Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Editor-in-Chief: Sorger, Volker

IMPACT FACTOR 2018: 6.908
5-year IMPACT FACTOR: 7.147

CiteScore 2018: 6.72

In co-publication with Science Wise Publishing

Open Access
See all formats and pricing
More options …
Volume 5, Issue 1


Solar thermophotovoltaics: reshaping the solar spectrum

Zhiguang Zhou
  • Corresponding author
  • Birck Nanotechnology Center, Purdue University, 1205 W. State St., West Lafayette, IN 47907, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Enas Sakr
  • Birck Nanotechnology Center, Purdue University, 1205 W. State St., West Lafayette, IN 47907, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yubo Sun
  • Birck Nanotechnology Center, Purdue University, 1205 W. State St., West Lafayette, IN 47907, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Peter Bermel
  • Birck Nanotechnology Center, Purdue University, 1205 W. State St., West Lafayette, IN 47907, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-06-11 | DOI: https://doi.org/10.1515/nanoph-2016-0011


Recently, there has been increasing interest in utilizing solar thermophotovoltaics (STPV) to convert sunlight into electricity, given their potential to exceed the Shockley-Queisser limit. Encouragingly, there have also been several recent demonstrations of improved system-level efficiency as high as 6.2%. In this work, we review prior work in the field, with particular emphasis on the role of several key principles in their experimental operation, performance, and reliability. In particular, for the problem of designing selective solar absorbers, we consider the trade-off between solar absorption and thermal losses, particularly radiative and convective mechanisms. For the selective thermal emitters, we consider the tradeoff between emission at critical wavelengths and parasitic losses. Then for the thermophotovoltaic (TPV) diodes, we consider the trade-off between increasing the potential short-circuit current, and maintaining a reasonable opencircuit voltage. This treatment parallels the historic development of the field, but also connects early insights with recent developments in adjacent fields.With these various components connecting in multiple ways, a system-level end-to-end modeling approach is necessary for a comprehensive understanding and appropriate improvement of STPV systems. This approach will ultimately allow researchers to design STPV systems capable of exceeding recently demonstrated efficiency values.

Keywords: solar power; thermophotovoltaics; selective solar absorbers; selective emitters; selective filters


  • [1] Kolm HH. Solar-battery power source. Q Prog Rep, 1956, 13.Google Scholar

  • [2] Wedlock BD. Thermo-photo-voltaic conversion. Proc IEEE, 1963, 51, 694-698.CrossrefGoogle Scholar

  • [3] Black RE, Martin L, Baldasaro PF. Thermophotovoltaicsdevelopment status and parametric considerations for power applications. Thermoelectrics, 1999. Eighteenth International Conference on, 1999, 18, 639 - 644.Google Scholar

  • [4] O’sullivan F, Celanovic I, Jovanovic N, Kassakian J, Akiyama S, Wada K. Optical characteristics of one-dimensional Si/SiO2 photonic crystals for thermophotovoltaic applications. J Appl Phys, 2005, 97, 33529.CrossrefGoogle Scholar

  • [5] Swanson RM. A proposed thermophotovoltaic solar energy conversion system. Proc IEEE, 1979, 67, 446-447.CrossrefGoogle Scholar

  • [6] Rinnerbauer V, Lenert A, Bierman DM, et al. Metallic photonic crystal absorber-emitter for eflcient spectral control in hightemperature solar thermophotovoltaics. Adv Energy Mater, 2014, 4.Google Scholar

  • [7] Lenert A, Bierman DM, Nam Y, et al. A nanophotonic solar thermophotovoltaic device. Nat Nanotechnol, 2014, 1, 1-5.Google Scholar

  • [8] Zhang Q-C. High eflciency Al-N cermet solar coatings with double cermet layer film structures. J Phys D Appl Phys, 1999, 32, 1938-1944.CrossrefGoogle Scholar

  • [9] Würfel P, Ruppel W. Upper limit of thermophotovoltaic solarenergy conversion. IEEE Transactions on Electron Devices, 1980, 27, 745-750.CrossrefGoogle Scholar

  • [10] Shockley W, Queisser HJ. Detailed balance limit of eflciency of p-n junction solar cells. J Appl Phys, 1961, 32, 510-519.CrossrefGoogle Scholar

  • [11] Demichelis F, Minetti-Mezzetti E. A solar thermophotovoltaic converter. Sol Cells, 1980, 1, 395-403.CrossrefGoogle Scholar

  • [12] Edenburn MW. Analytical evaluation of a solar thermophotovoltaic (TPV) converter. Sol Energy, 1980, 24, 367-371.CrossrefGoogle Scholar

  • [13] Guazzoni GE. High-temperature spectral emittance of oxides of erbium, samarium, neodymium and ytterbium. Appl Spectrosc, 1972, 26, 60-65.CrossrefGoogle Scholar

  • [14] Höfler H, Paul HJ, Ruppel W, Würfel P. Interference filters for thermophotovoltaic solar energy conversion. Sol Cells, 1983, 10, 273-286.CrossrefGoogle Scholar

  • [15] Ortabasi U. Rugate technology for thermophotovoltaic (TPV) applications: a new approach to near perfect filter performance. Fifth Conference on Thermophotovoltaic Generation of Electricity, 2003, 653, 249-258.Google Scholar

  • [16] Chubb DL. Reappraisal of solid selective emitters. IEEE Conf Photovolt Spec, 1990.CrossrefGoogle Scholar

  • [17] Spirkl W, Ries H. Solar thermophotovoltaics: An assessment. J Appl Phys, 1985, 57, 4409-4414.CrossrefGoogle Scholar

  • [18] Harder N-P, Würfel P. Theoretical limits of thermophotovoltaic solar energy conversion. Semicond Sci Technol, 2003, 18, S151-S157.CrossrefGoogle Scholar

  • [19] Bett AW, Keser S, Stollwerck G, Sulima O V, Wettling W. GaSbbased (thermo)photovoltaic cells with Zn diffused emitters. Conf Rec Twenty Fifth IEEE Photovolt Spec Conf 1996, 1996.Google Scholar

  • [20] Fraas LM, Girard GR, Avery JE, et al. GaSb booster cells for over 30% eflcient solar-cell stacks. J Appl Phys, 1989, 66, 3866.CrossrefGoogle Scholar

  • [21] Stone KW, Leingang EF, Kusek SMM, Drubka REE, Fay TDD. On-Sun test results of McDonnell Douglas’ prototype solar thermophotovoltaic power system. Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion - WCPEC (A Joint Conference of PVSC, PVSEC and PSEC), 1994, 2, 2010-2013.Google Scholar

  • [22] Stone KW, Fatemi NS, Garverick LM. Operation and component testing of a solar thermophotovoltaic power system. Conf Rec Twenty Fifth IEEE Photovolt Spec Conf - 1996, 1996, 1421-1424.Google Scholar

  • [23] Wanlass MW. Recent advances in low-bandgap, InP-based GaInAs/InAsP materials and devices for thermophotovoltaic (TPV) energy conversion. AIP Conf Proc, 2004, 738, 427-435.Google Scholar

  • [24] Yugami H, Sai H, Nakamura K, Nakagawa N, Ohtsubo H. Solar thermophotovoltaic using Al2O3 / Er3/Al5/O12 eutectic composite selective emitter. Conf Rec Twenty-Eighth IEEE Photovolt Spec Conf 2000, 2000, 1, 1214-1217.Google Scholar

  • [25] Datas A, Algora C, Zamorano JC, et al. A solar TPV system based on germanium cells. AIP Conference Proceedings, 2007, 890, 280-290.Google Scholar

  • [26] Ungaro C, Gray SK, Gupta MC. Solar thermophotovoltaic system using nanostructures. Opt Express, 2015, 23, A1149.CrossrefGoogle Scholar

  • [27] Harder N-P, Green MA. Thermophotonics. Semicond Sci Technol, 2003, 18, S270.CrossrefGoogle Scholar

  • [28] Rephaeli E, Fan S. Absorber and emitter for solar thermophotovoltaic systems to achieve eflciency exceeding the Shockley-Queisser limit. Opt Express, 2009, 17, 15145-59.CrossrefGoogle Scholar

  • [29] Zhou Z, Chen Q, Bermel P. Prospects for high-performance thermophotovoltaic conversion eflciencies exceeding the Shockley-Queisser limit. Energy Convers Manag, 2015, 97, 63-69.CrossrefGoogle Scholar

  • [30] Kennedy C. Review of mid-to high-temperature solar selective absorber materials. NREL Tech Rep, 2002, 1617, 1-58.Google Scholar

  • [31] Sathiaraj TS, Thangarj R, Sharbaty AA, Bhatnagar M, Agnihotri OP. Ni-Al2O3 selective cermet coatings for photochemical conversion up to 500 C. Thin Solid Films, 1990, 190, 241.Google Scholar

  • [32] Sergeant NP, Pincon O, Agrawal M, Peumans P. Design of wide-angle solar-selective absorbers using aperiodic metaldielectric stacks. Opt Express, 2009, 17, 22800-22812.CrossrefGoogle Scholar

  • [33] Rinnerbauer V, Yeng YX, Chan WR, et al. High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals. Opt Express, 2013, 21, 11482-91.CrossrefGoogle Scholar

  • [34] Sai H, Kanamori Y, Yugami H. High-temperature resistive surface grating for spectral control of thermal radiation. Appl Phys Lett, 2003, 82, 1685.CrossrefGoogle Scholar

  • [35] Cuomo JJ, Ziegler JF, Woodall JM. A new concept for solar energy thermal conversion. Appl Phys Lett, 1975, 26, 557-559.CrossrefGoogle Scholar

  • [36] Pellegrini G. Experimental methods for the preparation of selectively absorbing textured surfaces for photothermal solar conversion. Sol energy Mater, 1980, 3, 391-404.CrossrefGoogle Scholar

  • [37] Lehmann HW. Profile control by reactive sputter etching. J Vac Sci Technol, 1978, 15, 319.CrossrefGoogle Scholar

  • [38] Seraphin BO. Optical properties of solids: new developments. North Holland Publishing Co., Amsterdam, 1976.Google Scholar

  • [39] Randich E, Allred DD. Chemically vapor-deposited ZrB2 as a selective solar absorber. Thin Solid Films, 1981, 83, 393-398.CrossrefGoogle Scholar

  • [40] Agnihotri OP, Gupta BK. Solar selective surfaces. New York: Wiley-Interscience Pub, 1981.Google Scholar

  • [41] Zhang Q, Mills DR. Very low-emittance solar selective surfaces using new film structures. J Appl Phys, 2006, 72, 3013-3021.Google Scholar

  • [42] Gao P, Meng LJ, Dos Santos MP, Teixeira V, Andritschky M. Study of ZrO2-Y2O3 films prepared by rf magnetron reactive sputtering. Thin Solid Films, 2000, 377-378, 32-36.Google Scholar

  • [43] Arancibia-Bulnes CA, Estrada CA, Ruiz-Suárez JC. Solar absorptance and thermal emittance of cermets with large particles. J Phys D Appl Phys, 2000, 33, 2489-2496.CrossrefGoogle Scholar

  • [44] Niklasson GA, Granqvist CG. Selectively solar-absorbing surface coatings: optical properties and degradation. Materials science for solar energy conversion systems, Pergamon, Oxford, UK, 1991.Google Scholar

  • [45] Chester D, Bermel P, Joannopoulos JD, Soljacic M, Celanovic I. Design and global optimization of high-eflciency solar thermal systems with tungsten cermets. Opt Express, 2011, 19, A245-57.CrossrefGoogle Scholar

  • [46] Messier R, Krishnaswamy S V., Gilbert LR, Swab P. Black a-Si solar selective absorber surfaces. J Appl Phys, 1980, 51, 1611.CrossrefGoogle Scholar

  • [47] Seraphin BO. Chemical vapor deposition of thin semiconductor films for solar energy conversion. Thin Solid Films, 1976, 39, 87-94.CrossrefGoogle Scholar

  • [48] Gilbert LR, Messier R, Roy R. Black germanium solar selective absorber surfaces. Thin Solid Films, 1978, 54, 149-157.CrossrefGoogle Scholar

  • [49] Mattox DM. Deposition of semiconductor films with high solar absorptivity. J Vac Sci Technol, 1975, 12, 182.CrossrefGoogle Scholar

  • [50] Bermel P, Ghebrebrhan M, Chan W, et al. Design and global optimization of high-eflciency thermophotovoltaic systems. Opt Express, 2010, 18, A314-A334.CrossrefGoogle Scholar

  • [51] Wang X, Li H, Yu X, Shi X, Liu J. High-performance solutionprocessed plasmonic Ni nanochain-Al 2O3 selective solar thermal absorbers. Appl Phys Lett, 2012, 101, 1-6.Google Scholar

  • [52] Wu C, Neuner III B, John J, et al. Metamaterial-based integrated plasmonic absorber/emitter for solar thermophotovoltaic systems. J Opt, 2012, 14, 024005.CrossrefGoogle Scholar

  • [53] Guler U, Boltasseva A, Shalaev VM. Refractory plasmonics. Science (80), 2014, 344, 263-264.Google Scholar

  • [54] Liu J, Guler U, Li W, Kildishev A, Boltasseva A, Shalaev VM. High-temperature plasmonic thermal emitter for thermophotovotaics. CLEO, 2014, 1, FM4C.5.Google Scholar

  • [55] Yeng YX, Ghebrebrhan M, Bermel P, et al. Enabling hightemperature nanophotonics for energy applications. Proc Natl Acad Sci U S A, 2012, 109, 2280-5.CrossrefGoogle Scholar

  • [56] Ghebrebrhan M, Bermel P, Yeng YX, Celanovic I, Soljačić M, Joannopoulos JD. Tailoring thermal emission via Q matching of photonic crystal resonances. Phys Rev A, 2011, 83, 033810.CrossrefGoogle Scholar

  • [57] Joannopoulos JD, Johnson SG, Winn JN, Meade RD. Photonic crystals molding the flow of light. Second. Princeton, NJ: Princeton University Press, 2008.Google Scholar

  • [58] Sergeant NP, Agrawal M, Peumans P. High performance solarselective absorbers using coated sub-wavelength gratings. Opt Express, 2010, 18, 5525-5540.CrossrefGoogle Scholar

  • [59] Chou JB, Yeng YX, Lenert A, et al. Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications. Opt Express, 2014, 22, A144-54.CrossrefGoogle Scholar

  • [60] Sai H, Yugami H, Kanamori Y, Hane K. Solar selective absorbers based on two-dimensional W surface gratings with submicron periods for high-temperature photothermal conversion. Sol Energy Mater Sol Cells, 2003, 79, 35-49.CrossrefGoogle Scholar

  • [61] Fleming JG, Lin SY, El-Kady I, Biswas R, Ho KM. All-metallic three-dimensional photonic crystals with a large infrared bandgap. Nature, 2002, 417, 52-5.Google Scholar

  • [62] Rinnerbauer VR, Ausecker EL, Chäffler FS, Eininger PR, Trasser GS, Eil RDG. Nanoimprinted superlattice metallic photonic crystal as ultraselective solar absorber. 2015, 2, 18-21.Google Scholar

  • [63] Mousazadeh H, Keyhani A, Javadi A, Mobli H, Abrinia K, Sharifi A. A review of principle and sun-tracking methods for maximizing solar systems output. Renew Sustain Energy Rev, 2009, 13, 1800-1818.CrossrefGoogle Scholar

  • [64] Chubb D, Pal A, Patton M, Jenkins P. Rare earth doped high temperature ceramic selective emitters. J Eur Ceram Soc, 1999, 19, 2551-2562. CrossrefGoogle Scholar

  • [65] Bitnar B, Durisch W, Mayor J-C, Sigg H, Tschudi HR. Characterisation of rare earth selective emitters for thermophotovoltaic applications. Sol Energy Mater Sol Cells, 2002, 73, 221-234.CrossrefGoogle Scholar

  • [66] Torsello G, Lomascolo M, Licciulli A, Diso D, Tundo S, Mazzer M. The origin of highly eflcient selective emission in rareearth oxides for thermophotovoltaic applications. Nat Mater, 2004, 3, 632-7.CrossrefGoogle Scholar

  • [67] Bitnar B, Durisch W, Holzner R. Thermophotovoltaics on the move to applications. Appl Energy, 2013, 105, 430-438.CrossrefGoogle Scholar

  • [68] Nam Y, Yeng YX, Lenert A, et al. Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters. Sol Energy Mater Sol Cells, 2014, 122, 287-296.CrossrefGoogle Scholar

  • [69] Celanovic I, Jovanovic N, Kassakian J. Two-dimensional tungsten photonic crystals as selective thermal emitters. Appl Phys Lett, 2008, 92, 193101.CrossrefGoogle Scholar

  • [70] Garín M, Hernández D, Trifonov T, Alcubilla R. Threedimensional metallo-dielectric selective thermal emitters with high-temperature stability for thermophotovoltaic applications. Sol Energy Mater Sol Cells, 2015, 134, 22-28.CrossrefGoogle Scholar

  • [71] Liu X, Tyler T, Starr T, Starr AF, Jokerst NM, Padilla WJ. Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys Rev Lett, 2011, 107, 045901.CrossrefGoogle Scholar

  • [72] Tobler WJ, Durisch W. Plasma-spray coated rare-earth oxides on molybdenum disilicide - High temperature stable emitters for thermophotovoltaics. Appl Energy, 2008, 85, 371-383.CrossrefGoogle Scholar

  • [73] Khan MR, Wang X, Sakr E, Alam MA, Bermel P. Enhanced selective thermal emission with a meta-mirror following Generalized Snell’s Law. MRS Proceedings, 2015, 1728.Google Scholar

  • [74] Sakr ES, Zhou Z, Bermel P. High eflciency rare-earth emitter for thermophotovoltaic applications. Appl Phys Lett, 2014, 105, 111107.CrossrefGoogle Scholar

  • [75] Kohiyama A, Shimizu M, Kobayashi H, Iguchi F, Yugami H. Spectrally controlled thermal radiation based on surface microstructures for high-eflciency solar thermophotovoltaic system. Energy Procedia, 2014, 57, 517-523.CrossrefGoogle Scholar

  • [76] Lee J-H, Kim Y-S, Constant K, Ho K-M. Woodpile metallic photonic crystals fabricated by using soft lithography for tailored thermal emission. Adv Mater, 2007, 19, 791-794.CrossrefGoogle Scholar

  • [77] Nagpal P, Josephson DP, Denny NR, DeWilde J, Norris DJ, Stein A. Fabrication of carbon/refractory metal nanocomposites as thermally stable metallic photonic crystals. J Mater Chem, 2011, 21, 10836.CrossrefGoogle Scholar

  • [78] Qi M, Lidorikis E, Rakich PT, et al. A three-dimensional optical photonic crystal with designed point defects. Nature, 2004, 429, 538-42.Google Scholar

  • [79] Rybicki GB, Lightman AP. Radiative processes in astrophysics. Weinheim, Germany: Wiley-VCH Verlag GmbH, 1985.Google Scholar

  • [80] Rytov SM, Kravtsov YA, Tatarskii VI. Principles of statistical radiophysics. New York: Springer-Verlag, 1987.Google Scholar

  • [81] Basu S, Zhang ZM, Fu CJ. Review of near-field thermal radiation and its application to energy conversion. Int J Energy Res, 2009, 33, 1203-1232.CrossrefGoogle Scholar

  • [82] Molesky S, Jacob Z. Ideal near-field thermophotovoltaic cells. Phys Rev B, 2015, 91, 205435.CrossrefGoogle Scholar

  • [83] Francoeur M, Vaillon R, Menguc MP. Performance analysis of nanoscale-gap thermophotovoltaic energy conversion devices. ICHMT Digit Libr ONLINE, 2011.Google Scholar

  • [84] Bernardi MP, Dupré O, Blandre E, Chapuis P-O, Vaillon R, Francoeur M. Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators. Sci Rep, 2015, 5, 11626.CrossrefGoogle Scholar

  • [85] Ben-Abdallah P, Marquier F, Greffet J-J. Controlling thermal radiation with surface waves. Plasmonics: theory and applications, T. V. Shahbazyan and M. I. Stockman, Eds. New York: Springer Science & Business Media, 2014, 592.Google Scholar

  • [86] Celanovic I, Perreault D, Kassakian J. Resonant-cavity enhanced thermal emission. Phys Rev B, 2005, 72, 075127.CrossrefGoogle Scholar

  • [87] Rinnerbauer V, Ndao S, Xiang Yeng Y, et al. Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters. J Vac Sci Technol B Microelectron Nanom Struct, 2013, 31, 011802.CrossrefGoogle Scholar

  • [88] Zenker M, Heinzel A, Stollwerck G, Ferber J, Luther J. Eflciency and power density potential of combustion-driven thermophotovoltaic systems using GaSb photovoltaic cells. IEEE Trans Electron Devices, 2001, 48, 367-376.CrossrefGoogle Scholar

  • [89] Vigil O, Ruiz CM, Seuret D, Bermúdez V, Diéguez E. Transparent conducting oxides as selective filters in thermophotovoltaic devices. J Phys Condens Matter, 2005, 17, 6377-6384.CrossrefGoogle Scholar

  • [90] Qian ZG, Shen WZ, Ogawa H, Guo QX. Infrared reflection characteristics in InN thin films grown by magnetron sputtering for the application of plasma filters. J Appl Phys, 2002, 92, 3683.CrossrefGoogle Scholar

  • [91] Mao L, Ye H. New development of one-dimensional Si/SiO2 photonic crystals filter for thermophotovoltaic applications. Renew Energy, 2010, 35, 249-256.CrossrefGoogle Scholar

  • [92] Mostafa SI, Rafat NH, El-Naggar SA. One-dimensional metallic-dielectric (Ag/SiO2) photonic crystals filter for thermophotovoltaic applications. Renew Energy, 2012, 45, 245-250.CrossrefGoogle Scholar

  • [93] Bovard BG. Rugate filter theory: an overview. Appl Opt, 1993, 32, 5427-42.CrossrefGoogle Scholar

  • [94] Carniglia CK. Comparison of several shortwave pass filter designs. Appl Opt, 1989, 28, 2820-3.CrossrefGoogle Scholar

  • [95] Ganapati V. Optical design considerations for high conversion eflciency in photovoltaics. University of California, Berkeley, 2015.Google Scholar

  • [96] Laroche M, Carminati R, Greffet J-J. Near-field thermophotovoltaic energy conversion. J Appl Phys, 2006.Google Scholar

  • [97] Ilic O, Jablan M, Joannopoulos JD, Celanovic I, Soljačić M. Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems. Optics Express, 2012, 20. A366.CrossrefGoogle Scholar

  • [98] Narayanaswamy A, Chen G. Surface modes for near field thermophotovoltaics. Appl Phys Lett, 2003.Google Scholar

  • [99] Domoto GA, Boehm RF, Tien CL. Experimental investigation of radiative transfer between metallic surfaces at cryogenic temperatures. J Heat Transfer, 1970, 92, 412.Google Scholar

  • [100] Hargreaves C. Anomalous radiative transfer between closelyspaced bodies. Phys Lett A, 1969, 30, 491-492.CrossrefGoogle Scholar

  • [101] Polder D, van Hove M. Theory of radiative heat transfer between closely spaced bodies. Phys Rev B, 1971, 4, 3303-3314.CrossrefGoogle Scholar

  • [102] Volokitin AI, Persson BNJ. Near-field radiative heat transfer and noncontact friction. Rev Mod Phys, 2007, 79, 1291-1329.CrossrefGoogle Scholar

  • [103] Joulain K, Mulet J-P, Marquier F, Carminati R, Greffet J-J. Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field. Surf Sci Rep, 2005, 57, 59-112.CrossrefGoogle Scholar

  • [104] DiMatteo RS, Greiff P, Finberg SL, et al. Enhanced photogeneration of carriers in a semiconductor via coupling across a nonisothermal nanoscale vacuum gap. Appl Phys Lett, 2001, 79, 1894.CrossrefGoogle Scholar

  • [105] DiMatteo R, Greiff P, Finberg S, et al. Micron-gap ThermoPhotoVoltaics (MTPV). Proc 6th Conf Thermophotovoltaic Gener Electr, 2004, 738, 42-51.Google Scholar

  • [106] Hanamura K, Mori K. Nano-gap TPV generation of electricity through evanescent wave in near-field above emitter surface. AIP Conference Proceedings, 2007.CrossrefGoogle Scholar

  • [107] Messina R, Ben-Abdallah P. Graphene-based photovoltaic cells for near-field thermal energy conversion. Sci Rep, 2013.Google Scholar

  • [108] Park K, Basu S, King WP, Zhang ZM. Performance analysis of near-field thermophotovoltaic devices considering absorption distribution. 2008, 109, 305-316.Google Scholar

  • [109] Francoeur M, Vaillon R, Mengüç MP. Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators. IEEE Trans Energy Convers, 2011.Google Scholar

  • [110] Tong JK, Hsu W-C, Huang Y, Boriskina S V, Chen G. Thin-film ‘thermal well’ emitters and absorbers for high eflciency thermophotovoltaics. Sci Rep, 2015.Google Scholar

  • [111] Guo Y, Jacob Z. Thermal hyperbolic metamaterials. Opt Express, 2013, 21, 15014-9.CrossrefGoogle Scholar

  • [112] Bauer T. Thermophotovoltaics: basic principles and critical aspects of system design. Berlin: Springer, 2011.Google Scholar

  • [113] Shen Y, Ye D, Celanovic I, Johnson SG, Joannopoulos JD, Soljačić M. Optical broadband angular selectivity. Science, 2014, 343, 1499-501.Google Scholar

  • [114] Laroche M, Arnold C, Marquier F, et al. Highly directional radiation generated by a tungsten thermal source. Opt Lett, 2005, 30, 2623.CrossrefGoogle Scholar

  • [115] Bermel P, Chan W, Yeng YX, Joannopoulos JD, Soljacic M, Celanovic I. Design and global optimization of high-eflciency thermophotovoltaic systems. TPV9: Ninth World Conference on Thermophotovoltaic Generation of Electricity, 2010.Google Scholar

  • [116] Hirst LC, Ekins-Daukes NJ. Fundamental losses in solar cells. Prog Photovoltaics Res Appl, 2011, 19, 286-293.CrossrefGoogle Scholar

  • [117] Baldasaro PF, Raynolds JE, Charache GW, et al. Thermodynamic analysis of thermophotovoltaic eflciency and power density tradeoffs. J Appl Phys, 2001, 89, 3319-3327.CrossrefGoogle Scholar

  • [118] Geisz JF, Steiner MA, García I, Kurtz SR, Friedman DJ. Enhanced external radiative eflciency for 20.8% eflcient single-junction GaInP solar cells. Appl. Phys. Lett., 2013, 103, 2011-2016.Google Scholar

  • [119] Bitnar B. Silicon, germanium and silicon/germanium photocells for thermophotovoltaics applications. Semicond Sci Technol, 2003, 18, S221-S227.CrossrefGoogle Scholar

  • [120] Bitnar B, Durisch W, Grutzmacher D, et al. A TPV system with silicon photocells and a selective emitter. Conf Rec Twenty- Eighth IEEE Photovolt Spec Conf - 2000 (Cat No00CH37036), 2000, 1218-1221.Google Scholar

  • [121] Fernandez J, Dimroth F, Oliva E, Hermle M, Bett AW. Backsurface optimization of germanium TPV cells. AIP Conference Proceedings 890; TPV7: Seventh World Conference on Thermophotovoltaic Generation of Electricity, 2007, 890, 190-197.Google Scholar

  • [122] van der Heide J, Posthuma NE, Flamand G, Poortmans J. Development of low-cost thermophotovoltaic cells using germanium substrates. AIP Conf Proc, 2007, 890, 129-138.Google Scholar

  • [123] Khvostikov VP, Khvostikova OA, Gazaryan PY, et al. Photoconverters for solar TPV systems. Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, WCPEC-4, 2007, 1, 667-670.Google Scholar

  • [124] Nagashima T, Hokoi K, Okumura K, Yamaguchi M. Surface passivation for germanium and silicon back contact type photovoltaic cells. In Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference on 2006 1, 655-658.Google Scholar

  • [125] Tan M, Ji L, Wu Y, et al. Investigation of InGaAs thermophotovoltaic cells under blackbody radiation. Appl Phys Express, 2014, 7, 096601.CrossrefGoogle Scholar

  • [126] van der Heide J, Posthuma NE, Flamand G, Geens W, Poortmans J. Cost-eflcient thermophotovoltaic cells based on germanium substrates. Sol Energy Mater Sol Cells, 2009, 93, 1810-1816.Google Scholar

  • [127] Schlegl T, Dimroth F, Ohm A, Bett AW. TPV modules based on GaSb structures. AIP Conf Proc 738; TPV6 Sixth World Conf Thermophotovoltaic Gener Electr, 2004, 738, 285-293.Google Scholar

  • [128] Andreev VM, Sorokina SV, Timoshina NK, Khvostikov VP, Shvarts MZ. Solar cells based on gallium antimonide. Semiconductors, 2009, 43, 668-671.CrossrefGoogle Scholar

  • [129] Bett AW, Sulima OV. GaSb photovoltaic cells for applications in TPV generators. Semicond Sci Technol, 2003, 18, S184- S190.CrossrefGoogle Scholar

  • [130] Sulima OV, Bett AW. Fabrication and simulation of GaSb thermophotovoltaic cells. Sol Energy Mater Sol Cells, 2001, 66, 533-540.CrossrefGoogle Scholar

  • [131] Fraas LM. Low-cost solar electric power. Springer Cham Heidelberg New York Dordrecht London, 2014.Google Scholar

  • [132] Wojtczuk S. Low bandgap InGaAs thermophotovoltaic cells. IECEC 96 Proc 31st Intersoc Energy Convers Eng Conf, 1996, 2, 1-5.Google Scholar

  • [133] Murray SL, Newman FD, Murray CS, et al. MOCVD growth of lattice-matched and mismatched InGaAs materials for thermophotovoltaic energy conversion. Semicond Sci Technol, 2003, 18, S202-S208.CrossrefGoogle Scholar

  • [134] Tuley RS, Orr JMS, Nicholas RJ, Rogers DC, Cannard PJ, Dosanjh S. Lattice-matched InGaAs on InP thermophovoltaic cells. Semicond Sci Technol, 2013, 28, 015013.CrossrefGoogle Scholar

  • [135] Daneshvar H, Prinja R, Kherani NP. Thermophotovoltaics: Fundamentals, challenges and prospects. Appl Energy, 2015, 159, 560-575.Google Scholar

  • [136] Winston R. Thermodynamically eflcient solar concentrators. J Photonics Energy, 2012, 2, 25501-25506.CrossrefGoogle Scholar

  • [137] Kim YS, Kang SM, Winston R. Tracking control of highconcentration photovoltaic systems for minimizing power losses. Progress in Photovoltaics: Research and Applications, 20, 6-11, 2012.Google Scholar

  • [138] Munz D, Fett T. Ceramics: mechanical properties, failure behaviour, materials selection. 1999.Google Scholar

  • [139] Incropera FP, DeWitt DP. Fundamentals of heat transfer. New York: John Wiley and Sons, 1981.Google Scholar

  • [140] Fraas L, Samaras J, Avery J, Minkin L. Antireflection coated refractory metal matched emitters for use with GaSb thermophotovoltaic generators. Conf Rec Twenty-Eighth IEEE Photovolt Spec Conf - 2000, 2000, 1020-1023. Google Scholar

  • [141] Andreev VM, Khvostikov VP, Khvostikova OA, et al. Solar thermophotovoltaic system with high temperature tungsten emitter. Conf Rec Thirty-first IEEE Photovolt Spec Conf 2005, 2005.Google Scholar

  • [142] Kasten F, Young AT. Revised optical air mass tables and approximation formula. Appl Opt, 1989, 28, 4735-4738.CrossrefGoogle Scholar

  • [143] Yu Z, Sergeant NP, Skauli T, Zhang G, Wang H, Fan S. Enhancing far-field thermal emission with thermal extraction. Nat Commun, 2013, 4, 1730.CrossrefGoogle Scholar

  • [144] Herrero R, Victoria M, Domínguez C, Askins S, Antón I, Sala G. Concentration photovoltaic optical system irradiance distribution measurements and its effect on multi-junction solar cells. Prog Photovoltaics Res Appl, 2012, 20, 6-11.Google Scholar

  • [145] Victoria M, Herrero R, Domínguez C, Antón I, Askins S, Sala G. Characterization of the spatial distribution of irradiance and spectrum in concentrating photovoltaic systems and their effect on multi-junction solar cells. Prog Photovoltaics Res Appl, 2013, 21, 308-318.CrossrefGoogle Scholar

  • [146] Jones RK, Ermer JH, Fetzer CM, King RR. Evolution of multijunction solar cell technology for concentrating photovoltaics. Japanese J Applied Phys, 2012, 51, 1-4.Google Scholar

  • [147] Datas A, Algora C. Global optimization of solar thermophotovoltaic systems. Prog Photovoltaics Res Appl, 2013, 21, 1040-1055.Google Scholar

  • [148] Schlemmer C. Thermal stability of micro-structured selective tungsten emitters. AIP Conference Proceedings, 2003, 653, 164-173.Google Scholar

  • [149] Denny NR, Li F, Norris DJ, Stein A. In situ high temperature TEM analysis of sintering in nanostructured tungsten and tungsten-molybdenum alloy photonic crystals. J Mater Chem, 2010, 20, 1538-1545.CrossrefGoogle Scholar

  • [150] Lee H-J, Smyth K, Bathurst S, et al. Hafnia-plugged microcavities for thermal stability of selective emitters. Appl Phys Lett, 2013, 102, 241904.Google Scholar

  • [151] Arpin KA, Losego MD, Braun P V. Electrodeposited 3D tungsten photonic crystals with enhanced thermal stability. Chem Mater, 2011, 23, 4783-4788.Google Scholar

  • [152] Peykov D, Yeng YX, Celanovic I, Joannopoulos JD, Schuh CA. Effects of surface diffusion on high temperature selective emitters. Opt Express, 2015, 23, 9979-93.CrossrefGoogle Scholar

  • [153] Mullins WW. Flattening of a nearly plane solid surface due to capillarity. J Appl Phys, 1959, 30, 77.CrossrefGoogle Scholar

  • [154] Arpin KA, Losego MD, Cloud AN, et al. Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification. Nat Commun, 2013, 4, 2630.Google Scholar

  • [155] Ndiaye A, Charki A, Kobi A, Kébé CMF, Ndiaye PA, Sambou V. Degradations of silicon photovoltaic modules: A literature review. Sol Energy, 2013, 96, 140-151. CrossrefGoogle Scholar

About the article

Received: 2015-09-10

Accepted: 2015-12-15

Published Online: 2016-06-11

Published in Print: 2016-06-01

Citation Information: Nanophotonics, Volume 5, Issue 1, Pages 1–21, ISSN (Online) 2192-8614, ISSN (Print) 2192-8606, DOI: https://doi.org/10.1515/nanoph-2016-0011.

Export Citation

© 2016. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Qing Ni, Ryan McBurney, Hassan Alshehri, and Liping Wang
Solar Energy, 2019, Volume 191, Page 623
James F. Varner, Noor Eldabagh, Derek Volta, Reem Eldabagh, and Jonathan J. Foley
Journal of Open Research Software, 2019, Volume 7
Denis G. Baranov, Yuzhe Xiao, Igor A. Nechepurenko, Alex Krasnok, Andrea Alù, and Mikhail A. Kats
Nature Materials, 2019, Volume 18, Number 9, Page 920
Bo Zhao, Siddharth Buddhiraju, Parthiban Santhanam, Kaifeng Chen, and Shanhui Fan
Proceedings of the National Academy of Sciences, 2019, Page 201904938
Corey Melnick and Massoud Kaviany
Applied Physics Reviews, 2019, Volume 6, Number 2, Page 021305
Jiancun Zhao, Xiaochang Yu, Xiaoming Yang, Clarence Augustine TH Tee, Weizheng Yuan, and Yiting Yu
Optics Letters, 2019, Volume 44, Number 4, Page 963
Liang Peng, Dongqing Liu, and Haifeng Cheng
Solar Energy Materials and Solar Cells, 2019, Volume 193, Page 7
A G Lupu, V M Homutescu, D T Balanescu, and A Popescu
IOP Conference Series: Materials Science and Engineering, 2018, Volume 444, Page 082016
Mohamed ElKabbash, Shamreen Iram, Theodore Letsou, Michael Hinczewski, and Giuseppe Strangi
Advanced Optical Materials, 2018, Page 1800672
Gerardo Silva-Oelker, Carlos Jerez-Hanckes, and Patrick Fay
Optics Express, 2018, Volume 26, Number 22, Page A929
Xiaoyan Niu, Dong Qi, Xian Wang, Yongzhi Cheng, Fu Chen, Bowen Li, and Rongzhou Gong
Journal of the Optical Society of America A, 2018, Volume 35, Number 11, Page 1832
Guiyuan Wang, Benkang Chang, Mingzhu Yang, Kun Wang, Hong Cam Tran, Jian Liu, Rongguo Fu, Yunsheng Qian, Feng Shi, and Hongchang Cheng
Solar Energy, 2018, Volume 174, Page 352
Stephen Exarhos, Alejandro Alvarez Barragan, Ece Aytan, Alexander A. Balandin, and Lorenzo Mangolini
ACS Energy Letters, 2018
Xiao Tan, Zhi Tao, Mingxing Yu, Hanxiao Wu, and Haiwang Li
Micromachines, 2018, Volume 9, Number 8, Page 385
Nari Jeon, Jonathan J. Hernandez, Daniel Rosenmann, Stephen K. Gray, Alex B. F. Martinson, and Jonathan J. Foley IV
Advanced Energy Materials, 2018, Page 1801035
Haitong Yu, Dong Liu, Yuanyuan Duan, and Zhen Yang
Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, Volume 217, Page 235
Xiao Tan, Zhi Tao, Mingxing Yu, Hanxiao Wu, and Haiwang Li
Scientific Reports, 2018, Volume 8, Number 1
Makoto Shimizu, Asaka Kohiyama, and Hiroo Yugami
Journal of Quantitative Spectroscopy and Radiative Transfer, 2018
Asaka Kohiyama, Makoto Shimizu, and Hiroo Yugami
Japanese Journal of Applied Physics, 2018, Volume 57, Number 4, Page 040312
Etienne Blandre, Makoto Shimizu, Asaka Kohiyama, Hiroo Yugami, Pierre-Olivier Chapuis, and Rodolphe Vaillon
Optics Express, 2018, Volume 26, Number 4, Page 4346
Eric Tervo, Elham Bagherisereshki, and Zhuomin Zhang
Frontiers in Energy, 2017
Enas Sakr and Peter Bermel
Optics Express, 2017, Volume 25, Number 20, Page A880
Haejun Chung, Zhiguang Zhou, and Peter Bermel
Applied Physics Letters, 2017, Volume 110, Number 20, Page 201111
Hao Tian, Zhiguang Zhou, Tianran Liu, Cindy Karina, Urcan Guler, Vladimir Shalaev, and Peter Bermel
Applied Physics Letters, 2017, Volume 110, Number 14, Page 141101
Marco A. G. Porcel, Florian Schepers, Jörn P. Epping, Tim Hellwig, Marcel Hoekman, René G. Heideman, Peter J. M. van der Slot, Chris J. Lee, Robert Schmidt, Rudolf Bratschitsch, Carsten Fallnich, and Klaus-J. Boller
Optics Express, 2017, Volume 25, Number 2, Page 1542

Comments (0)

Please log in or register to comment.
Log in