Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Editor-in-Chief: Sorger, Volker

IMPACT FACTOR 2018: 6.908
5-year IMPACT FACTOR: 7.147

CiteScore 2018: 6.72

In co-publication with Science Wise Publishing

Open Access
See all formats and pricing
More options …
Volume 5, Issue 1


Solar-Powered Plasmon-Enhanced Heterogeneous Catalysis

Alberto Naldoni
  • Corresponding author
  • CNR-Istituto di Scienze e Tecnologie Molecolari, Via Golgi 19, 20133 Milan, Italy. Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Francesca Riboni
  • Department of Materials Science and Engineering WW4-LKO, University of Erlangen-Nuremberg, Martensstrasse 7, D-91058 Erlangen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Urcan Guler / Alexandra Boltasseva
  • School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vladimir M. Shalaev
  • School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alexander V. Kildishev
  • School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-06-11 | DOI: https://doi.org/10.1515/nanoph-2016-0018


Photocatalysis uses semiconductors to convert sunlight into chemical energy. Recent reports have shown that plasmonic nanostructures can be used to extend semiconductor light absorption or to drive direct photocatalysis with visible light at their surface. In this review, we discuss the fundamental decay pathway of localized surface plasmons in the context of driving solar-powered chemical reactions. We also review different nanophotonic approaches demonstrated for increasing solar-to-hydrogen conversion in photoelectrochemical water splitting, including experimental observations of enhanced reaction selectivity for reactions occurring at the metalsemiconductor interface. The enhanced reaction selectivity is highly dependent on the morphology, electronic properties, and spatial arrangement of composite nanostructures and their elements. In addition, we report on the particular features of photocatalytic reactions evolving at plasmonic metal surfaces and discuss the possibility of manipulating the reaction selectivity through the activation of targeted molecular bonds. Finally, using solar-to-hydrogen conversion techniques as an example, we quantify the efficacy metrics achievable in plasmon-driven photoelectrochemical systems and highlight some of the new directions that could lead to the practical implementation of solar-powered plasmon-based catalytic devices.

Keywords: photocatalysis; enhanced photoelectrochemistry; surface plasmons; water splitting; solar fuels; solar energy


  • [1] Walter MG,Warren EL, McKone JR et al. Solarwater splitting cells. Chem Rev 2010, 110, 6446-73.Google Scholar

  • [2] Ciamician, G. The photochemistry of the future. Science 1912, 36, 385-96.Google Scholar

  • [3] Balzani V, Moggi L, Manfrin MF, Bolletta F, Gleria M. Solar energy conversion by water photodissociation. Science 1975, 189, 852-6.Google Scholar

  • [4] Hertl G, Knözinger H, Weitkamp J. Handbook of heterogeneous catalysis. Wiley-VCH Verlag, Weinheim, Germany, 2008.Google Scholar

  • [5] Lang X, Chen X, Zhao J. Heterogeneous visible light photocatalysis for selective organic transformations. Chem Soc Rev 2014, 43, 473-86.Google Scholar

  • [6] Hoffmann MR, Hoffmann MR, Martin ST et al. Environmental applications of semiconductor photocatalysis. Chem Rev 1995, 95, 69-96.Google Scholar

  • [7] Linsebigler AL, Linsebigler AL, Yates Jr JT, Lu G, Lu G, Yates JT. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 1995, 95, 735-58.Google Scholar

  • [8] Chen X, Shen S, Guo L, Mao SS. Semiconductor-based photocatalytic hydrogen generation. Chem Rev 2010, 110, 6503-70.Google Scholar

  • [9] Cappelletti G, Ardizzone S, Bianchi CL et al. Photodegradation of pollutants in air: Enhanced properties of nano-TiO2 prepared by ultrasound. Nanoscale Res Lett 2009, 4, 97-105.Google Scholar

  • [10] Naldoni A, Bianchi CL, Pirola C, Suslick KS. Porous TiO2 microspheres with tunable properties for photocatalytic air purification. Ultrason Sonochem 2013, 20, 445-51.Google Scholar

  • [11] Ardizzone S, Bianchi CL, Cappelletti G, Naldoni A, Pirola C. Photocatalytic degradation of toluene in the gas phase: Relationship between surface species and catalyst features. Environ Sci Technol 2008, 42, 6671-6.Google Scholar

  • [12] Bianchi CL, Cappelletti G, Ardizzone S et al. N-doped TiO2 from TiCl3 for photodegradation of air pollutants. Catal Today 2009, 144, 31-6.Google Scholar

  • [13] Christopher P, Xin H, Linic S. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat Chem 2011, 3, 467-72.Google Scholar

  • [14] Marimuthu A, Zhang J, Linic S. Tuning selectivity in propylene epoxidation by plasmon mediated photo-switching of Cu oxidation state. Science 2013, 339, 1590-3.Google Scholar

  • [15] Gaponenko SV. Introduction to nanophotinics. Cambridge University Press, Cambridge, UK, 2010.Google Scholar

  • [16] Maier SA. Plasmonics: Fundamentals and applications. Springer Science-Business Media LLC, New York, NY, USA, 2007.Google Scholar

  • [17] Kildishev AV, Boltasseva A, Shalaev VM. Planar photonics with metasurfaces. Science 2013, 339, 1232009.Google Scholar

  • [18] Dal Santo V, Gallo A, Naldoni A, Guidotti M, Psaro R. Bimetallic heterogeneous catalysts for hydrogen production. Catal Today 2012, 197, 190-205.Google Scholar

  • [19] Blankenship RE, Tiede DM, Barber J et al. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 2011, 332, 805-9.Google Scholar

  • [20] Yacoby I, Pochekailov S, Toporik H, Ghirardi ML, King PW, Zhang S. Photosynthetic electron partitioning between [FeFe] - hydrogenase and ferredoxin: NADP þ-oxidoreductase (FNR) enzymes in vitro. Proc Natl Acad Sci USA 2011, 108, 9396-401.Google Scholar

  • [21] Lichty P, Perkins C, Woodruff B, Bingham C, Weimer A. Rapid high temperature solar thermal biomass gasification in a prototype cavity reactor. J Sol Energy Eng 2010, 132, 011012.Google Scholar

  • [22] Steinfeld A. Solar thermochemical production of hydrogen--a review. Sol Energy 2005, 78, 603-15.Google Scholar

  • [23] Chen Z, Dinh HN, Miller E. Photoelectrochemical water splitting standards, experimental methods, and protocols. 2013. Springer, New York, USA, 2013.Google Scholar

  • [24] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37-8.Google Scholar

  • [25] Khaselev O, Turner JA. A monolithic photovoltaicphotoelectrochemical device for hydrogen production via water splitting. Science 1998, 280, 425-7.Google Scholar

  • [26] Pilli SK, Furtak TE, Brown LD, Deutsch TG, Turner JA, Herring AM. Cobalt-phosphate (Co-Pi) catalyst modified Mo-doped BiVO4 photoelectrodes for solar water oxidation. Energy Environ Sci 2011, 4, 5028-34.Google Scholar

  • [27] Oh J, Deutsch TG, Yuan H-C, Branz HM. Nanoporous black silicon photocathode for H2 production by photoelectrochemical water splitting. Energy Environ Sci 2011, 4, 1690-4.Google Scholar

  • [28] Zhai P, Haussener S, Ager J et al. Net primary energy balance of a solar-driven photoelectrochemicalwater-splitting device. Energy Environ Sci 2013, 6, 2380-4.Google Scholar

  • [29] Brongersma ML, Halas NJ, Nordlander P. Plasmon-induced hot carrier science and technology. Nat Photonics 2015, 10, 25-34.Google Scholar

  • [30] Clavero C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat Photonics 2014, 8, 95-103.Google Scholar

  • [31] Linic S, Aslam U, Boerigter C, Morabito M. Photochemical transformations on plasmonic metal nanoparticles. Nat Mater 2015, 14, 567-76.Google Scholar

  • [32] Linic S, Christopher P, Ingram DB. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater 2011, 10, 911-21.Google Scholar

  • [33] Gomez L, Sebastian V, Arruebo M, Santamaria J, Cronin SB. Plasmon-enhanced photocatalytic water purification. Phys Chem Chem Phys 2014, 16, 15111-6.Google Scholar

  • [34] Zhang P,Wang T, Gong J. Mechanistic Understanding of the Plasmonic Enhancement for SolarWater Splitting. AdvMater 2015, 27, 5328-42Google Scholar

  • [35] Warren SC, Thimsen E. Plasmonic solar water splitting. Energy Environ Sci 2012, 5, 5133-46.Google Scholar

  • [36] Schleife A, Varley JB, Janotti A, Van de Walle CG. Conductivity and transparency of TiO2 from first principles. SPIE Sol Energy & Technol 2013, 8822, 882205.Google Scholar

  • [37] Naldoni A, Allieta M, Santangelo S et al. Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J Am Chem Soc 2012, 134, 7600-3.Google Scholar

  • [38] Naldoni A, D’Arienzo M, Altomare M et al. Pt and Au/TiO2 photocatalysts for methanol reforming: Role of metal nanoparticles in tuning charge trapping properties and photo efficiency. Appl Catal B Environ 2013, 130-131, 239-48.Google Scholar

  • [39] Kale MJ, Avanesian T, Christopher P. Direct photocatalysis by plasmonic nanostructures. ACS Catal 2014, 4, 116-28.Google Scholar

  • [40] Bohren CF. How can a particle absorb more than the light incident on it?. Am J Phys 1983, 51, 323-7.Google Scholar

  • [41] Li X, Xiao D, Zhang Z. Landau damping of quantum plasmons in metal nanostructures. New J Phys 2013, 15, 023011.Google Scholar

  • [42] Govorov AO, Zhang H, Gun’Ko YK. Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules. J Phys Chem C 2013, 117, 16616-31.Google Scholar

  • [43] Govorov AO, Zhang H, Demir HV, Gun’ko YK. Photogeneration of hot plasmonic electrons with metal nanocrystals: Quantum description and potential applications. Nano Today 2014, 9, 85-101.Google Scholar

  • [44] Manjavacas A, Liu JG, Kulkarni V, Nordlander P. Plasmoninduced hot carriers in metallic nanoparticles. ACS Nano 2014, 7630-8.Google Scholar

  • [45] Ingram DB, Christopher P, Bauer JL, Linic S. Predictive model for the design of plasmonic metal/semiconductor composite photocatalysts. ACS Catal 2011, 1, 1441-7.Google Scholar

  • [46] Ingram DB, Linic S. Water splitting on composite plasmonicmetal/ semiconductor photoelectrodes: Evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. J Am Chem Soc 2011, 133, 5202-5. Google Scholar

  • [47] Liu Z, HouW, Pavaskar P, Aykol M, Cronin SB. Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. Nano Lett 2011, 11, 1111-6.Google Scholar

  • [48] Li J, Cushing SK, Meng F, Senty TR, Bristow AD, Wu N. Plasmoninduced resonance energy transfer for solar energy conversion. Nat Photonics 2015, 9, 601-607.Google Scholar

  • [49] Cushing SK, Li J, Meng F et al. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J Am Chem Soc 2012, 134, 15033-41.Google Scholar

  • [50] Naldoni A, Fabbri F, Altomare M et al. The critical role of intragap states in the energy transfer from gold nanoparticles to TiO2. Phys Chem Chem Phys 2015, 17, 4864-9.Google Scholar

  • [51] Ingram DB, Christopher P, Bauer JL, Linic S. Predictive Model for the Design of Plasmonic Metal/Semiconductor Composite Photocatalysts. ACS Catal 2011, 1441-7.Google Scholar

  • [52] Shi X, Ueno K, Takabayashi N, Misawa H. Plasmon-enhanced photocurrent generation and water oxidation with a gold nanoisland-loaded titaniumdioxide photoelectrode. J Phys Chem C 2013, 117, 2494-9.Google Scholar

  • [53] Furube A, Du L, Hara K, Katoh R, Tachiya M. Ultrafast plasmoninduced electron transfer from gold nanodots into TiO2 nanoparticles. J Am Chem Soc 2007, 129, 14852-3.Google Scholar

  • [54] Duchene JS, Sweeny BC, Johnston-Peck AC, Su D, Stach EA, Wei WD. Prolonged hot electron dynamics in plasmonicmetal/ semiconductor heterostructures with implications for solar photocatalysis. Angew Chemie Int Ed 2014, 53, 7887-91.Google Scholar

  • [55] Long R, Prezhdo OV. Instantaneous generation of chargeseparated state on TiO2 surface sensitized with plasmonic nanoparticles. J Am Chem Soc 2014, 136, 4343-54.Google Scholar

  • [56] Kale MJ, Christopher P. Plasmons at the interface. Science 2015, 349, 587-8.Google Scholar

  • [57] Cargnello M, Doan-Nguyen VVT, Gordon TR et al. Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts. Science 2013, 341, 771-3.Google Scholar

  • [58] Amidani L, Naldoni A, Malvestuto M et al. Probing long-lived Plasmonic-generated charges in TiO2/Au by high-resolution xray absorption spectroscopy. Angew Chemie Int Ed 2015, 54, 5413-6.Google Scholar

  • [59] Knight MW, Sobhani H, Nordlander P, Halas NJ. Photodetection with active optical antennas. Science 2011, 332, 702-4.Google Scholar

  • [60] Zhang H, Govorov AO. Optical generation of hot plasmonic carriers in metal nanocrystals: The effects of shape and field enhancement. J Phys Chem C 2014, 118, 7606-14.Google Scholar

  • [61] Sundararaman R, Narang P, Jermyn AS, Goddard III WA, Atwater HA. Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat Commun 2014, 5, 5788.Google Scholar

  • [62] Kim D, Sakimoto KK, Hong D, Yang P. Artificial photosynthesis for sustainable fuel and chemical production. Angew Chemie Int Ed 2015, 3259-66.Google Scholar

  • [63] Devices WSW, Mckone JR, Lewis NS, Gray HB. Will solar-driven water-splitting devices see the light of day? Chem Mater 2014, 26, 407-14.Google Scholar

  • [64] Prévot MS, Sivula K. Photoelectrochemical tandem cells for solar water splitting. J Phys Chem C 2013, 117, 17879-93.Google Scholar

  • [65] Tachibana Y, Vayssieres L, Durrant JR. Artificial photosynthesis for solar water-splitting. Nat Photonics 2012, 6, 511-8.Google Scholar

  • [66] Grätzel M. Photoelectrochemical cells. Nature 2001, 414, 338-44.Google Scholar

  • [67] Luo J, Im J, Mayer MT et al. Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts. Science 2014, 345, 1593-6.Google Scholar

  • [68] Maeda K, Teramura K, Lu D et al. Photocatalyst releasing hydrogen from water. Nature 2006, 440, 295.Google Scholar

  • [69] Chen S, Qi Y, Hisatomi T et al. Efficient visible-light-driven z scheme overall water splitting using a MgTa2O6−xNy/TaON heterostructure photocatalyst for H2 evolution. Angew Chemie Int Ed 2015, 54, 8498-8501.Google Scholar

  • [70] Coridan 5 RH, Nielander AC, Francis SA et al. Methods for comparing the performance of energy-conversion systems for use in solar fuels and solar electricity generation. Energy Environ Sci 2015, 8, 2886-901.Google Scholar

  • [71] Jacobsson TJ, Fjällström V, Edoff M, Edvinsson T. Sustainable solar hydrogen production: From photoelectrochemical cells to PV-electrolyzers and back again. Energy Environ Sci 2014, 7, 2056-70Google Scholar

  • [72] Miller EL, Peterson D, Randolph K, Ainscough C. Critical metrics and fundamental materials challenges for renewable hydrogen production technologies. Mater Res Soc Symp Proc 2014, DOI: 10.1557/opl.2014.912.Google Scholar

  • [73] Jang JW, Du C, Ye Y et al. Enabling unassisted solar water splitting by iron oxide and silicon. Nat Commun 2015, 6, 7447.Google Scholar

  • [74] Lee MH, Takei K, Zhang J et al. P-Type InP nanopillar photocathodes for efficient solar-driven hydrogen production. Angew Chemie Int Ed 2012, 51, 10760-4.Google Scholar

  • [75] Hu S, Shaner MR, Beardslee J, Lichterman M, Brunschwig BS, Lewis NS. Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 2014, 344, 1005-9.Google Scholar

  • [76] Kim TW, Choi K-S. Nanoporous BiVO4 photoanodes with duallayer oxygen evolution catalysts for solar water splitting. Science 2014, 343, 990-4.Google Scholar

  • [77] Sivula K, Le Formal F, Grätzel M. Solar water splitting: Progress using hematite (-Fe2O3) photoelectrodes. ChemSusChem 2011, 4, 432-49.Google Scholar

  • [78] Li Z, Luo W, Zhang M, Feng J, Zou Z. Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties, and outlook. Energy Environ Sci 2013, 6, 347-70.Google Scholar

  • [79] Marelli M, Naldoni A, Minguzzi A et al. Hierarchical hematite nanoplatelets for photoelectrochemicalwater splitting. ACS Appl Mater Interfaces 2014, 6, 11997-2004.Google Scholar

  • [80] Dotan H, Kfir O, Sharlin E et al. Resonant light trapping in ultrathin films for water splitting. Nat Mater 2013, 12, 158-64.Google Scholar

  • [81] Pu YC, Wang G, Chang Kao-Der et al. Au nanostructuredecorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. Nano Lett 2013, 13, 3817-23.Google Scholar

  • [82] Chen HM, Chen CK, Chen C-J et al. Plasmon inducing effects for enhanced photoelectrochemicalwater splitting: X-ray absorption approach to electronic structures. ACS Nano 2012, 6, 7362-72.Google Scholar

  • [83] Nanodot SG, Kim HJ, Lee SH, Upadhye AA, Ro I, Tejedor-tejedor MI, Anderson MA, Kim WB, Huber GW. Plasmon-enhanced photoelectrochemical water splitting with size-controllable gold nanodot arrays. ACS Nano 2014, 8, 10756-65.Google Scholar

  • [84] Thimsen E, Le Formal F, Grätzel M,Warren SC. Influence of plasmonic Au nanoparticles on the photoactivity of Fe2O3 electrodes for water splitting. Nano Lett 2011, 11, 35-43.Google Scholar

  • [85] Gao H, Liu C, Jeong HE, Yang P. Plasmon-enhanced photocatalytic activity of iron oxide on gold nanopillars. ACS Nano 2012, 6, 234-40.Google Scholar

  • [86] Thomann I, Pinaud BA, Chen Z, Jaramillo TF, Clemens BM, Mark L. Plasmon enhanced solar-to-fuel energy conversion. Nano Lett 2011, 11, 3440-6.Google Scholar

  • [87] Tsui K, Zhang Y, Yang S, Fan Z. Efficient photoelectrochemical water splitting with ultrathin films of hematite on threedimensional nanophotonic structures. Nano Lett 2014, 14, 2123-9.Google Scholar

  • [88] Ebbesen TW, Lezec HJ, Ghaemi HF, Wolff PA. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 1998, 391, 667-9.Google Scholar

  • [89] Li J, Cushing SK, Zheng P, Meng F, Chu D, Wu N. Plasmoninduced photonic and energy-transfer enhancement of solar water splitting by a hematite nanorod array. Nat Commun 2013, 4, 2651.Google Scholar

  • [90] Atwater HA, Polman A. Plasmonics for improved photovoltaic devices. Nat Mater 2010, 9, 205-13.Google Scholar

  • [91] Brongersma ML, Cui Y, Fan S. Light management for photovoltaics using high-index nanostructures. Nat Mater 2014, 13, 451-60.Google Scholar

  • [92] Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML. Plasmonics for extreme light concentration and manipulation. Nat Mater 2010, 9, 193-204.Google Scholar

  • [93] Ferry VE, Munday JN, Atwater HA. Design considerations for plasmonic photovoltaics. Adv Mater 2010, 22, 4794-808.Google Scholar

  • [94] Fang Y, Jiao Y, Xiong K et al. Plasmon enhanced internal photoemission in antenna-spacer-mirror based Au/TiO2 nanostructures. Nano Lett 2015, 5, 4059-65.Google Scholar

  • [95] Sigle DO, Zhang L, Ithurria S, Dubertret B, Baumberg JJ. Ultrathin CdSe in plasmonic nanogaps for enhanced photocatalytic water splitting. J Phys Chem Lett 2015, 1099-103.Google Scholar

  • [96] Kim SJ, Thomann I, Park J, Kang JH, Vasudev AP, Brongersma ML. Light trapping for solar fuel generation with Mie resonances. Nano Lett 2014, 14, 1446-52.Google Scholar

  • [97] Lee J, Mubeen S, Ji X, Stucky GD, Moskovits M. Plasmonic photoanodes for solar water splitting with visible light. Nano Lett 2012, 12, 5014-9.Google Scholar

  • [98] Mubeen S, Lee J, Singh N, Krämer S, Stucky GD, Moskovits M. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat Nanotechnol 2013, 8, 247-51.Google Scholar

  • [99] Mubeen S, Lee J, Liu D, Stucky GD, Moskovits M. Panchromatic photoproduction of H2 with surface plasmons. Nano Lett 2015, 15, 2132-6.Google Scholar

  • [100] Zheng BY, Zhao H,Manjavacas A, McClain M, Nordlander P, Halas NJ. Distinguishing between plasmon-induced and photoexcited carriers in a device geometry. Nat Commun 2015, 6, 7797.Google Scholar

  • [101] Naik GV., Shalaev VM, Boltasseva A. Alternative plasmonicmaterials: Beyond gold and silver. Adv Mater 2013, 25, 3264-94.Google Scholar

  • [102] Guler U, Kildishev AV, Suslov S, Boltasseva A, Shalaev VM. Colloidal plasmonic titanium nitride nanoparticles: properties and applications. Nanophotonics 2015, 4, 269-76.Google Scholar

  • [103] Naldoni A, Riboni F, Marelli M et al. Influence of the TiO2 electronic structure and of strong metal-support interaction on plasmonic Au photocatalysis. Catal Sci Technol 2016, DOI 10.1039/C5CY01736J.Google Scholar

  • [104] Ding D, Liu K, He S, Gao C, Yin Y. Ligand-exchange assisted formation of Au/TiO2 schottky contact for visible-light photocatalysis. Nano Lett 2014, 14, 6731-6.Google Scholar

  • [105] Awazu K, Fujimaki M, Rockstuhl C et al. A plasmonic photocatalyst consisting of sliver nanoparticles embedded in titanium dioxide. J Am Chem Soc 2008, 130, 1676-80.Google Scholar

  • [106] Tanaka A, Hashimoto K, Kominami H. Preparation of Au/CeO2 exhibiting strong surface plasmon resonance effective for selective or chemoselective oxidation of alcohols to aldehydes or ketones in aqueous suspensions under irradiation by green light. J Am Chem Soc 2012, 134, 14526-33.Google Scholar

  • [107] Liu L, Ouyang S, Ye J. Gold-nanorod-photosensitized titanium dioxide with wide-range visible-light harvesting based on localized surface plasmon resonance. Angew Chemie Int Ed 2013, 52, 6689-93.Google Scholar

  • [108] Tanaka A, Sakaguchi S, Hashimoto K, Kominami H. Preparation of Au/TiO2 with metal cocatalysts exhibiting strong surface plasmon resonance effective for photoinduced hydrogen formation under irradiation of visible light. Catal Sci Technol 2012, 2, 907-9.Google Scholar

  • [109] Tsukamoto D, Shiraishi Y, Sugano Y, Ichikawa S, Tanaka S, Hirai T. Gold nanoparticles located at the interface of anatase/rutile TiO2 particles as active plasmonic photocatalysts for aerobic oxidation. J Am Chem Soc 2012, 134, 6309-15Google Scholar

  • [110] Li B, Gu T, Ming T,Wang J,Wang P, Yu J. (Gold core)@(Ceria shell) nanostructures for plasmon-enhanced catalytic reactions under visible light. ACS Nano 2014, 8, 8152-62.Google Scholar

  • [111] Zhao J, Zheng Z, Bottle S, Chou A, Sarina S, Zhu H. Highly efficient and selective photocatalytic hydroamination of alkynes by supported gold nanoparticles using visible light at ambient temperature. Chem Comm 2013, 49, 2676-8.Google Scholar

  • [112] Naya SI, Kimura K, Tada H. One-step selective aerobic oxidation of amines to imines by gold nanoparticle-loaded rutile titanium(IV) oxide plasmon photocatalyst. ACS Catal 2013, 3, 10-3.Google Scholar

  • [113] Weng L, Zhang H, Govorov AO, Ouyang M. Hierarchical synthesis of non-centrosymmetric hybrid nanostructures and enabled plasmon-driven photocatalysis. Nat Commun 2014, 5, 1-10.Google Scholar

  • [114] Yamada Y, Tsung C-K, HuangWet al. Nanocrystal bilayer for tandem catalysis. Nat Chem 2011, 3, 372-6.Google Scholar

  • [115] Govorov AO, Richardson HH. Generating heat with metal nanoparticles. Nano Today 2007, 2, 30-8.Google Scholar

  • [116] Ke X, Sarina S, Zhao J, Zhang X, Chang J, Zhu H. Tuning the reduction power of supported gold nanoparticle photocatalysts for selective reductions by manipulating the wavelength of visible light irradiation. Chem Comm 2012, 48, 3509-11.Google Scholar

  • [117] Kale MJ, Avanesian T, Xin H, Yan J, Christopher P. Controlling catalytic selectivity on metal nanoparticles by direct photoexcitation of adsorbate - metal bonds. Nano Lett 2014, 14, 5405-12.Google Scholar

  • [118] Funk S, Bonn M, Denzler DN, Hess C, Wolf M, Ertl G. Desorption of CO from Ru (001) induced by near-infrared femtosecond laser pulses. J Chem Phys 2000, 112, 9888-97.Google Scholar

  • [119] Denzler D, Frischkorn C, Hess C, Wolf M, Ertl G. Electronic excitation and dynamic promotion of a surface reaction. Phys Rev Lett 2003, 91, 226102.Google Scholar

  • [120] Gadzuk J. Vibrational excitation in molecule - surface collisions due to temporary negative molecular ion formation. J Chem Phys 1983, 79, 6341-8.Google Scholar

  • [121] Busch D, HoW. Direct Observation of the crossover from single to multiple excitations in femtosecond surface photochemistry. Phys Rev Lett 1996, 77, 1338-41.Google Scholar

  • [122] Ho W. Reactions at metal surfaces induced by femtosecond lasers, tunneling electrons, and heating. J Phys Chem 1996, 100, 13050-60.Google Scholar

  • [123] Madey TE, Yates JT, King DA, Uhlaner CJ. Isotope effect in electron stimulated desorption: oxygen chemisorbed on tungsten. J Chem Phys 1970, 52, 5215-20.Google Scholar

  • [124] Christopher P, Xin H, Marimuthu A, Linic S. Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. NatMater 2012, 11, 1044-50.Google Scholar

  • [125] Bonn M. Phonon- versus electron-mediated desorption and oxidation of CO on Ru(0001). Science 1999, 285, 1042-5.Google Scholar

  • [126] Avanesian T, Christopher P. Adsorbate specificity in hot electron driven photochemistry on catalytic metal surfaces. J Phys Chem C 2014, 118, 28017-31.Google Scholar

  • [127] Zhu H, Chen X, Zheng Z et al. Mechanism of supported gold nanoparticles as photocatalysts under ultraviolet and visible light irradiation. Chem Comm 2009, 7524-6.Google Scholar

  • [128] Chen X, Zhu HY, Zhao JC, Zheng ZF, Gao XP. Visible-light-driven oxidation of organic contaminants in air with gold nanoparticle catalysts on oxide supports. Angew Chemie Int Ed 2008, 47, 5353-6.Google Scholar

  • [129] Mukherjee S, Zhou L, Goodman AM et al. Hot-electron-induced dissociation of H2 on gold nanoparticles supported on SiO2. J Am Chem Soc 2014, 136, 64-67.Google Scholar

  • [130] Mukherjee S, Libisch F, Large N et al. Hot electrons do the impossible: Plasmon-induced dissociation of H2 on Au. Nano Lett 2012, 13, 240-7.Google Scholar

  • [131] Hallett-Tapley GL, Silvero MJ, González-Béjar M, Grenier M, Netto-Ferreira JC, Scaiano JC. Plasmon-mediated catalytic oxidation of sec-phenethyl and benzyl alcohols. J Phys Chem C 2011, 115, 10784-90.Google Scholar

  • [132] Wee TE, Schmidt LC, Scaiano JC. Photooxidation of 9- anthraldehyde catalyzed by gold nanoparticles: Solution and single nanoparticle studies using fluorescence lifetime imaging. J Phys Chem C 2012, 116, 24373-9.Google Scholar

  • [133] González-Béjar M, Peters K, Hallett-Tapley GL, Grenier M, Scaiano JC. Rapid one-pot propargylamine synthesis by plasmon mediated catalysis with gold nanoparticles on ZnO under ambient conditions. Chem Comm 2013, 49, 1732-4.Google Scholar

  • [134] Xiao Q, Sarina S, Zhu H. Enhancing catalytic performance of palladium in gold and palladium alloy nanoparticles for Suzuki reactions under visible light irradiation. JAmChemSoc 2013, 135, 5793-801.Google Scholar

  • [135] Sugano Y, Shiraishi Y, Tsukamoto D, Ichikawa S, Tanaka S, Hirai T. Supported Au-Cu bimetallic alloy nanoparticles: An aerobic oxidation catalyst with regenerable activity by visible-light irradiation. Angew Chemie Int Ed 2013, 52, 5295-9.Google Scholar

  • [136] Wang F, Li C, Chen H et al. Plasmonic harvesting of light energy for Suzuki coupling reactions. J Am Chem Soc 2013, 135, 5588-601.Google Scholar

  • [137] Huang X, Li Y, Chen Y, Zhou H, Duan X, Huang Y. Plasmonic and catalytic AuPd nanowheels for the efficient conversion of light into chemical energy. Angew Chemie Int Ed 2013, 52, 6063-7.Google Scholar

  • [138] Xiao Q, Sarina S, Jaatinen E et al. Efficient photocatalytic Suzuki cross-coupling visible light irradiation. Green Chem 2014,16, 4272-85.Google Scholar

  • [139] Zheng Z, Tachikawa T, Majima T. Single-particle study of Ptmodified Au nanorods for plasmon-enhanced hydrogen generation in visible to near-infrared region. J Am Chem Soc 2014, 136, 6870-3.Google Scholar

  • [140] Zheng Z, Tachikawa T, Majima T. Plasmon-enhanced formic acid dehydrogenation using anisotropic Pd-Au nanorods studied at the single-particle level. J Am Chem Soc 2015, 137, 948-57.Google Scholar

  • [141] Öström H, Öberg H, Xin H et al. Probing the transition state region in catalytic CO oxidation on Ru. Science 2015, 347, 978-83.Google Scholar

  • [142] Sa J, Tagliabue G, Friedli P et al. Direct observation of charge separation on Au localized surface plasmon. Energy Environ Sci 2013, 6, 3584-88.Google Scholar

  • [143] Guler U, Kildishev AV, Boltasseva A, Shalaev VM. Plasmonics on the slope of enlightenment: the role of transition metal nitrides. Faraday Discuss 2015, 178, 71-86.Google Scholar

  • [144] Guler U, Shalaev VM, Boltasseva A. Nanoparticle plasmonics: going practical with transition metal nitrides. Mater Today 2014, 18, 227-37.Google Scholar

  • [145] Li W, Guler U, Kinsey N et al. Refractory plasmonics with titaniumnitride: broadband metamaterial absorber. AdvMater 2014, 26, 7959-65.Google Scholar

  • [146] Guler U, Boltasseva A, Shalaev VM. Refractory plasmonics. Science 2014, 344, 263-4.Google Scholar

  • [147] Guler U, Ndukaife JC, Naik GV et al. Local heating with titanium nitride nanoparticles. Nano Lett 2013, 13, 6078-83.Google Scholar

  • [148] Atwater HA, Boltasseva A. Low-loss plasmonic metamaterials. Science 2011, 331, 290-1.Google Scholar

  • [149] Naik GV, Emani NK, Guler U, Boltasseva A. Plasmonic resonances in nanostructured transparent conducting oxide films. IEEE J Sel Top Quantum Electron 2013, 19, 4601907. Google Scholar

About the article

Received: 2015-10-23

Accepted: 2015-12-22

Published Online: 2016-06-11

Published in Print: 2016-06-01

Citation Information: Nanophotonics, Volume 5, Issue 1, Pages 112–133, ISSN (Online) 2192-8614, ISSN (Print) 2192-8606, DOI: https://doi.org/10.1515/nanoph-2016-0018.

Export Citation

© 2016. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Szymon Wojtyła and Tomasz Baran
International Journal of Hydrogen Energy, 2019
Stephen A. Lee and Julie S. Biteen
The Journal of Physical Chemistry Letters, 2019
Aveek Dutta, Dongyang Wan, Bixing Yan, Vladimir M. Shalaev, Thirumalai Venkatesan, and Alexandra Boltasseva
Advanced Optical Materials, 2019, Page 1900401
Mingrui Yang, Pavel Moroz, Zhicheng Jin, Darya S. Budkina, Nida Sundrani, Dmitry Porotnikov, James Cassidy, Yuya Sugiyama, Alexander N. Tarnovsky, Hedi Mattoussi, and Mikhail Zamkov
Journal of the American Chemical Society, 2019, Volume 141, Number 28, Page 11286
Markus Licklederer, Reza Mohammadi, Nhat Truong Nguyen, Hyoungwon Park, Seyedsina Hejazi, Marcus Halik, Nicolas Vogel, Marco Altomare, and Patrik Schmuki
The Journal of Physical Chemistry C, 2019, Volume 123, Number 27, Page 16934
Alyssa Beierle, Paul Gieri, Hanqing Pan, Michael D. Heagy, Alejandro Manjavacas, and Sanchari Chowdhury
Solar Energy Materials and Solar Cells, 2019, Volume 200, Page 109967
Md Masud Parvez Arnob, Camille Artur, Ibrahim Misbah, Syed Mubeen, and Wei-Chuan Shih
ACS Applied Materials & Interfaces, 2019, Volume 11, Number 14, Page 13499
Yonatan Sivan, Ieng Wai Un, and Yonatan Dubi
Faraday Discussions, 2019, Volume 214, Page 215
Tianji Liu, Lucas V. Besteiro, Zhiming Wang, and Alexander O. Govorov
Faraday Discussions, 2019, Volume 214, Page 199
Aveek Dutta, Alberto Naldoni, Francesco Malara, Alexander O. Govorov, Vladimir M. Shalaev, and Alexandra Boltasseva
Faraday Discussions, 2019, Volume 214, Page 283
Thaylan P. Araujo, Jhon Quiroz, Eduardo C.M. Barbosa, and Pedro H.C. Camargo
Current Opinion in Colloid & Interface Science, 2019, Volume 39, Page 110
Priyanka Verma, Yasutaka Kuwahara, Kohsuke Mori, and Hiromi Yamashita
Bulletin of the Chemical Society of Japan, 2019, Volume 92, Number 1, Page 19
Ji-Eun Lee, Filipe Marques Mota, Chi Hun Choi, Ying-Rui Lu, Ramireddy Boppella, Chung-Li Dong, Ru-Shi Liu, and Dong Ha Kim
Advanced Materials Interfaces, 2018, Page 1801144
Xinyuan You, S. Ramakrishna, and Tamar Seideman
The Journal of Chemical Physics, 2018, Volume 149, Number 17, Page 174304
Alexandra Gellé and Audrey Moores
Current Opinion in Green and Sustainable Chemistry, 2018
Satoshi Ishii, Satish Laxman Shinde, and Tadaaki Nagao
Advanced Optical Materials, 2018, Page 1800603
Beatriz Eugenia Sanabria-Arenas, Anca Mazare, Jeongeun Yoo, Nhat Truong Nguyen, Seyedsina Hejazi, Haidong Bian, Maria Vittoria Diamanti, Maria Pia Pedeferri, and Patrik Schmuki
Electrochimica Acta, 2018
Chanyeon Kim and Hyunjoo Lee
Catalysis Science & Technology, 2018
Hiromi Yamashita, Kohsuke Mori, Yasutaka Kuwahara, Takashi Kamegawa, Meicheng Wen, Priyanka Verma, and Michel Che
Chemical Society Reviews, 2018
Anuj K. Rathi, Hana Kmentova, Alberto Naldoni, Anandarup Goswami, Manoj B. Gawande, Rajender S. Varma, Stepan Kment, and Radek Zbořil
ACS Applied Nano Materials, 2018
Eduardo C. M. Barbosa, Jhonatan L. Fiorio, Tong Mou, Bin Wang, Liane M. Rossi, and Pedro H. C. Camargo
Chemistry - A European Journal, 2018
Ezequiel R. Encina and Eduardo A. Coronado
The Journal of Physical Chemistry C, 2018
Krishnakali Chaudhuri, Mohamed Alhabeb, Zhuoxian Wang, Vladimir M. Shalaev, Yury Gogotsi, and Alexandra Boltasseva
ACS Photonics, 2018
Li Qiu, Ryan McCaffrey, and Wei Zhang
Chemistry - An Asian Journal, 2018
Ramu Pasupathi Sugavaneshwar, Satoshi Ishii, Thang Duy Dao, Akihiko Ohi, Toshihide Nabatame, and Tadaaki Nagao
ACS Photonics, 2018
Xinyuan You, S. Ramakrishna, and Tamar Seideman
The Journal of Physical Chemistry Letters, 2017, Page 141
Svetlana V. Boriskina, Thomas Alan Cooper, Lingping Zeng, George Ni, Jonathan K. Tong, Yoichiro Tsurimaki, Yi Huang, Laureen Meroueh, Gerald Mahan, and Gang Chen
Advances in Optics and Photonics, 2017, Volume 9, Number 4, Page 775
Meng Xu, Jia-Yue Yang, Shangyu Zhang, and Linhua Liu
Physical Review B, 2017, Volume 96, Number 11
Xinzhi Wang, Yurong He, Xing Liu, Lei Shi, and Jiaqi Zhu
Solar Energy, 2017, Volume 157, Page 35
Paul A. DeSario, Jeremy J. Pietron, Adam Dunkelberger, Todd H. Brintlinger, Olga Baturina, Rhonda M. Stroud, Jeffrey C. Owrutsky, and Debra R. Rolison
Langmuir, 2017
Pierfrancesco Zilio, Michele Dipalo, Francesco Tantussi, Gabriele C Messina, and Francesco de Angelis
Light: Science & Applications, 2017, Volume 6, Number 6, Page e17002
Gregory V. Hartland, Lucas V. Besteiro, Paul Johns, and Alexander O. Govorov
ACS Energy Letters, 2017, Volume 2, Number 7, Page 1641
Minho Kim, Mouhong Lin, Jiwoong Son, Hongxing Xu, and Jwa-Min Nam
Advanced Optical Materials, 2017, Volume 5, Number 15, Page 1700004
Stepan Kment, Francesca Riboni, Sarka Pausova, Lei Wang, Lingyun Wang, Hyungkyu Han, Zdenek Hubicka, Josef Krysa, Patrik Schmuki, and Radek Zboril
Chem. Soc. Rev., 2017, Volume 46, Number 12, Page 3716
Alberto Naldoni, Urcan Guler, Zhuoxian Wang, Marcello Marelli, Francesco Malara, Xiangeng Meng, Lucas V. Besteiro, Alexander O. Govorov, Alexander V. Kildishev, Alexandra Boltasseva, and Vladimir M. Shalaev
Advanced Optical Materials, 2017, Volume 5, Number 15, Page 1601031
Chanyeon Kim, Bong Lim Suh, Hongseok Yun, Jihan Kim, and Hyunjoo Lee
ACS Catalysis, 2017, Volume 7, Number 4, Page 2294
Alberto Naldoni, Tiziano Montini, Francesco Malara, Marta M. Mróz, Alessandro Beltram, Tersilla Virgili, Chiara L. Boldrini, Marcello Marelli, Ismael Romero-Ocaña, Juan José Delgado, Vladimiro Dal Santo, and Paolo Fornasiero
ACS Catalysis, 2017, Volume 7, Number 2, Page 1270
Ezequiel R. Encina, Nicolás Passarelli, and Eduardo A. Coronado
RSC Adv., 2017, Volume 7, Number 5, Page 2857
Marcello Marelli, Claudio Evangelisti, Maria Vittoria Diamanti, Vladimiro Dal Santo, Maria Pia Pedeferri, Claudia L. Bianchi, Luca Schiavi, and Alberto Strini
ACS Applied Materials & Interfaces, 2016, Volume 8, Number 45, Page 31051
Alberto Naldoni, Francesca Riboni, Urcan Guler, Alexandra Boltasseva, Vladimir M. Shalaev, and Alexander V. Kildishev
ChemInform, 2016, Volume 47, Number 43
Xiang-Tian Kong, Zhiming Wang, and Alexander O. Govorov
Advanced Optical Materials, 2017, Volume 5, Number 15
Lucas V. Besteiro and Alexander O. Govorov
The Journal of Physical Chemistry C, 2016, Volume 120, Number 34, Page 19329
Harsha Reddy, Urcan Guler, Alexander V. Kildishev, Alexandra Boltasseva, and Vladimir M. Shalaev
Optical Materials Express, 2016, Volume 6, Number 9, Page 2776

Comments (0)

Please log in or register to comment.
Log in