kyoung Kim B., Choi C.-J., Lee C., Jong Kim M., Suh E.-K., Enhancement of light output power in ultraviolet light emitting diodes using graphene film on selfassembled Au nanocluster by agglomeration process, J. Appl. Phys. 114(22), 223105, AIP Publishing (2013).CrossrefGoogle Scholar

  • [210] Yen S.-T., Lee K.-C., Analysis of heterostructures for electroluminescent refrigeration and light emitting without heat generation, J. Appl. Phys. 107(5), 054513, AIP Publishing (2010).CrossrefGoogle Scholar

  • [211] Dousmanis G. C., Mueller C. W., Nelson H., Petzinger K. G., Evidence of Refrigerating Action by Means of Photon Emission in Semiconductor Diodes, Phys. Rev. 133(1A), A316- A318 (1964).CrossrefGoogle Scholar

  • [212] Berdahl P., Radiant refrigeration by semiconductor diodes, J. Appl. Phys. 58(3), 1369, AIP Publishing (1985).CrossrefGoogle Scholar

  • [213] Vavilov S. I., Photoluminescence and thermodynamics, J. Phys. USSR 10, 499-501 (1946).Google Scholar

  • [214] Yu S.-Q., Wang J.-B., Ding D., Johnson S. R., Vasileska D., Zhang Y.-H., Impact of electronic density of states on electroluminescence refrigeration, Solid. State. Electron. 51(10), 1387-1390 (2007).CrossrefGoogle Scholar

  • [215] Lopez-Sanchez O., Alarcon Llado E., Koman V., Fontcuberta I Morral A., Radenovic A., Kis A., Light Generation and Harvesting in a van der Waals Heterostructure, Mesoscale and Nanoscale Physics, ACS Nano (2014).Google Scholar

  • [216] Nemova G., Kashyap R., Laser cooling with PbSe colloidal quantum dots, J. Opt. Soc. Am. B 29(4), 676, Optical Society of America (2012).CrossrefGoogle Scholar

  • [217] Khurgin J. B., Role of bandtail states in laser cooling of semiconductors, Phys. Rev. B 77(23), 235206 (2008).CrossrefGoogle Scholar

  • [218] Zhang J., Li D., Chen R., Xiong Q., Laser cooling of a semiconductor by 40 kelvin, Nature 493(7433), 504-508, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved, (2013). Google Scholar

  • [219] Khurgin J. B., Band gap engineering for laser cooling of semiconductors, J. Appl. Phys. 100(11), 113116, AIP Publishing (2006).CrossrefGoogle Scholar

  • [220] Khurgin J. B., Surface Plasmon-Assisted Laser Cooling of Solids, Phys. Rev. Lett. 98(17), 177401 (2007).CrossrefGoogle Scholar

  • [221] Martin R. P., Velten J., Stintz A., Malloy K. J., Epstein R. I., Sheik-Bahae M., Hasselbeck M. P., Imangholi B., Boyd S. T. P., et al., Nanogap experiments for laser cooling: a progress report, Proc. SPIE 6461, Laser Cool. Solids, 64610H (2007).Google Scholar

  • [222] Li D., Zhang J., Wang X., Huang B., Xiong Q., Solid-state semiconductor optical cryocooler based on CdS nanobelts, Nano Lett. 14(8), 4724-4728, American Chemical Society (2014).CrossrefGoogle Scholar

  • [223] Chen Y.-C., Bahl G., Raman cooling of solids through photonic density of states engineering, Optica 2(10), 893, Optical Society of America (2015).CrossrefGoogle Scholar

  • [224] Manor A., Kruger N., Rotschild C., Entropy driven multiphoton frequency up-conversion, CLEO/QELS Conf. Proc., QF2D.1, Osa, Washington, D.C. (2013).Google Scholar

  • [225] Buckner B. D., Heeg B., Power generation by thermally assisted electroluminescence: like optical cooling, but different, Proc. SPIE 6907, Laser Refrig. Solids, 69070I, 2008, 9 November 2015.Google Scholar

  • [226] Ekins-Daukes N. J., Ballard I., Calder C. D. J., Barnham K. W. J., Hill G., Roberts J. S., Photovoltaic efficiency enhancement through thermal up-conversion, Appl. Phys. Lett. 82(12), 1974, AIP Publishing (2003).CrossrefGoogle Scholar

  • [227] Rousseau E., Laroche M., Greffet J.-J., Radiative heat transfer at nanoscale: Closed-form expression for silicon at different doping levels, J. Quant. Spectrosc. Radiat. Transf. 111(7/8), 1005-1014 (2010).CrossrefGoogle Scholar

  • [228] Ben-Abdallah P., Joulain K., Fundamental limits for noncontact transfers between two bodies, Phys. Rev. B 82(12), 121419 (2010).Google Scholar

  • [229] Hu L., Narayanaswamy A., Chen X., Chen G., Near-field thermal radiation between two closely spaced glass plates exceeding Planck’s blackbody radiation law, Appl. Phys. Lett. 92(13), 133106 (2008).CrossrefGoogle Scholar

  • [230] Basu S., Francoeur, M., Near-field radiative transfer based thermal rectification using doped silicon, Appl. Phys. Lett. 98(11), 113106 (2011).CrossrefGoogle Scholar

  • [231] Miller O. D., Johnson S. G., Rodriguez A. W., Shapeindependent limits to near-field radiative heat transfer, Optics, 6 (2015).Google Scholar

  • [232] Polder D., Van Hove M., Theory of Radiative Heat Transfer between Closely Spaced Bodies, Phys. Rev. B 4(10), 3303-3314 (1971).CrossrefGoogle Scholar

  • [233] Economou E. N., Surface Plasmons in Thin Films, Phys. Rev. 182(2), 539-554 (1969).CrossrefGoogle Scholar

  • [234] Miller O. D., Johnson S. G., Rodriguez A. W., Effectiveness of Thin Films in Lieu of Hyperbolic Metamaterials in the Near Field, Phys. Rev. Lett. 112(15), 157402 (2014).CrossrefGoogle Scholar

  • [235] Song B., Ganjeh Y., Sadat S., Thompson D., Fiorino A., Fernández-Hurtado V., Feist J., Garcia-Vidal F. J., Cuevas J. C., et al., Enhancement of near-field radiative heat transfer using polar dielectric thin films, Nat. Nanotechnol. 10(3), 253-258, Nature Publishing Group (2015).CrossrefGoogle Scholar

  • [236] Othman M. A. K., Guclu C., Capolino F., Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption, Opt. Express 21(6), 7614-7632 (2013).CrossrefGoogle Scholar

  • [237] Francoeur M., Mengüç M. P., Vaillon R., Local density of electromagnetic states within a nanometric gap formed between two thin films supporting surface phonon polaritons, J. Appl. Phys. 107(3), 034313, AIP Publishing (2010).CrossrefGoogle Scholar

  • [238] Liu X. L., Zhang R. Z., Zhang Z. M., Near-field thermal radiation between hyperbolic metamaterials: Graphite and carbon nanotubes, Appl. Phys. Lett. 103(21), 213102, AIP Publishing (2013).CrossrefGoogle Scholar

  • [239] Liu B., Shi J., Liew K., Shen S., Near-field radiative heat transfer for Si based metamaterials, Opt. Commun. 314, 57-65 (2014).Google Scholar

  • [240] Novotny L., Hecht B., Principles of nano-optics, Cambridge University Press (2006).Google Scholar

  • [241] Tian Z., Esfarjani K., Chen G., Enhancing phonon transmission across a Si/Ge interface by atomic roughness: Firstprinciples study with the Green’s function method, Phys. Rev. B 86(23), 235304, American Physical Society (2012).CrossrefGoogle Scholar

  • [242] Chiloyan V., Garg J., Esfarjani K., Chen G., Transition from near-field thermal radiation to phonon heat conduction at sub-nanometer gaps, Nat. Commun., 6755, Nature Publishing Group (2015).Google Scholar

  • [243] De Wilde Y., Formanek F., Carminati R., Gralak B., Lemoine P.-A., Joulain K., Mulet J.-P., Chen Y., Greffet J.-J., Thermal radiation scanning tunnelling microscopy, Nature 444(7120), 740-743 (2006).Google Scholar

  • [244] Jones A. C., Raschke M. B., Thermal infrared near-field spectroscopy, Nano Lett. 12(3), 1475-1481, American Chemical Society (2012).CrossrefGoogle Scholar

  • [245] Babuty A., Joulain K., Chapuis P.-O., Greffet J.-J., De Wilde Y., Blackbody Spectrum Revisited in the Near Field, Phys. Rev. Lett. 110(14), 146103 (2013).CrossrefGoogle Scholar

  • [246] Kittel A., Müller-Hirsch W., Parisi J., Biehs S.-A., Reddig D., Holthaus M., Near-Field Heat Transfer in a Scanning Thermal Microscope, Phys. Rev. Lett. 95(22), 224301 (2005).CrossrefGoogle Scholar

  • [247] Kryder M. H., Gage E. C., McDaniel T. W., Challener W. A., Rottmayer R. E., Erden M. F., Heat Assisted Magnetic Recording, Proc. IEEE 96(11), 1810-1835 (2008).CrossrefGoogle Scholar

  • [248] Stipe B. C., Strand T. C., Poon C. C., Balamane H., Boone T. D., Katine J. A., Li J.-L., Rawat V., Nemoto H., et al., Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna, Nat. Photonics 4(7), 484-488, Nature Publishing Group (2010).Google Scholar

  • [249] Challener W. A., Peng C., Itagi A. V., Karns D., Peng W., Peng Y., Yang X., Zhu X., Gokemeijer N. J., et al., Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer, Nat. Photonics 3(4), 220-224, Nature Publishing Group (2009).CrossrefGoogle Scholar

  • [250] Chen K., Santhanam P., Sandhu S., Zhu L., Fan S., Heat-flux control and solid-state cooling by regulating chemical potential of photons in near-field electromagnetic heat transfer, Phys. Rev. B 91(13), 134301 (2015).CrossrefGoogle Scholar

  • [251] Law S., Adams D. C., Taylor A. M., Wasserman D., Midinfrared designer metals, Opt. Express 20(11), 12155-12165, OSA (2012).CrossrefGoogle Scholar

  • [252] Naik G. V., Schroeder J. L., Ni X., Kildishev A. V., Sands T. D., Boltasseva A., Titanium nitride as a plasmonic material for visible and near-infrared wavelengths, Opt. Mater. Express 2(4), 478-489, OSA (2012). CrossrefGoogle Scholar

  • [253] Naik G. V., Kim J., Boltasseva A., Oxides and nitrides as alternative plasmonic materials in the optical range, Opt. Mater. Express 1(6), 1090-1099, OSA (2011).CrossrefGoogle Scholar

  • [254] Kats M. A., Sharma D., Lin J., Genevet P., Blanchard R., Yang Z., Qazilbash M. M., Basov D. N., Ramanathan S., et al., Ultrathin perfect absorber employing a tunable phase change material, Appl. Phys. Lett. 101(22), 221101, AIP Publishing (2012).CrossrefGoogle Scholar

  • [255] Qazilbash M. M., Brehm M., Chae B.-G., Ho P.-C., Andreev G. O., Kim B.-J., Yun S. J., Balatsky A. V., Maple M. B., et al., Mott Transition in VO2 Revealed by Infrared Spectroscopy and Nano-Imaging, Science (80-. ). 318(5857), 1750-1753 (2007).Google Scholar

  • [256] Kats M. A., Blanchard R., Zhang S., Genevet P., Ko C., Ramanathan S., Capasso F., Vanadium Dioxide as a Natural Disordered Metamaterial: Perfect Thermal Emission and Large Broadband Negative Differential Thermal Emittance, Phys. Rev. X 3(4), 041004 (2013).Google Scholar

  • [257] Otanicar T. P., Smith R., Dai L., Phelan P. E., Swaminathan R., Applicability of Controllable Nanoparticle Radiative Properties for Spacecraft Heat Rejection, J. Thermophys. Heat Transf., 1-6, American Institute of Aeronautics and Astronautics (2015).Google Scholar

  • [258] Inoue T., De Zoysa M., Asano T., Noda S., Realization of dynamic thermal emission control, Nat. Mater. 13(10), 928-931, Nature Publishing Group (2014).CrossrefGoogle Scholar

  • [259] Brar V. W., Sherrott M. C., Jang M. S., Kim S., Kim L., Choi M., Sweatlock L. A., Atwater H. A., Electronic modulation of infrared radiation in graphene plasmonic resonators, Nat. Commun. 6, 7032, Nature Publishing Group (2015).CrossrefGoogle Scholar

  • [260] Huang Y., Boriskina S. V., Chen G., Electrically tunable nearfield radiative heat transfer via ferroelectric materials, Appl. Phys. Lett. 105(24), 244102, AIP Publishing (2014).CrossrefGoogle Scholar

  • [261] Paik T., Hong S.-H., Gaulding E. A., Caglayan H., Gordon T. R., Engheta N., Kagan C. R., Murray C. B., Solution-processed phase-change VO(2) metamaterials from colloidal vanadium oxide (VO(x)) nanocrystals, ACS Nano 8(1), 797-806, American Chemical Society (2014).CrossrefGoogle Scholar

  • [262] Yi F., Shim E., Zhu A. Y., Zhu H., Reed J. C., Cubukcu E., Voltage tuning of plasmonic absorbers by indium tin oxide, Appl. Phys. Lett. 102(22) (2013).Google Scholar

  • [263] Chen Y. G., Kao T. S., Ng B., Li X., Luo X. G., Luk’yanchuk B., Maier S. A., Hong M. H., Hybrid phase-change plasmonic crystals for active tuning of lattice resonances, Opt. Express 21(11), 13691-13698, Optical Society of America (2013).CrossrefGoogle Scholar

  • [264] Lee H.-J., Smyth K., Bathurst S., Chou J., Ghebrebrhan M., Joannopoulos J., Saka N., Kim S.-G., Hafnia-plugged microcavities for thermal stability of selective emitters, Appl. Phys. Lett. 102(24), 241904, American Institute of Physics (2013).Google Scholar

  • [265] Ladutenko K., Belov P., Peńa Rodríguez O., Mirzaei A., Miroshnichenko A., Shadrivov I., Superabsorption of light by nanoparticles, Nanoscale, The Royal Society of Chemistry (2015).Google Scholar

  • [266] Mirzaei A., Shadrivov I., Miroshnichenko A., Kivshar Y. S., Superabsorption of Light by Multilayer Nanowires, Nanoscale 7(42), 17658-17663, The Royal Society of Chemistry (2015).CrossrefGoogle Scholar

  • [267] Simovski C., Maslovski S., Nefedov I., Kosulnikov S., Belov P., Tretyakov S., Hyperlens makes thermal emission strongly super-Planckian, Photonics Nanostructures - Fundam. Appl. 13, 31-41 (2015).Google Scholar

  • [268] Ding D., Minnich A. J., Selective radiative heating of nanostructures using hyperbolic metamaterials, Opt. Express 23(7), A299-A308, Optical Society of America (2015).CrossrefGoogle Scholar

  • [269] Zhou M., Shi L., Zi J., Yu Z., Extraordinarily Large Optical Cross Section for Localized Single Nanoresonator, Phys. Rev. Lett. 115(2), 023903 (2015).CrossrefGoogle Scholar

  • [270] Moitra P., Yang Y., Anderson Z., Kravchenko I. I., Briggs D. P., Valentine J., Realization of an all-dielectric zero-index optical metamaterial, Nat. Photonics 7(10), 791-795, Nature Publishing Group (2013).CrossrefGoogle Scholar

  • [271] Dong J.-W., Chang M.-L., Huang X.-Q., Hang Z. H., Zhong Z.- C., Chen W.-J., Huang Z.-Y., Chan C. T., Conical Dispersion and Effective Zero Refractive Index in Photonic Quasicrystals, Phys. Rev. Lett. 114(16), 163901 (2015).CrossrefGoogle Scholar

  • [272] Boriskina S. V., Quasicrystals: Making invisible materials, Nat. Photonics 9(7), 422-424, Nature Publishing Group (2015).CrossrefGoogle Scholar

  • [273] Huang X., Lai Y., Hang Z. H., Zheng H., Chan C. T., Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials, Nat. Mater. 10(8), 582-586, Nature Publishing Group (2011).CrossrefGoogle Scholar

  • [274] Boriskina S. V., Povinelli M., Astratov V. N., Zayats A. V., Podolskiy V. A., Collective phenomena in photonic, plasmonic and hybrid structures, Opt. Express 19(22), 22024 (2011).CrossrefGoogle Scholar

  • [275] Zhou M., Yi S., Luk T. S., Gan Q., Fan S., Yu Z., Analog of superradiant emission in thermal emitters, Phys. Rev. B 92(2), 024302 (2015).CrossrefGoogle Scholar

  • [276] Sokhoyan R., Atwater H. A., Cooperative behavior of quantum dipole emitters coupled to a zero-index nanoscale waveguide, Optics, ArXiV (2015).Google Scholar

  • [277] Narayanaswamy A., Zheng Y., Theory of thermal nonequilibrium entropy in near-field thermal radiation, Phys. Rev. B 88(7), 075412 (2013).CrossrefGoogle Scholar

  • [278] Barnett S. M., Phoenix S. J. D., Entropy as a measure of quantum optical correlation, Phys. Rev. A 40(5), 2404-2409 (1989).CrossrefGoogle Scholar

  • [279] Maghrebi M. F., Jaffe R. L., Kardar M., Nonequilibrium quantum fluctuations of a dispersive medium: Spontaneous emission, photon statistics, entropy generation, and stochastic motion, Phys. Rev. A - At. Mol. Opt. Phys. 90(1) (2014).Google Scholar

  • [280] Klembt S., Durupt E., Datta S., Klein T., Baas A., Léger Y., Kruse C., Hommel D., Minguzzi A., et al., Exciton-Polariton Gas as a Nonequilibrium Coolant, Phys. Rev. Lett. 114(18), 186403 (2015).CrossrefGoogle Scholar

  • [281] Bowman S. R., Lasers without internal heat generation, IEEE J. Quantum Electron. 35(1), 115-122 (1999).CrossrefGoogle Scholar

  • [282] Nemova G., Kashyap R., Thin-disk athermal laser system, Opt. Commun. 319, 100-105 (2014).Google Scholar

  • [283] Tolman R. C., Fine P. C., On the irreversible production of entropy, Rev. Mod. Phys. 20(1), 51-77, American Physical Society (1948).CrossrefGoogle Scholar

  • [284] Mungan C. E., Thermodynamics of radiation-balanced lasing, 1075-1082 (2003). Google Scholar

About the article

Received: 2015-10-28

Accepted: 2016-01-05

Published Online: 2016-06-11

Published in Print: 2016-06-01

Citation Information: Nanophotonics, Volume 5, Issue 1, Pages 134–160, ISSN (Online) 2192-8614, ISSN (Print) 2192-8606, DOI: https://doi.org/10.1515/nanoph-2016-0010.

Export Citation

© 2016. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Junghyun Park, Ju-Hyung Kang, Xiaoge Liu, Scott J. Maddox, Kechao Tang, Paul C. McIntyre, Seth R. Bank, and Mark L. Brongersma
Science Advances, 2018, Volume 4, Number 12, Page eaat3163
X. M. Ma, J. L. Zou, J. F. Zhang, C. C. Guo, K. Liu, F. Wu, W. Xu, R. Y. Zhang, Z. H. Zhu, and S. Q. Qin
Journal of Applied Physics, 2018, Volume 124, Number 4, Page 045107
Prashanth S. Venkataram, Jan Hermann, Alexandre Tkatchenko, and Alejandro W. Rodriguez
Physical Review Letters, 2018, Volume 121, Number 4
Amartya Dutta, Sarath Ramadurgam, and Chen Yang
ACS Photonics, 2018
Sudaraka Mallawaarachchi, Sarath D. Gunapala, Mark I. Stockman, and Malin Premaratne
Physical Review B, 2018, Volume 97, Number 12
Svetlana V. Boriskina, Thomas Alan Cooper, Lingping Zeng, George Ni, Jonathan K. Tong, Yoichiro Tsurimaki, Yi Huang, Laureen Meroueh, Gerald Mahan, and Gang Chen
Advances in Optics and Photonics, 2017, Volume 9, Number 4, Page 775
Alessandro Alabastri, Mario Malerba, Eugenio Calandrini, Alejandro Manjavacas, Francesco De Angelis, Andrea Toma, and Remo Proietti Zaccaria
Nano Letters, 2017
Svetlana V. Boriskina
Science, 2016, Volume 353, Number 6303, Page 986
G. C. R. Devarapu and S. Foteinopoulou
Physical Review Applied, 2017, Volume 7, Number 3
Han Hoe Yap and Jian-Sheng Wang
Physical Review E, 2017, Volume 95, Number 1
Wei-Chun Hsu, Jonathan K. Tong, Bolin Liao, Yi Huang, Svetlana V. Boriskina, and Gang Chen
Scientific Reports, 2016, Volume 6, Number 1

Comments (0)

Please log in or register to comment.
Log in