Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Editor-in-Chief: Sorger, Volker

IMPACT FACTOR 2018: 6.908
5-year IMPACT FACTOR: 7.147

CiteScore 2018: 6.72

In co-publication with Science Wise Publishing

Open Access
See all formats and pricing
More options …
Volume 5, Issue 1


Nanophotonics-enabled smart windows, buildings and wearables

Geoff Smith / Angus Gentle / Matthew Arnold / Michael Cortie
Published Online: 2016-06-11 | DOI: https://doi.org/10.1515/nanoph-2016-0014


Design and production of spectrally smart windows, walls, roofs and fabrics has a long history, which includes early examples of applied nanophotonics. Evolving nanoscience has a special role to play as it provides the means to improve the functionality of these everyday materials. Improvement in the quality of human experience in any location at any time of year is the goal. Energy savings, thermal and visual comfort indoors and outdoors, visual experience, air quality and better health are all made possible by materials, whose “smartness” is aimed at designed responses to environmental energy flows. The spectral and angle of incidence responses of these nanomaterials must thus take account of the spectral and directional aspects of solar energy and of atmospheric thermal radiation plus the visible and color sensitivity of the human eye. The structures required may use resonant absorption, multilayer stacks, optical anisotropy and scattering to achieve their functionality. These structures are, in turn, constructed out of particles, columns, ultrathin layers, voids, wires, pure and doped oxides, metals, polymers or transparent conductors (TCs). The need to cater for wavelengths stretching from 0.3 to 35 μm including ultraviolet-visible, near-infrared (IR) and thermal or Planck radiation, with a spectrally and directionally complex atmosphere, and both being dynamic, means that hierarchical and graded nanostructures often feature. Nature has evolved to deal with the same energy flows, so biomimicry is sometimes a useful guide.


  • [1] G. B. Smith, and C. G. Granqvist, Green nanotechnology: solutions for sustainability and energy in the built environment, CRC Press 2010.Google Scholar

  • [2] US Department of Energy, EnergyPlus Energy Simulation Software, 2015Google Scholar

  • [3] NFRC, "ANSI/NFRC 200-2014 Procedure for determining fenestration product solar heat gain coeflcient and visible transmittance at normal incidence," 2014.Google Scholar

  • [4] M. Sleiman, G. Ban-Weiss, H. E. Gilbert et al., "Soiling of building envelope surfaces and its effect on solar reflectance- Part I: Analysis of roofing product databases," Solar Energy Materials and Solar Cells 95(12), 3385-3399, http://dx.doi.org/10.1016/j.solmat.2011.08.002, 2011.CrossrefGoogle Scholar

  • [5] P. J. Brown, and K. Stevens, Nanofibers and nanotechnology in textiles, Woodhead Publishing 2007.Google Scholar

  • [6] M. Teodorescu, "Applied Biomimetics: A New Fresh Look of Textiles," Journal of Textiles 9, doi:10.1155/2014/154184, 2014.CrossrefGoogle Scholar

  • [7] A. Gentle, and G. Smith, "Five layer narrow band position variable filters for sharp colours and ultra low emittance," Applied Physics B 92(1), 67-72, 2008.CrossrefGoogle Scholar

  • [8] A. R. Gentle, and G. B. Smith, "Radiative heat pumping from the earth using surface phonon resonant nanoparticles," Nano letters 10(2), 373-379, 2010.CrossrefGoogle Scholar

  • [9] SOLASOLV® Aviation system sun screens - sun protection for air traflc control towers, 2015. (Accessed 03/09/15 at http://www.solasolv.com/air-traflc-control-tower-sunscreens.php)Google Scholar

  • [10] A. R. Gentle, and G. B. Smith, "A subambient open roof surface under the mid-summer sun," Advanced Science 2(9), doi:http: //dx.doi.org/10.1002/advs.201500119, 2015.CrossrefGoogle Scholar

  • [11] S. Meng, "Donna Sgro: the Teijin fibers," in Think Magazine, pp. 35-40 2011.Google Scholar

  • [12] N. Pan, "Exploring the significance of structural hierarchy in material systems-A review," Applied Physics Reviews 1(2), 021302, doi:http://dx.doi.org/10.1063/1.4871365, 2014. (CrossrefGoogle Scholar

  • [13] P. Ščajev, T. Malinauskas, G. Seniutinas et al., "Light-induced reflectivity transients in black-Si nanoneedles," Solar Energy Materials and Solar Cells 144(221-227, http://dx.doi.org/10.1016/j.solmat.2015.08.030, 2016.CrossrefGoogle Scholar

  • [14] M. Arnold, I. Hodgkinson, Q. Wu, and R. Blaikie, "Multi-axis retarder arrays by masked oblique deposition," Journal of Vacuum Science & Technology B 23(4), 1398-1404, 2005.CrossrefGoogle Scholar

  • [15] P. Berdahl, and R. Fromberg, "The thermal radiance of clear skies," Solar Energy 29(4), 299-314, 1982.CrossrefGoogle Scholar

  • [16] C. Granqvist, and A. Hjortsberg, "Radiative cooling to low temperatures: general considerations and application to selectively emitting SiO films," Journal of Applied Physics 52(6), 4205-4220, 1981.CrossrefGoogle Scholar

  • [17] G. Wyszecki, and W. S. Stiles, Color science: concepts and methods, quantitative data and formulae, Wiley 2000.Google Scholar

  • [18] W. H. Dines, Monthly mean values of radiation from various parts of the sky at Benson, Oxfordshire, Edward Stanford 1927.Google Scholar

  • [19] J. L. Castro Aguilar, A. R. Gentle, G. B. Smith, and D. Chen, "A method to measure total atmospheric longwave down-welling radiation using a low cost infrared thermometer tilted to the vertical," Energy 81, 233-244, doi:10.1016/j.energy.2014.12.035, 2015.CrossrefGoogle Scholar

  • [20] S. Sakai, A. Ito, K. Umetani, I. Iizawa, and M. Onishi, "A practical pyrgeometer using the representative angle," Journal of Atmospheric and Oceanic Technology 26(3), 647-655, doi:10.1175/2008JTECHA1076.1, 2009.CrossrefGoogle Scholar

  • [21] S. Schelm, and G. B. Smith, "Dilute LaB6 nanoparticles in polymer as optimized clear solar control glazing," Applied Physics Letters 82(24), 4346-4348, doi:10.1063/1.1584092, 2003.Google Scholar

  • [22] G. B. Smith, S. Dligatch, R. Sullivan, and M. G. Hutchins, "Thin film angular selective glazing," Solar Energy 62(3), 229-244, doi:10.1016/S0038-092X(98)00009-7, 1998.CrossrefGoogle Scholar

  • [23] S. Schelm, G. B. Smith, P. D. Garrett, and W. K. Fisher, "Tuning the surface-plasmon resonance in nanoparticles for glazing applications," Journal of Applied Physics 97(12), 124314, doi:10.1063/1.1924873, 2005.CrossrefGoogle Scholar

  • [24] Pilkington K Glass, Pilkington, 2015. (Accessed 1/09/2015 at https://www.pilkington.com/en-gb/uk/products/productcategories/thermal-insulation/pilkington-k-glass-range/pilkington-k-glass)Google Scholar

  • [25] ASTM, " G173 - 03 Standard tables for reference solar spectral irradiances: direct normal and hemispherical on 37°tilted surface," 2012.Google Scholar

  • [26] Lawrence Berkeley National Laboratory, The International Glazing Database (IGDB), http://windowoptics.lbl.gov/data/igdb, 2015Google Scholar

  • [27] A. Roos, P. Polato, P. A. Van Nijnatten, M. G. Hutchins, F. Olive, and C. Anderson, "Angular-dependent optical properties of low-e and solar control windows-: Simulations versus measurements," Solar Energy 69, 15-26, 2001.Google Scholar

  • [28] Lawrence Berkeley National Laboratory, Window, https://windows.lbl.gov/software/window/window.html, 2015.Google Scholar

  • [29] WVASE - Ellipsometry analysis software, J.A. Woollam Co., 2015. (Accessed at http://www.jawoollam.com/WVASE.html)Google Scholar

  • [30] D. A. G. Bruggeman, "Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen," Ann. Phys. (Leipzig) 24(636-679, 1935.Google Scholar

  • [31] S. Jacquemoud, and L. Ustin, "Modeling leaf optical properties," Photobiological Sciences Online 2008.Google Scholar

  • [32] J. C. Maxwell Garnett, "Colours in metal glasses and in metallic films," Royal Society of London Philosophical Transactions Series A 385-420, 1904.Google Scholar

  • [33] A. Lakhtakia, Selected papers on linear optical composite materials, Society of Photo Optical Engineers 1996.Google Scholar

  • [34] W. E. Vargas, and G. A. Niklasson, "Forward average pathlength parameter in four-flux radiative transfermodels," Applied Optics 36(16), 3735-3738, doi:10.1364/AO.36.003735, 1997.CrossrefGoogle Scholar

  • [35] P. Kubelka, F. Munk, and P. Kubelka, "Ein beitrag ztlr optik der farbanstriche," Zeitschrift für technische Physik 12, 593-501, 1931.Google Scholar

  • [36] English Translation of Ein beitrag ztlr optik der farbanstriche - An Article on Optics of Paint Layers, S. H. Westin, 2004. (Accessed 4/9/2015 at http://www.graphics.cornell.edu/~westin/pubs/kubelka.pdf)Google Scholar

  • [37] B. T. Draine, and P. J. Flatau, "Discrete-dipole approximation for scattering calculations," J. Opt. Soc. Am. A 11(4), 1491-1499, doi:10.1364/JOSAA.11.001491, 1994.CrossrefGoogle Scholar

  • [38] A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, "Passive radiative cooling below ambient air tempera ture under direct sunlight," Nature 515(7528), 540-544, doi:10.1038/nature13883, 2014.CrossrefGoogle Scholar

  • [39] A. Gentle, and G. Smith, "Performance comparisons of sky window spectral selective and high emittance radiant cooling systems under varying atmospheric conditions," Proceedings Solar2010, The 48th AuSES Annual Conference 2010.Google Scholar

  • [40] G. Smith, "Amplified radiative cooling via optimised combinations of aperture geometry and spectral emittance profiles of surfaces and the atmosphere," Solar Energy Materials and Solar Cells 93(9), 1696-1701, 2009.CrossrefGoogle Scholar

  • [41] F. Trombe, "Perspectives sur l’utilisation des rayonnements solaires et terrestres dans certaines régions du monde," Rev. Gen. Therm 6(70), 1285, 1967.Google Scholar

  • [42] L. Zhu, A. P. Raman, and S. Fan, "Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody," Proceedings of the National Academy of Sciences 112(40), 12282-12287, 10.1073/pnas.1509453112, 2015.Google Scholar

  • [43] M. L. Brongersma, Y. Cui, and S. Fan, "Light management for photovoltaics using high-index nanostructures," Nat Mater 13(5), 451-460, 10.1038/nmat3921, 2014.CrossrefGoogle Scholar

  • [44] S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, and M. A. Green, "Enhanced emission from Si-based light-emitting diodes using surface plasmons," Applied Physics Letters 88(16), 161102, doi:http://dx.doi.org/10.1063/1.2195695, 2006.CrossrefGoogle Scholar

  • [45] R. G. Ross, "Flat-plate photovoltaic array design optimization," in 14th IEEE Photovoltaic Specialists Conference, San Diego, CA 1980.Google Scholar

  • [46] H. Akbari, and R. Levinson, "Evolution of cool-roof standards in the US," Advances in building energy research 2(1), 1-32, 2008.Google Scholar

  • [47] C. M. Lampert, "Chromogenic smart materials," Materials today 7(3), 28-35, 2004.CrossrefGoogle Scholar

  • [48] C. Granqvist, "Chromogenic materials for transmittance control of large-area windows," Critical Reviews in Solid State and Material Sciences 16(5), 291-308, 1990.Google Scholar

  • [49] J. Svensson, and C. Granqvist, "Electrochromic coatings for “smart windows”," Solar energy materials 12(6), 391-402, 1985.CrossrefGoogle Scholar

  • [50] G. A. Niklasson, and C. G. Granqvist, "Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these," Journal of Materials Chemistry 17(2), 127-156, 2007.CrossrefGoogle Scholar

  • [51] A. R. Gentle, G. B. Smith, and A. I. Maaroof, "Frequency and percolation dependence of the observed phase transition in nanostructured and doped VO2 thin films," Journal of Nanophotonics 3(1), 031505-031505-031515, 2009.Google Scholar

  • [52] N. Mlyuka, G. Niklasson, and C.-G. Granqvist, "Mg doping of thermochromic VO2 films enhances the optical transmittance and decreases the metal-insulator transition temperature," Applied physics letters 95(17), 171909, 2009.CrossrefGoogle Scholar

  • [53] S.-Y. Li, N. R. Mlyuka, D. Primetzhofer et al., "Bandgap widening in thermochromic Mg-doped VO2 thin films: quantitative data based on optical absorption," Applied Physics Letters 103(16), 161907, 2013.CrossrefGoogle Scholar

  • [54] M. M. Qazilbash, M. Brehm, B.-G. Chae et al., "Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging," Science 318(5857), 1750-1753, 2007.Google Scholar

  • [55] E. S. Lee, and D. DiBartolomeo, "Application issues for largearea electrochromic windows in commercial buildings," Solar Energy Materials and Solar Cells 71(4), 465-491, 2002.CrossrefGoogle Scholar

  • [56] W. Wiemer, and A. Bohm, Liquid Crystal Display Device patent US20080074575. 2008.Google Scholar

  • [57] L. Österlund, "Structure-reactivity relationships of anatase and rutile TiO2 nanocrystals measured by in situ vibrational spectroscopy," Solid State Phenomena 203-219 (2010).CrossrefGoogle Scholar

  • [58] Pilkington self-cleaning glass: technical FAQs, Pilkington, 2015. (Accessed 04/09/2015 at https://www.pilkington.com/en-gb/uk/householders/types-of-glass/self-cleaning-glass/faqs/technical-faqs)Google Scholar

  • [59] A. R. Parker, and C. R. Lawrence, "Water capture by a desert beetle," Nature 414(6859), 33-34, doi:10.1038/35102108, 2001.CrossrefGoogle Scholar

  • [60] E. I. Cedillo-González, R. Riccň, M. Montorsi, M. Montorsi, P. Falcaro, and C. Siligardi, "Self-cleaning glass prepared from a commercial TiO2 nano-dispersion and its photocatalytic performance under common anthropogenic and atmospheric factors," Building and Environment 71, 7-14, doi:10.1016/j.buildenv.2013.09.007, 2014.CrossrefGoogle Scholar

  • [61] Z. Zheng, Z. Gu, R. Huo, and Z. Luo, "Fabrication of selfcleaning poly(vinylidene fluoride) membrane with micro/ nanoscaled two-tier roughness," Journal of Applied Polymer Science 122(2), 1268-1274, doi:10.1002/app.34254, 2011.CrossrefGoogle Scholar

  • [62] R. A. Iezzi, S. Gaboury, and K. Wood, "Acrylic-fluoropolymer mixtures and their use in coatings," Progress in organic coatings 40(1), 55-60, 2000.Google Scholar

  • [63] D. Schweiger, A. Georg, W. Graf, and V. Wittwer, "Examination of the kinetics and performance of a catalytically switching (gasochromic) device," Solar Energy Materials and Solar Cells 54(1), 99-108, 1998.CrossrefGoogle Scholar

  • [64] J.-L. Chen, C.-C. Chang, Y.-K. Ho et al., "Behind the color switching in gasochromic VO2," Physical Chemistry Chemical Physics 17(5), 3482-3489, doi:10.1039/C4CP04623D, 2015.CrossrefGoogle Scholar

  • [65] L. Zhu, J. Kapraun, J. Ferrara, and C. J. Chang-Hasnain, "Flexible photonic metastructures for tunable coloration," Optica 2(3), 255-258, doi:10.1364/OPTICA.2.000255, 2015.CrossrefGoogle Scholar

  • [66] N. L. Stokes, J. A. Edgar, A. M. McDonagh, and M. B. Cortie, "Spectrally selective coatings of gold nanorods on architectural glass," Journal of Nanoparticle Research 12(8), 2821-2830, 2010.CrossrefGoogle Scholar

  • [67] X. Xu, T. Gibbons, and M. Cortie, "Spectrally-selective gold nanorod coatings for window glass," Gold Bulletin 39(4), 156-165, 2006.CrossrefGoogle Scholar

  • [68] M. Faraday, "The Bakerian Lecture: Experimental Relations of Gold (and Other Metals) to Light," Philosophical Transactions of the Royal Society of London 147, 145-181, doi:10.2307/108616, 1857.CrossrefGoogle Scholar

  • [69] I. Freestone, N. Meeks, M. Sax, and C. Higgitt, "The Lycurgus cup-a Roman nanotechnology," Gold Bulletin 40(4), 270-277, 2007.CrossrefGoogle Scholar

  • [70] R. Iezzi, "Creating coatings for better buildings," Paint Coat. Ind.(July 1998) 48, 60, 1998.Google Scholar

  • [71] G. Mbise, G. B. Smith, G. A. Niklasson, and C. G. Granqvist, "Angular-selective optical properties of Cr films made by oblique-angle evaporation," Applied Physics Letters 54(11), 987-989, doi:10.1063/1.100757, 1989. CrossrefGoogle Scholar

  • [72] T. Xu, and H. J. Lezec, "Visible-frequency asymmetric transmission devices incorporating a hyperbolic metamaterial," Nat Commun 5, doi:10.1038/ncomms5141, 2014.CrossrefGoogle Scholar

  • [73] I. Hodgkinson, L. De Silva, and M. Arnold, "Inorganic polarizing materials grown by physical vapor deposition," Proc. SPIE 5870, Advances in Thin-Film Coatings for Optical Applications II, 587001-587015, doi:10.1117/12.613990, 2005.CrossrefGoogle Scholar

  • [74] M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, and A. J. Ouderkirk, "Giant Birefringent Optics in Multilayer Polymer Mirrors," Science 287(5462), 2451-2456, doi:10.1126/science.287.5462.2451, 2000.CrossrefGoogle Scholar

  • [75] Y. Shen, D. Ye, I. Celanovic, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, "Optical Broadband Angular Selectivity," Science 343(6178), 1499-1501, doi:10.1126/science.1249799, 2014.CrossrefGoogle Scholar

  • [76] L. Gilbert, M. F. Weber, R. J. Strharsky, C. A. Stover, T. J. Nevitt, and A. J. Ouderkirk, "Giant birefringent optics in multilayer polymer filters," in OSA Technical Digest Series, Optical Interference Coatings FA2 (2001).Google Scholar

  • [77] J. Liu, B. Cankurtaran, L. Wieczorek, M. J. Ford, and M. Cortie, "Anisotropic optical properties of semitransparent coatings of gold nanocaps," Advanced Functional Materials 16(11), 1457-1461, 2006.CrossrefGoogle Scholar

  • [78] M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, "Nanometre optical coatings based on strong interference effects in highly absorbing media," Nature materials 12(1), 20-24, 2013.Google Scholar

  • [79] G. B. Smith, A. Gentle, P. Swift, A. Earp, and N. Mronga, "Coloured paints based on coated flakes of metal as the pigment, for enhanced solar reflectance and cooler interiors: description and theory," Solar Energy Materials and Solar Cells 79(2), 163-177, doi:10.1016/S0927-0248(02)00409-9, 2003.CrossrefGoogle Scholar

  • [80] G. B. Smith, A. Gentle, P. D. Swift, A. Earp, and N. Mronga, "Coloured paints based on iron oxide and silicon oxide coated flakes of aluminium as the pigment, for energy eflcient paint: optical and thermal experiments," Solar Energy Materials and Solar Cells 79(2), 179-197, doi:10.1016/S0927-0248(02)00410-5, 2003.CrossrefGoogle Scholar

  • [81] T. Evans, A. Hart, and A. Skedgell, "Nature of the film on coloured stainless steel," Trans. Inst. Metal Finishing, Summer 1973, 51,(3), 108-112 1973.Google Scholar

  • [82] A. R. Gentle, S. D. Yambem, G. B. Smith, P. L. Burn, and P. Meredith, "Optimized multilayer indium-free electrodes for organic photovoltaics," physica status solidi (a) 212(2), 348-355, 2015.Google Scholar

  • [83] T. Minami, "Present status of transparent conducting oxide thin-film development for Indium-Tin-Oxide (ITO) substitutes," Thin Solid Films 516(17), 5822-5828, http://dx.doi.org/10.1016/j.tsf.2007.10.063, 2008.CrossrefGoogle Scholar

  • [84] Global smart, intelligent, digital & interactive fabrics/textile market revenue from 2012 to 2018 (in billion U.S. dollars)*, Statista, 2015. (Accessed 04/09/2015 at http://www.statista.com/statistics/302526/smart-fabrics-market-revenueworldwide/)Google Scholar

  • [85] Innovation in Textiles - Cornell University uses nanotech to transform cotton fibres, B. Hunter, 2015. (Accessed 04/09/2015 at http://www.innovationintextiles.com/smarttextiles-nanotechnology/cornell-university-uses-nanotechto-transform-cotton-fibres/)Google Scholar

  • [86] S. Ovalle-Serrano, V. Carrillo, C. Blanco-Tirado, J. Hinestroza, and M. Combariza, "Controlled synthesis of ZnO particles on the surface of natural cellulosic fibers: effect of concentration, heating and sonication," Cellulose 22(3), 1841-1852, 2015.CrossrefGoogle Scholar

  • [87] M. Kamiyama, T. Soeda, S. Nagajima, and K. Tanaka, "Development and application of high-strength polyester nanofibers," Polym J 44(10), 987-994, 2012.CrossrefGoogle Scholar

  • [88] J. L. C. Aguilar, G. B. Smith, A. R. Gentle, and D. Chen, "Optimum integration of albedo, sub-roof R-value, and phase change material for cool roofs," Proceedings of Building Simulation 2013: 13th Conference of the International Building Performance Simulation Association. Chambéry (France), 25-28 August 2013 (2013).Google Scholar

  • [89] M. I. E. Yoshimura, K. Iohara, H. Tabata, and S. Shimizu, "Structurally Colored Fibers "MORPHOTEX"," Sen’i Gakkaishi 56(12), 348-351, doi:10.2115/fiber.56.P_348, 2000.CrossrefGoogle Scholar

  • [90] S. Kinoshita, and S. Yoshioka, "Structural Colors in Nature: The Role of Regularity and Irregularity in the Structure," ChemPhysChem 6(8), 1442-1459, doi:10.1002/cphc.200500007, 2005.CrossrefGoogle Scholar

  • [91] S. D. Yambem, M. Ullah, K. Tandy, P. L. Burn, and E. B. Namdas, "ITO-free top emitting organic light emitting diodes with enhanced light out-coupling," Laser & Photonics Reviews 8(1), 165-171, 2014.CrossrefGoogle Scholar

  • [92] J. K. Tong, X. Huang, S. V. Boriskina, J. Loomis, Y. Xu, and G. Chen, "Infrared-transparent visible-opaque fabrics for wearable personal thermal management," ACS Photonics 2(6), 769-778, 10.1021/acsphotonics.5b00140, 2015.Google Scholar

  • [93] T. Starkey, and P. Vukusic, "Light manipulation principles in biological photonic systems," Nanophotonics 2(4), 289-307, 2013.Google Scholar

  • [94] D. P. Pulsifer, and A. Lakhtakia, "Background and survey of bioreplication techniques," Bioinspiration & biomimetics 6(3), 031001, 2011.CrossrefGoogle Scholar

  • [95] K. Liu, and L. Jiang, "Multifunctional integration: from biological to bio-inspired materials," ACS Nano 5(9), 6786-6790, 10.1021/nn203250y, 2011.CrossrefGoogle Scholar

  • [96] A. R. Parker, "515 million years of structural colour," Journal of Optics A: Pure and Applied Optics 2(6), R15-R28, 2000.Google Scholar

  • [97] H. Ghiradella, "Light and color on the wing: structural colors in butterflies and moths," Applied Optics 30(24), 3492-3500, 1991.CrossrefGoogle Scholar

  • [98] C. I. Aguirre, E. Reguera, and A. Stein, "Tunable colors in opals and inverse opal photonic crystals," Advanced Functional Materials 20(16), 2565-2578, 2010.CrossrefGoogle Scholar

  • [99] M. Boyle, A. Neumeister, R. Kiyan et al., "Production of 3D photonic components with ultrafast micromachining," 646212-646212-646219 (2007).Google Scholar

  • [100] N. Shashar, R. Hagan, J. G. Boal, and R. T. Hanlon, "Cuttlefish use polarization sensitivity in predation on silvery fish," Vision Research 40(1), 71-75, http://dx.doi.org/10.1016/S0042-6989(99)00158-3, 2000.CrossrefGoogle Scholar

  • [101] A. R. Parker, Z. Hegedus, and R. A. Watts, "Solar-absorber antireflector on the eye of an Eocene fly (45 Ma)," Proceedings of the Royal Society of London B: Biological Sciences 265(1398), 811-815, 10.1098/rspb.1998.0364, 1998.Google Scholar

  • [102] A. Gombert, W. Glaubitt, K. Rose et al., "Subwavelengthstructured antireflective surfaces on glass," Thin Solid Films 351(1), 73-78, 1999. CrossrefGoogle Scholar

  • [103] A. Gombert, B. Bläsi, C. Bu, P. Nitz, W. Hoßfeld, and M. Niggemann, "Some application cases and related manufacturing techniques for optically functional microstructures on large areas," Optical Engineering 43(11), 2525-2533, 2004.CrossrefGoogle Scholar

  • [104] N. N. Shi, C.-C. Tsai, F. Camino, G. D. Bernard, N. Yu, and R. Wehner, "Keeping cool: enhanced optical reflection and radiative heat dissipation in Saharan silver ants," Science 349(6245), 298-301, 2015.Google Scholar

  • [105] I. Mussard, "25 Years of hollow-sphere hiding technology," Paint & Coatings Industry 21(9), 96, 2005.Google Scholar

  • [106] I. Edmonds, and G. Smith, "Surface reflectance and conversion eflciency dependence of technologies for mitigating global warming," Renewable Energy 36(5), 1343-1351, 2011.CrossrefGoogle Scholar

  • [107] H. Akbari, S. Menon, and A. Rosenfeld, "Global cooling: increasing world-wide urban albedos to offset CO2," Climatic Change 94(3-4), 275-286, 2009.CrossrefGoogle Scholar

  • [108] MODTRAN Infrared Light in the Atmosphere, 2015. (Accessed 04/09/2015 at http://climatemodels.uchicago.edu/modtran/)Google Scholar

  • [109] A. R. Gentle, A. I. Maaroof, M. B. Cortie, and G. B. Smith, "Optical and electrical switching in nanostructured coatings of VO2," NanoScience+ Engineering 664709-664709-664708 (2007). Google Scholar

About the article

Received: 2015-09-09

Accepted: 2016-01-04

Published Online: 2016-06-11

Published in Print: 2016-06-01

Citation Information: Nanophotonics, Volume 5, Issue 1, Pages 55–73, ISSN (Online) 2192-8614, ISSN (Print) 2192-8606, DOI: https://doi.org/10.1515/nanoph-2016-0014.

Export Citation

© 2016. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

DU Weerasinghe, Srimala Perera, and DGK Dissanayake
Textile Research Journal, 2019, Page 004051751882191
Ying-Nan Song, Ru-Jun Ma, Ling Xu, Hua-Dong Huang, Ding-Xiang Yan, Jia-Zhuang Xu, Gan-Ji Zhong, Jun Lei, and Zhong-Ming Li
ACS Applied Materials & Interfaces, 2018
Wilton J. M. Kort-Kamp, Shobhita Kramadhati, Abul K. Azad, Matthew T. Reiten, and Diego A. R. Dalvit
ACS Photonics, 2018
Iliana Medina, Elizabeth Newton, Michael R. Kearney, Raoul A. Mulder, Warren P. Porter, and Devi Stuart-Fox
Nature Communications, 2018, Volume 9, Number 1
Devi Stuart-Fox, Elizabeth Newton, Raoul A. Mulder, Liliana D’Alba, Matthew D. Shawkey, Branislav Igic, and Daniel Osorio
PLOS ONE, 2018, Volume 13, Number 7, Page e0199129
Julian (Jialiang) Wang and Donglu Shi
Applied Energy, 2017, Volume 208, Page 83
Zachary J. Coppens and Jason G. Valentine
Advanced Materials, 2017, Page 1701275
Tim Caro, Mary Caswell Stoddard, and Devi Stuart-Fox
Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, Volume 372, Number 1724, Page 20160333
Svetlana V. Boriskina
Science, 2016, Volume 353, Number 6303, Page 986
Hitesh Khandelwal, Albertus P. H. J. Schenning, and Michael G. Debije
Advanced Energy Materials, 2017, Volume 7, Number 14, Page 1602209

Comments (0)

Please log in or register to comment.
Log in