Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Editor-in-Chief: Sorger, Volker

IMPACT FACTOR 2018: 6.908
5-year IMPACT FACTOR: 7.147

CiteScore 2018: 6.72

In co-publication with Science Wise Publishing

Open Access
See all formats and pricing
More options …
Volume 5, Issue 1


Spectral light management for solar energy conversion systems

Cameron Stanley / Ahmad Mojiri / Gary Rosengarten
Published Online: 2016-06-11 | DOI: https://doi.org/10.1515/nanoph-2016-0035


Due to the inherent broadband nature of the solar radiation, combined with the narrow spectral sensitivity range of direct solar to electricity devices, there is a massive opportunity to manipulate the solar spectrum to increase the functionality and efficiency of solar energy conversion devices. Spectral splitting or manipulation facilitates the efficient combination of both high-temperature solar thermal systems, which can absorb over the entire solar spectrum to create heat, and photovoltaic cells, which only convert a range of wavelengths to electricity. It has only recently been possible, with the development of nanofabrication techniques, to integrate micro- and nano-photonic structures as spectrum splitters/manipulators into solar energy conversion devices. In this paper, we summarize the recent developments in beam splitting techniques, and highlight some relevant applications including combined PV-thermal collectors and efficient algae production, and suggest paths for future development in this field.

Keywords: spectral splitting; solar energy; photovoltaics


  • [1] E. V. P. Smith, M. Zeilik, and S. A. Gregory, Introductory Astronomy and Astrophysics, Saunders College Publishing (1992).Google Scholar

  • [2] A. G. Imenes, and D. R. Mills, Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: a review, Solar Energy Materials and Solar Cells, 84(1-4), 19-69 (2004).Google Scholar

  • [3] A. Mojiri et al., Spectral beam splitting for efficient conversion of solar energy-A review, Renew Sust Energ Rev, 28, 654-663 (2013).CrossrefGoogle Scholar

  • [4] H. M. Branz et al., Hybrid solar converters for maximum exergy and inexpensive dispatchable electricity, Energy & Environmental Science, (2015).Google Scholar

  • [5] A. Polman, and H. A. Atwater, Photonic design principles for ultrahigh-efficiency photovoltaics, Nature materials, 11(3), 174-177 (2012).CrossrefGoogle Scholar

  • [6] H. A. Macleod, Thin-film optical filters, CRC Press (2010).Google Scholar

  • [7] A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, Application of the needle optimization technique to the design of optical coatings, Applied optics, 35(28), 5493-5508 (1996).CrossrefGoogle Scholar

  • [8] B. T. Sullivan, and J. Dobrowolski, Implementation of a numerical needle method for thin-film design, Applied optics, 35(28), 5484-5492 (1996).CrossrefGoogle Scholar

  • [9] A. Imenes et al., A new strategy for improved spectral performance in solar power plants, Solar energy, 80(10), 1263-1269 (2006).CrossrefGoogle Scholar

  • [10] J. M. Russo et al., Spectrum splitting metrics and effect of filter characteristics on photovoltaic system performance, Optics express, 22(102), A528-A541 (2014).CrossrefGoogle Scholar

  • [11] D. B. Needleman et al., Sensitivity Analysis of Optical Metrics for Spectral Splitting Photovoltaic Systems: A Case Study, Photovoltaics, IEEE Journal of, 5(5), 1380-1388 (2015). Google Scholar

  • [12] C. N. Eisler et al., Design improvements for the polyhedral specular reflector spectrum-splitting module for ultra-high efficiency (> 50%), Photovoltaic Specialist Conference (PVSC), 2014 IEEE 40th 2224-2229 (2014).Google Scholar

  • [13] C. Flowers, C. N. Eisler, and H. Atwater, Electrically independent subcircuits for a seven-junction spectrum splitting photovoltaic module, Photovoltaic Specialist Conference (PVSC), 2014 IEEE 40th 1339-1343 (2014).Google Scholar

  • [14] A. Barnett et al., 50% efficient solar cell architectures and designs, Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference on 2560-2564 (2006).Google Scholar

  • [15] J. D. McCambridge et al., Compact spectrum splitting photovoltaic module with high efficiency, Progress in Photovoltaics: Research and Applications, 19(3), 352-360 (2011).Google Scholar

  • [16] C. Shou et al., Investigation of a broadband TiO 2/SiO 2 optical thin-film filter for hybrid solar power systems, Applied Energy, 92, 298-306 (2012).CrossrefGoogle Scholar

  • [17] A. Imenes, C. Fell, andW. Stein, Spectral beamsplitter for solar hydrogen production, Proceedings of Solar (2007).Google Scholar

  • [18] A. G. Imenes et al., A new strategy for improved spectral performance in solar power plants, Solar Energy, 80(10), 1263-1269 (2006).CrossrefGoogle Scholar

  • [19] D. M. Zhang et al., Optical performance of dichroic spectrumsplitting filters, Journal of Photonics for Energy, 4(1), 043095 (2014).Google Scholar

  • [20] M. Peters et al., Spectrally-selective photonic structures for PV applications, Energies, 3(2), 171-193 (2010).Google Scholar

  • [21] F. Crisostomo et al., Experimental testing of SiN x/SiO 2 thin film filters for a concentrating solar hybrid PV/T collector, Renewable Energy, 72, 79-87 (2014).Google Scholar

  • [22] 3M Cool Mirror Film 330 (2013).Google Scholar

  • [23] Z. J. Yu et al., PVMirror: a new concept for tandem solar cells and hybrid solar converters, Photovoltaics, IEEE Journal of, 5(6), 1791-1799 (2015).Google Scholar

  • [24] D. Vincenzi et al., Concentrating PV system based on spectral separation of solar radiation, physica status solidi (a), 206(2), 375-378 (2009).Google Scholar

  • [25] S. Jiang et al., Optical modeling for a two-stage parabolic trough concentrating photovoltaic/thermal system using spectral beam splitting technology, Solar Energy Materials and Solar Cells, 94(10), 1686-1696 (2010).CrossrefGoogle Scholar

  • [26] Y. Jia-Sheng et al., A single diffractive optical element implementing spectrum-splitting and beam-concentration functions simultaneously with high diffraction efficiency, Chinese Physics B, 22(3), 034201 (2013).Google Scholar

  • [27] Q. Huang et al., Design and fabrication of a diffractive optical element as a spectrum-splitting solar concentrator for lateral multijunction solar cells, Applied optics, 52(11), 2312-2319 (2013).CrossrefGoogle Scholar

  • [28] M. D. Escarra et al., Spectrum-splitting photovoltaics: Holographic spectrum splitting in eight-junction, ultra-high efficiency module, Photovoltaic Specialists Conference (PVSC), 2013 IEEE 39th 1852-1855 (2013).Google Scholar

  • [29] Y. Yao, H. Liu, and W. Wu, Spectrum splitting using multi-layer dielectric meta-surfaces for efficient solar energy harvesting, Applied Physics A, 115(3), 713-719 (2014).CrossrefGoogle Scholar

  • [30] G. Kim, J. A. Domínguez-Caballero, and R. Menon, Design and analysis of multi-wavelength diffractive optics, Optics express, 20(3), 2814-2823 (2012). CrossrefGoogle Scholar

  • [31] J.-H. Huang et al., Solar concentrator constructed with a circular prism array, Applied optics, 49(23), 4472-4478 (2010).CrossrefGoogle Scholar

  • [32] C.Maragliano, M. Chiesa, and M. Stefancich, Point-focus spectral splitting solar concentrator for multiple cells concentrating photovoltaic system, arXiv preprint arXiv:1504.00258, (2015).Google Scholar

  • [33] C.Maragliano et al., Demonstration of a novel dispersive spectral splitting optical element for cost-effective photovoltaic conversion, arXiv preprint arXiv:1508.00210, (2015).Google Scholar

  • [34] E. Brinksmeier, R. Gläbe, and L. Schönemann, Review on diamond-machining processes for the generation of functional surface structures, CIRP Journal of Manufacturing Science and Technology, 5(1), 1-7 (2012).Google Scholar

  • [35] M. Stefancich et al., Single element spectral splitting solar concentrator for multiple cells CPV system, Optics express, 20(8), 9004-9018 (2012).CrossrefGoogle Scholar

  • [36] C. Maragliano, A. Zayan, and M. Stefancich, Three- Dimensional Point-Focus Spectral Splitting Solar Concentrator System, International Journal of Optics and Applications, 4(4A), 6-11 (2014).Google Scholar

  • [37] L. H. Slooff et al., A luminescent solar concentrator with 7.1% power conversion efficiency, physica status solidi (RRL) - Rapid Research Letters, 2(6), 257-259 (2008).Google Scholar

  • [38] C. S. Erickson et al., Zero-reabsorption doped-nanocrystal luminescent solar concentrators, ACS nano, 8(4), 3461-3467 (2014).CrossrefGoogle Scholar

  • [39] J. C. Goldschmidt et al., Spectral splitting module geometry that utilizes light trapping, Sol Energ Mat Sol C, 108, 57-64 (2013).CrossrefGoogle Scholar

  • [40] G. D. Barber et al., Utilization of Direct and Diffuse Sunlight in a Dye-Sensitized Solar Cell-Silicon Photovoltaic Hybrid Concentrator System, J Phys Chem Lett, 2(6), 581-585 (2011).CrossrefGoogle Scholar

  • [41] R. Winston et al., Hybrid solar collector using nonimaging optics and photovoltaic components, SPIE Optical Engineering + Applications 957208-957208-957208 (2015).Google Scholar

  • [42] Z. J. Yu et al., PVMirror: A New Concept for Tandem Solar Cells and Hybrid Solar Converters.Google Scholar

  • [43] P. Verlinden et al., Sliverr solar cells: A new thin-crystalline silicon photovoltaic technology, Sol Energ Mat Sol C, 90(18), 3422-3430 (2006).CrossrefGoogle Scholar

  • [44] S. Rühle et al., A two junction, four terminal photovoltaic device for enhanced light to electric power conversion using a low-cost dichroic mirror, Journal of Renewable and Sustainable Energy, 1(1), 013106 (2009).Google Scholar

  • [45] T. Otanicar, R. Taylor, and C. Telang, Photovoltaic/thermal system performance utilizing thin film and nanoparticle dispersion based optical filters, Journal of Renewable and Sustainable Energy, 5(3), 033124 (2013).Google Scholar

  • [46] T. P. Otanicar et al., Nanofluid-based direct absorption solar collector, Journal of renewable and sustainable energy, 2(3), 033102 (2010).Google Scholar

  • [47] T. P. Otanicar, P. E. Phelan, and J. S. Golden, Optical properties of liquids for direct absorption solar thermal energy systems, Solar Energy, 83(7), 969-977 (2009).CrossrefGoogle Scholar

  • [48] R. A. Taylor, T. Otanicar, and G. Rosengarten, Nanofluid-based optical filter optimization for PV/T systems, Light: Science & Applications, 1(10), e34 (2012).Google Scholar

  • [49] D. DeJarnette et al., Selective spectral filtration with nanoparticles for concentrating solar collectors, J Photon Energy, 5(1), 057008-057008 (2015).CrossrefGoogle Scholar

  • [50] F. Crisostomo et al., Desing and on-sun testing of a hybrid PVT prototype using a nanofluid-based selective absorption filter, European EnergyMarket (EEM), 2015 12th International Conference on the 1-5 (2015).Google Scholar

  • [51] M. Vivar, and V. Everett, A review of optical and thermal transfer fluids used for optical adaptation or beam-splitting in concentrating solar systems, Progress in Photovoltaics: Research and Applications, 22(6), 612-633 (2014).Google Scholar

  • [52] R. Looser, M. Vivar, and V. Everett, Spectral characterisation and long-term performance analysis of various commercial Heat Transfer Fluids (HTF) as Direct-Absorption Filters for CPVT beam-splitting applications, Applied Energy, 113, 1496-1511 (2014).Google Scholar

  • [53] Q. H. Wang et al., Electronics and optoelectronics of twodimensional transition metal dichalcogenides, Nature nanotechnology, 7(11), 699-712 (2012).CrossrefGoogle Scholar

  • [54] H. S. Lee et al., MoS2 nanosheet phototransistors with thickness-modulated optical energy gap, Nano letters, 12(7), 3695-3700 (2012).CrossrefGoogle Scholar

  • [55] X. Huang et al., Enhancing solar cell efficiency: the search for luminescent materials as spectral converters, Chemical Society Reviews, 42(1), 173-201 (2013).CrossrefGoogle Scholar

  • [56] B. Richards, Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers, Solar energymaterials and solar cells, 90(15), 2329-2337 (2006).Google Scholar

  • [57] E. Klampaftis et al., Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: A review, Solar EnergyMaterials and Solar Cells, 93(8), 1182-1194 (2009).Google Scholar

  • [58] L. Brennan, and P. Owende, Biofuels from microalgae-a review of technologies for production, processing, and extractions of biofuels and co-products, Renewable and sustainable energy reviews, 14(2), 557-577 (2010).Google Scholar

  • [59] A. Singh, and S. I. Olsen, A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels, Applied Energy, 88(10), 3548-3555 (2011).CrossrefGoogle Scholar

  • [60] G. Huang et al., Biodiesel production by microalgal biotechnology, Applied energy, 87(1), 38-46 (2010).CrossrefGoogle Scholar

  • [61] B. D. Wahlen, R. M. Willis, and L. C. Seefeldt, Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixedcultures, Bioresource technology, 102(3), 2724-2730 (2011).CrossrefGoogle Scholar

  • [62] H.-B. Chen et al., Modeling on chlorophyll a and phycocyanin production by Spirulina platensis under various light-emitting diodes, Biochemical Engineering Journal, 53(1), 52-56 (2010).CrossrefGoogle Scholar

  • [63] C.-Y. Chen et al., Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review, Bioresource technology, 102(1), 71-81 (2011).CrossrefGoogle Scholar

  • [64] H. Delavari Amrei et al., An integrated wavelength-shifting strategy for enhancement of microalgal growth rate in PMMAand polycarbonate-based photobioreactors, European Journal of Phycology, 49(3), 324-331 (2014).CrossrefGoogle Scholar

  • [65] S.-H. Ho, C.-Y. Chen, and J.-S. Chang, Effect of light intensity and nitrogen starvation on CO 2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N, Bioresource technology, 113, 244-252 (2012).Google Scholar

  • [66] T. M. Mata, A. A. Martins, and N. S. Caetano, Microalgae for biodiesel production and other applications: a review, Renew able and sustainable energy reviews, 14(1), 217-232 (2010).Google Scholar

  • [67] B. Wang et al., CO2 bio-mitigation using microalgae, Applied Microbiology and Biotechnology, 79(5), 707-718 (2008).Google Scholar

  • [68] M. E. Huntley, and D. G. Redalje, CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal, Mitigation and adaptation strategies for global change, 12(4), 573-608 (2007).Google Scholar

  • [69] X.-G. Zhu, S. P. Long, and D. R. Ort, What is the maximum efficiency with which photosynthesis can convert solar energy into biomass?, Current opinion in biotechnology, 19(2), 153-159 (2008).Google Scholar

  • [70] K. J. McCree, Photosynthetically active radiation, in Physiological Plant Ecology I, pp. 41-55, Springer (1981).Google Scholar

  • [71] E. W. Helbling et al., Impact of natural ultraviolet radiation on rates of photosynthesis and on specific marine phytoplankton species,Marine ecology progress series. Oldendorf, 80(1), 89-100 (1992).Google Scholar

  • [72] O. Holm-Hansen, D. Lubin, and E. W. Helbling, Ultraviolet radiation and its effects on organisms in aquatic environments, in Environmental UV photobiology, pp. 379-425, Springer (1993).Google Scholar

  • [73] H. Wu et al., Effects of solar UV radiation on morphology and photosynthesis of filamentous cyanobacterium Arthrospira platensis, Applied and Environmental Microbiology, 71(9), 5004-5013 (2005).CrossrefGoogle Scholar

  • [74] V. Villafae et al., Inhibition of phytoplankton photosynthesis by solar ultraviolet radiation: studies in Lake Titicaca, Bolivia, Freshwater Biology, 42(2), 215-224 (1999).CrossrefGoogle Scholar

  • [75] H. Herrmann, D. P. HÄDER, and F. Ghetti, Inhibition of photosynthesis by solar radiation in Dunaliella salina: relative efficiencies of UV-B, UV-A and PAR, Plant, Cell & Environment, 20(3), 359-365 (1997).Google Scholar

  • [76] P. Jokiel, and R. York, Importance of ultraviolet radiation in photoinhibition of microalgal growth1, Limnology and Oceanography, 29(1), 192-198 (1984).CrossrefGoogle Scholar

  • [77] K. G. Ryan, UV radiation and photosynthetic production in Antarctic sea ice microalgae, Journal of Photochemistry and Photobiology B: Biology, 13(3), 235-240 (1992).CrossrefGoogle Scholar

  • [78] C. Strümpel et al., Modifying the solar spectrumto enhance silicon solar cell efficiency-An overview of available materials, Solar EnergyMaterials and Solar Cells, 91(4), 238-249 (2007).Google Scholar

  • [79] F. Wang et al., Upconversion nanoparticles in biological labeling, imaging, and therapy, Analyst, 135(8), 1839-1854 (2010).CrossrefGoogle Scholar

  • [80] L. Slooff et al., Efficiency enhancement of solar cells by application of a polymer coating containing a luminescent dye, Journal of Solar Energy Engineering, 129(3), 272-276 (2007).CrossrefGoogle Scholar

  • [81] T. Maruyama, A. Enomoto, and K. Shirasawa, Solar cell module colored with fluorescent plate, Solar energy materials and solar cells, 64(3), 269-278 (2000).Google Scholar

  • [82] T.Maruyama, Y. Shinyashiki, and S. Osako, Energy conversion efficiency of solar cells coatedwith fluorescent coloring agent, Solar energy materials and solar cells, 56(1), 1-6 (1998).Google Scholar

  • [83] K. R. McIntosh et al., Increase in external quantum efficiency of encapsulated silicon solar cells from a luminescent downshifting layer, Progress in Photovoltaics: Research and Applications, 17(3), 191-197 (2009).Google Scholar

  • [84] W. van Sark et al., Enhancing solar cell efficiency by using spectral converters, Solar energy materials and solar cells, 87(1), 395-409 (2005).Google Scholar

  • [85] H.-J. Muffler et al., Colloid attachment by ILGAR-layers: Creating fluorescing layers to increase quantum efficiency of solar cells, Solar energy materials and solar cells, 90(18), 3143-3150 (2006).Google Scholar

  • [86] V. Švrček, A. Slaoui, and J.-C. Muller, Silicon nanocrystals as light converter for solar cells, Thin Solid Films, 451, 384-388 (2004).Google Scholar

  • [87] H. Hovel, R. Hodgson, and J. Woodall, The effect of fluorescent wavelength shifting on solar cell spectral response, Solar Energy Materials, 2(1), 19-29 (1979).CrossrefGoogle Scholar

  • [88] L. Wondraczek et al., Solar spectral conversion for improving the photosynthetic activity in algae reactors, Nature communications, 4, (2013).Google Scholar

  • [89] S. F. Mohsenpour, B. Richards, and N. Willoughby, Spectral conversion of light for enhanced microalgae growth rates and photosynthetic pigment production, Bioresource technology, 125, 75-81 (2012).Google Scholar

  • [90] S. F. Mohsenpour, and N. Willoughby, Luminescent photobioreactor design for improved algal growth and photosynthetic pigment production through spectral conversion of light, Bioresource technology, 142, 147-153 (2013).Google Scholar

  • [91] A. Prokop et al., Spectral shifting by dyes to enhance algae growth, Biotechnology and bioengineering, 26(11), 1313-1322 (1984).Google Scholar

  • [92] H. D. Amrei et al., Spectral shifting of UV-Awavelengths to blue light for enhancing growth rate of cyanobacteria, Journal of Applied Phycology, 26(3), 1493-1500 (2014).CrossrefGoogle Scholar

  • [93] H. D. Amrei et al., Using fluorescentmaterial for enhancing microalgae growth rate in photobioreactors, Journal of Applied Phycology, 27(1), 67-74 (2015).CrossrefGoogle Scholar

  • [94] B. M. van der Ende, L. Aarts, and A. Meijerink, Near- Infrared Quantum Cutting for Photovoltaics, Advanced Materials, 21(30), 3073-3077 (2009).Google Scholar

  • [95] Q. Zhang, C. Yang, and Y. Pan, Cooperative quantum cutting in one-dimensional (YbxGd1-x) Al3 (BO3) 4: Tb3+ nanorods, Applied physics letters, 90(2), 1107 (2007).Google Scholar

  • [96] D. Chen et al., Near-infrared quantum cutting in transparent nanostructured glass ceramics, Optics letters, 33(16), 1884-1886 (2008).CrossrefGoogle Scholar

  • [97] D. Chen et al., Tuning into blue and red luminescence in dual-phase nano-glass-ceramics, Journal of Alloys and Compounds, 645, 38-44 (2015).Google Scholar

  • [98] D. Chen et al., Tuning into blue and red: europium singledoped nano-glass-ceramics for potential application in photosynthesis, Journal of Materials Chemistry C, 3(13), 3141-3149 (2015).CrossrefGoogle Scholar

  • [99] T. Trupke, M. Green, and P. Würfel, Improving solar cell efficiencies by down-conversion of high-energy photons, Journal of Applied Physics, 92(3), 1668-1674 (2002).CrossrefGoogle Scholar

  • [100] L. Xie, Y. Wang, and H. Zhang, Near-infrared quantum cutting in YPO4: Yb3+, Tm3+ via cooperative energy transfer, Applied Physics Letters, 94(6), 1905 (2009).Google Scholar

  • [101] L. Li et al., Enhanced near-infrared quantum cutting in CaMoO 4: Yb 3+ phosphors induced by dopingwith Li+ ions for improving solar cells efficiency, Materials Chemistry and Physics, 147(3), 860-866 (2014).CrossrefGoogle Scholar

  • [102] Q. Xia et al., Enhanced photosynthetic activity in Spinacia oleracea by spectral modification with a photoluminescent light convertingmaterial, Optics express, 21(106), A909-A916 (2013). CrossrefGoogle Scholar

  • [103] S. Lian et al., Enhancing solar energy conversion efficiency: a tunable dual-excitation dual-emission phosphors and timedependent density functional theory study, The Journal of Physical Chemistry C, 113(15), 6298-6302 (2009).CrossrefGoogle Scholar

  • [104] J. De Wild et al., Enhanced near-infrared response of a-Si: H solar cells with β-NaYF 4: Yb 3+(18%), Er 3+(2%) upconversion phosphors, Solar energymaterials and solar cells, 94(12), 2395-2398 (2010).Google Scholar

  • [105] S. Fischer et al., Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization, Journal of Applied Physics, 108(4), 044912 (2010).CrossrefGoogle Scholar

  • [106] B. S. Richards, and A. Shalav, Enhancing the near-infrared spectral response of silicon optoelectronic devices via upconversion, Electron Devices, IEEE Transactions on, 54(10), 2679-2684 (2007).Google Scholar

  • [107] W. Zou et al., Broadband dye-sensitized upconversion of nearinfrared light, Nature Photonics, 6(8), 560-564 (2012).CrossrefGoogle Scholar

  • [108] A. Shalav, B. Richards, and M. Green, Luminescent layers for enhanced silicon solar cell performance: Up-conversion, Solar Energy Materials and Solar Cells, 91(9), 829-842 (2007).CrossrefGoogle Scholar

  • [109] A. Shalav et al., The application of up-converting phosphors for increased solar cell conversion efficiencies, Photovoltaic Energy Conversion, 2003. Proceedings of 3rd World Conference on 248-250 (2003).Google Scholar

  • [110] T. Trupke, M. Green, and P. Würfel, Improving solar cell efficiencies by up-conversion of sub-band-gap light, Journal of Applied Physics, 92(7), 4117-4122 (2002).CrossrefGoogle Scholar

  • [111] A. Shalav et al., Application of NaYF4: Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response, Applied Physics Letters, 86(1), 013505 (2005).CrossrefGoogle Scholar

  • [112] H. Q.Wang et al., Rare-Earth Ion Doped Up-ConversionMaterials for Photovoltaic Applications, Advanced Materials, 23(22-23), 2675-2680 (2011).CrossrefGoogle Scholar

  • [113] E. Sforza, E. Barbera, and A. Bertucco, Improving the photoconversion efficiency: An integrated photovoltaicphotobioreactor system for microalgal cultivation, Algal Research, 10, 202-209 (2015).Google Scholar

  • [114] S. D. Vorndran et al., Holographic spectral beamsplitting for increased organic photovoltaic conversion efficiency, SPIE Organic Photonics+ Electronics 918423-918423-918427 (2014).Google Scholar

  • [115] M. D. Ooms, Y. Jeyaram, and D. Sinton, Wavelength-selective plasmonics for enhanced cultivation of microalgae, Applied Physics Letters, 106(6), 063902 (2015).CrossrefGoogle Scholar

  • [116] Y. Li et al., Wide spectrum solar energy harvesting through an integrated photovoltaic and thermoelectric system, Particuology, 15, 39-44 (2014).Google Scholar

  • [117] C. Kandilli, Performance analysis of a novel concentrating photovoltaic combined system, Energy Conversion and Management, 67, 186-196 (2013).Google Scholar

  • [118] J. R. Raush, Initial field testing of concentrating solar photovoltaic (CSPV) thermal hybrid solar energy generator utilizing large aperture parabolic trough and spectrum selective mirrors, International Journal of Sustainable and Green Energy, 3(6), 123-131 (2014).Google Scholar

  • [119] M. Orosz et al., Spectrum-Splitting hybrid CSP-CPV solar energy system with standalone and parabolic trough plant retrofit applications, in SolarPaces2015, Cape Town, South Africa (2015).Google Scholar

  • [120] V. Everett et al., Towards an innovative spectral-splitting hybrid PV-T micro-concentrator, 8th International Conference on Concentrating Photovoltaic Systems: CPV-8 230-234 (2012).Google Scholar

  • [121] W. An et al., Investigation on a spectral splitting photovoltaic/ thermal hybrid system based on polypyrrole nanofluid: Preliminary test, Renewable Energy 86, 633-642 (2016).CrossrefGoogle Scholar

  • [122] A. Mojiri, C. Stanley, and G. Rosengarten, Spectrally splitting hybrid photovoltaic/thermal receiver design for a linear concentrator, Energy Procedia, 48, 618-627 (2014).CrossrefGoogle Scholar

  • [123] A. Mojiri et al., A spectrally splitting photovoltaic-thermal hybrid receiver utilising direct absorption and wave interference light filtering, Solar Energy Materials and Solar Cells, 139, 71-80 (2015).Google Scholar

  • [124] C. Stanley et al., Experimental performance evaluation of a hybrid CST receiver for linear concentrators, in SolarPaces2015, Cape Town, South Africa (2015).Google Scholar

  • [125] A. Royne, C. J. Dey, and D. R. Mills, Cooling of photovoltaic cells under concentrated illumination: a critical review, Sol Energ Mat Sol C, 86(4), 451-483 (2005). CrossrefGoogle Scholar

About the article

Received: 2015-10-07

Accepted: 2016-03-21

Published Online: 2016-06-11

Published in Print: 2016-06-01

Citation Information: Nanophotonics, Volume 5, Issue 1, Pages 161–179, ISSN (Online) 2192-8614, ISSN (Print) 2192-8606, DOI: https://doi.org/10.1515/nanoph-2016-0035.

Export Citation

© 2016. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Shi-quan Shan, Zhi-jun Zhou, Zhi-hua Wang, and Ke-fa Cen
Journal of Zhejiang University-SCIENCE A, 2019, Volume 20, Number 6, Page 431
Mara Bruzzi, Andrea Baldi, Ennio A. Carnevale, Maracantonio Catelani, and Lorenzo Ciani
Measurement, 2018
Zahra Hosseini, Nima Taghavinia, and Eric Wei-Guang Diau
ChemPhysChem, 2017
Wei An, Jun Li, Jun Ni, Robert A. Taylor, and Tong Zhu
Energy Conversion and Management, 2017, Volume 151, Page 23

Comments (0)

Please log in or register to comment.
Log in