Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Nanophotonics

Editor-in-Chief: Sorger, Volker


CiteScore 2017: 6.57

IMPACT FACTOR 2017: 6.014
5-year IMPACT FACTOR: 7.020


In co-publication with Science Wise Publishing

Open Access
Online
ISSN
2192-8614
See all formats and pricing
More options …
Volume 5, Issue 2

Issues

Dynamics of microresonator frequency comb generation: models and stability

Tobias Hansson / Stefan Wabnitz
  • Dipartimento di Ingegneria dell’Informazione, Università di Brescia, and Istituto Nazionale di Ottica del CNR, via Branze 38, 25123 Brescia, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-06-17 | DOI: https://doi.org/10.1515/nanoph-2016-0012

Abstract

Microresonator frequency combs hold promise for enabling a new class of light sources that are simultaneously both broadband and coherent, and that could allow for a profusion of potential applications. In this article, we review various theoretical models for describing the temporal dynamics and formation of optical frequency combs. These models form the basis for performing numerical simulations that can be used in order to better understand the comb generation process, for example helping to identify the universal combcharacteristics and their different associated physical phenomena. Moreover, models allow for the study, design and optimization of comb properties prior to the fabrication of actual devices. We consider and derive theoretical formalisms based on the Ikeda map, the modal expansion approach, and the Lugiato-Lefever equation. We further discuss the generation of frequency combs in silicon resonators featuring multiphoton absorption and free-carrier effects. Additionally, we review comb stability properties and consider the role of modulational instability as well as of parametric instabilities due to the boundary conditions of the cavity. These instability mechanisms are the basis for comprehending the process of frequency comb formation, for identifying the different dynamical regimes and the associated dependence on the comb parameters. Finally, we also discuss the phenomena of continuous wave bi- and multistability and its relation to the observation of mode-locked cavity solitons.

Keywords : Nonlinear optics; microresonator; frequency comb; modeling

References

  • [1] T. J. Kippenberg, R. Holzwarth, and S. A. Diddams. Microresonator-Based Optical Frequency Combs. Science, 332(6029):555-559, April 2011.Google Scholar

  • [2] P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg. Octave Spanning Tunable Frequency Comb from a Microresonator. Physical Review Letters, 107(6), August 2011.Google Scholar

  • [3] Yoshitomo Okawachi, Kasturi Saha, Jacob S. Levy, Y. Henry Wen, Michal Lipson, and Alexander L. Gaeta. Octave-spanning frequency comb generation in a silicon nitride chip. Optics letters, 36(17):3398-3400, 2011.CrossrefGoogle Scholar

  • [4] Theodor Hänsch. Nobel Lecture: Passion for precision. Reviews of Modern Physics, 78(4):1297-1309, November 2006.CrossrefGoogle Scholar

  • [5] Scott B. Papp, Katja Beha, Pascal Del’Haye, Franklyn Quinlan, Hansuek Lee, Kerry J. Vahala, and Scott A. Diddams. Microresonator frequency comb optical clock. Optica, 1(1):10, July 2014.CrossrefGoogle Scholar

  • [6] J. D. Jost, T. Herr, C. Lecaplain, V. Brasch, M. H. P. Pfeiffer, and T. J. Kippenberg. “Counting the cycles of light using a selfreferenced optical microresonator,” Optica, 2(8):706, August 2015.Google Scholar

  • [7] Andrey Matsko, Anatoliy Savchenkov, Dmitry Strekalov, Vladimir Ilchenko, and Lute Maleki. Optical hyperparametric oscillations in a whispering-gallery-mode resonator: Threshold and phase diffusion. Physical Review A, 71(3), March 2005.Google Scholar

  • [8] Yanne K. Chembo and Nan Yu. Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators. Physical Review A, 82(3), September 2010.Google Scholar

  • [9] Mark Oxborrow. Traceable 2-D Finite-Element Simulation of the Whispering-Gallery Modes of Axisymmetric Electromagnetic Resonators. IEEE Transactions on Microwave Theory and Techniques, 55(6):1209-1218, June 2007.Google Scholar

  • [10] Michael L. Gorodetsky and Aleksey E. Fomin. Geometrical theory of whispering-gallery modes. Selected Topics in Quantum Electronics, IEEE Journal of, 12(1):33-39, 2006.CrossrefGoogle Scholar

  • [11] T. Hansson, D. Modotto, and S. Wabnitz. Analytical approach to the design of microring resonators for nonlinear four-wave mixing applications. Journal of the Optical Society of America B, 31(5):1109, May 2014.CrossrefGoogle Scholar

  • [12] Yoshitomo Okawachi, Michael R. E. Lamont, Kevin Luke, Daniel O. Carvalho, Mengjie Yu, Michal Lipson, and Alexander L. Gaeta. Bandwidth shaping of microresonator-based frequency combs via dispersion engineering. Optics Letters, 39(12):3535, June 2014.CrossrefGoogle Scholar

  • [13] Andrey B. Matsko and Vladimir S. Ilchenko. Optical resonators with whispering-gallery modes-part I: basics. Selected Topics in Quantum Electronics, IEEE Journal of, 12(1):3-14, 2006.Google Scholar

  • [14] Kensuke Ikeda. Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system. Optics Communications, 30(2):257 - 261, 1979.CrossrefGoogle Scholar

  • [15] M. Haelterman, S. Trillo, and S. Wabnitz. Dissipative modulation instability in a nonlinear dispersive ring cavity. Optics Communications, 91(5-6):401-407, 1992.CrossrefGoogle Scholar

  • [16] Stéphane Coen, Hamish G. Randle, Thibaut Sylvestre, and Miro Erkintalo. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model. Optics letters, 38(1):37-39, 2013.CrossrefGoogle Scholar

  • [17] Matteo Conforti, Arnaud Mussot, Alexandre Kudlinski, and Stefano Trillo. Modulational instability in dispersion oscillating fiber ring cavities. Optics Letters, 39(14):4200, July 2014.CrossrefGoogle Scholar

  • [18] D. J. Kaup and A. C. Newell. Theory of nonlinear oscillating dipolar excitations in one-dimensional condensates. Physical Review B, 18(10):5162, 1978.CrossrefGoogle Scholar

  • [19] L. A. Lugiato and R. Lefever. Spatial dissipative structures in passive optical systems. Physical Review Letters, 58:2209-2211, May 1987.CrossrefGoogle Scholar

  • [20] A.B. Matsko, A.A. Savchenkov, W. Liang, V.S. Ilchenko, D. Seidel, and L. Maleki. Mode-locked Kerr frequency combs. Optics Letters, 36(15):2845-2847, 2011.CrossrefGoogle Scholar

  • [21] T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg. Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nature Photonics, 6(7):480-487, June 2012.CrossrefGoogle Scholar

  • [22] A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki. Kerr frequency comb generation in overmoded resonators. Optics express, 20(24):27290-27298, 2012.CrossrefGoogle Scholar

  • [23] T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L. Gorodetsky, and T. J. Kippenberg. Mode Spectrum and Temporal Soliton Formation in Optical Microresonators. Physical Review Letters, 113(12), September 2014.Google Scholar

  • [24] Yang Liu, Yi Xuan, Xiaoxiao Xue, Pei-Hsun Wang, Steven Chen, Andrew J. Metcalf, Jian Wang, Daniel E. Leaird, Minghao Qi, and Andrew M. Weiner. Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation. Optica, 1(3):137, September 2014.Google Scholar

  • [25] Yanne K. Chembo and Curtis R. Menyuk. Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators. Physical Review A, 87(5), May 2013.Google Scholar

  • [26] G.P. Agrawal. Nonlinear fiber optics, 5th Ed. Academic Press, New York, 2012.Google Scholar

  • [27] T. Hansson, D. Modotto, and S. Wabnitz. On the numerical simulation of Kerr frequency combs using coupled mode equations. Optics Communications, 312:134-136, February 2014.CrossrefGoogle Scholar

  • [28] C. Milián and D.V. Skryabin. Soliton families and resonant radiation in a micro-ring resonator near zero group-velocity dispersion. Optics Express, 22(3):3732, February 2014.CrossrefGoogle Scholar

  • [29] Michael R. E. Lamont, Yoshitomo Okawachi, and Alexander L. Gaeta. Route to stabilized ultrabroadband microresonatorbased frequency combs. Optics Letters, 38(18):3478, September 2013.Google Scholar

  • [30] Changjing Bao, Lin Zhang, Andrey Matsko, Yan Yan, Zhe Zhao, Guodong Xie, Anuradha M. Agarwal, Lionel C. Kimerling, Jurgen Michel, Lute Maleki, and Alan E. Willner. Nonlinear conversion eflciency in Kerr frequency comb generation. Optics Letters, 39(21):6126, November 2014.Google Scholar

  • [31] Maxim Karpov, Hairun Guo, Arne Kordts, Victor Brasch, Martin Pfeiffer, Michail Zervas, Michael Geiselmann, and Tobias J. Kippenberg. Raman induced soliton self-frequency shift in microresonator Kerr frequency combs. arXiv preprint arXiv:1506.08767, 2015.Google Scholar

  • [32] R. Boyd. Nonlinear optics. Third Ed., Academic Press, 2008.Google Scholar

  • [33] Austin G. Griflth, Ryan K.W. Lau, Jaime Cardenas, Yoshitomo Okawachi, Aseema Mohanty, Romy Fain, Yoon Ho Daniel Lee, Mengjie Yu, Christopher T. Phare, Carl B. Poitras, Alexander L. Gaeta, and Michal Lipson. Silicon-chip mid-infrared frequency comb generation. Nature Communications, 6:6299, February 2015.Google Scholar

  • [34] Albert Schliesser, Nathalie Picqué, and Theodor W. Hänsch. Mid-infrared frequency combs. Nature Photonics, 6(7):440-449, 2012.CrossrefGoogle Scholar

  • [35] Lin Zhang, Anuradha M. Agarwal, Lionel C. Kimerling, and Jurgen Michel. Nonlinear Group IV photonics based on silicon and germanium: from near-infrared to mid-infrared. Nanophotonics, 3(4-5):247-268, 2013.Google Scholar

  • [36] Lianghong Yin and Govind P. Agrawal. Impact of two-photon absorption on self-phase modulation in silicon waveguides. Optics letters, 32(14):2031-2033, 2007.Google Scholar

  • [37] Q. Lin, O. J. Painter, and G. P. Agrawal. Nonlinear optical phenomena in silicon waveguides: modeling and applications. Optics Express, 15:16604, 2007.CrossrefGoogle Scholar

  • [38] Tobias Hansson, Daniele Modotto, and Stefan Wabnitz. Midinfrared soliton and Raman frequency comb generation in silicon microrings. Optics Letters, 39(23):6747, December 2014.CrossrefGoogle Scholar

  • [39] T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg. Temporal solitons in optical microresonators. Nature Photonics, 8(2):145-152, December 2013.CrossrefGoogle Scholar

  • [40] Kathy Luo, Jae K. Jang, Stéphane Coen, Stuart G. Murdoch, and Miro Erkintalo. Spontaneous creation and annihilation of temporal cavity solitons in a coherently driven passive fiber resonator. Optics Letters, 40(16):3735, August 2015. CrossrefGoogle Scholar

  • [41] Ryan K. W. Lau, Michael R. E. Lamont, Yoshitomo Okawachi, and Alexander L. Gaeta. Effects of multiphoton absorption on parametric comb generation in silicon microresonators. Optics Letters, 40(12):2778, June 2015.Google Scholar

  • [42] T. Hansson, D. Modotto, and S. Wabnitz. Dynamics of the modulational instability in microresonator frequency combs. Physical Review A, 88(2), August 2013.Google Scholar

  • [43] A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki. Hard and soft excitation regimes of Kerr frequency combs. Physical Review A, 85(2), February 2012.Google Scholar

  • [44] A. B. Matsko, A. A. Savchenkov, and L. Maleki. Normal groupvelocity dispersion Kerr frequency comb. Optics Letters, 37(1):43-45, 2012.CrossrefGoogle Scholar

  • [45] J. A. Jaramillo-Villegas, X. Xue, P.-H. Wang, D. E. Leaird, and A. M. Weiner. “Deterministic single soliton generation and compression in microring resonators avoiding the chaotic region.” Optics Express, 23(8):9618, April 2015.CrossrefGoogle Scholar

  • [46] Tobias Hansson and Stefan Wabnitz. Frequency comb generation beyond the Lugiato-Lefever equation: multi-stability and super cavity solitons. Journal of the Optical Society of America B, 32(7):1259, July 2015.CrossrefGoogle Scholar

  • [47] S. Trillo and Stefan Wabnitz. Dynamics of the nonlinear modulational instability in optical fibers. Optics letters, 16(13):986-988, 1991.Google Scholar

  • [48] Marc Haelterman, S. Trillo, and S. Wabnitz. Additivemodulation- instability ring laser in the normal dispersion regime of a fiber. Optics letters, 17(10):745-747, 1992.CrossrefGoogle Scholar

  • [49] Stéphane Coen and Marc Haelterman. Modulational instability induced by cavity boundary conditions in a normally dispersive optical fiber. Physical review letters, 79(21):4139, 1997.CrossrefGoogle Scholar

  • [50] Aurelien Coillet, Irina Balakireva, Remi Henriet, Khaldoun Saleh, Laurent Larger, John M. Dudley, Curtis R. Menyuk, and Yanne K. Chembo. Azimuthal Turing Patterns, Bright and Dark Cavity Solitons in Kerr Combs Generated With Whispering-Gallery-Mode Resonators. IEEE Photonics Journal, 5(4):6100409, August 2013.CrossrefGoogle Scholar

  • [51] D. W. McLaughlin, J. V. Moloney, and A. C. Newell. New class of instabilities in passive optical cavities. Physical review letters, 54(7):681, 1985.CrossrefGoogle Scholar

  • [52] P. Parra-Rivas, D. Gomila, M. A. Matías, S. Coen, and L. Gelens. Dynamics of localized and patterned structures in the Lugiato- Lefever equation determine the stability and shape of optical frequency combs. Physical Review A, 89(4), April 2014.Google Scholar

  • [53] K. Ikeda, H. Daido, and O. Akimoto. Optical turbulence - Chaotic behavior of transmitted light from a ring cavity. Physical Review Letters, 45:709-712, September 1980.CrossrefGoogle Scholar

  • [54] François Leo, Stéphane Coen, Pascal Kockaert, Simon-Pierre Gorza, Philippe Emplit, and Marc Haelterman. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nature Photonics, 4(7):471-476, May 2010.Google Scholar

  • [55] D. W. Mc Laughlin, J. V. Moloney, and A. C. Newell. Solitary waves as fixed points of infinite-dimensional maps in an optical bistable ring cavity. Physical review letters, 51(2):75, 1983.CrossrefGoogle Scholar

  • [56] V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg. “Photonic chipbased optical frequency comb using soliton Cherenkov radiation.” Science, 351(6271):357-360, January 2016.Google Scholar

  • [57] Stefan Wabnitz. Suppression of interactions in a phase-locked soliton optical memory. Optics letters, 18(8):601-603, 1993.CrossrefGoogle Scholar

  • [58] Stéphane Coen and Miro Erkintalo. Universal scaling laws of Kerr frequency combs. Optics Letters, 38(11):1790, June 2013.CrossrefGoogle Scholar

  • [59] Tobias Herr, Michael L. Gorodetsky, and Tobias J. Kippenberg. Dissipative Kerr solitons in optical microresonators. arXiv preprint arXiv:1508.04989, 2015.Google Scholar

  • [60] François Leo, Lendert Gelens, Philippe Emplit, Marc Haelterman, and Stéphane Coen. Dynamics of one-dimensional Kerr cavity solitons. Optics Express, 21(7):9180, April 2013.Google Scholar

  • [61] Jae K. Jang, Miro Erkintalo, Stuart G. Murdoch, and Stéphane Coen. Observation of dispersive wave emission by temporal cavity solitons. Optics Letters, 39(19):5503, October 2014.Google Scholar

  • [62] C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg. Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators. Nature Communications, 4:1345, January 2013.Google Scholar

  • [63] Iolanda Ricciardi, Simona Mosca, Maria Parisi, Pasquale Maddaloni, Luigi Santamaria, Paolo De Natale, and Maurizio De Rosa. Frequency comb generation in quadratic nonlinear media. Physical Review A, 91(6), June 2015.Google Scholar

  • [64] F. Leo, T. Hansson, I. Ricciardi, M. De Rosa, S. Coen, S. Wabnitz, and M. Erkintalo. “Walk-Off-Induced Modulation Instability, Temporal Pattern Formation, and Frequency Comb Generation in Cavity-Enhanced Second-Harmonic Generation.” Physical Review Letters, 116(3):033901, January 2016.CrossrefGoogle Scholar

About the article

Received: 2015-10-10

Accepted: 2015-12-14

Published Online: 2016-06-17

Published in Print: 2016-06-01


Citation Information: Nanophotonics, Volume 5, Issue 2, Pages 231–243, ISSN (Online) 2192-8614, ISSN (Print) 2192-8606, DOI: https://doi.org/10.1515/nanoph-2016-0012.

Export Citation

© 2016. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Tobias J. Kippenberg, Alexander L. Gaeta, Michal Lipson, and Michael L. Gorodetsky
Science, 2018, Volume 361, Number 6402, Page eaan8083
[2]
Jiayang Wu, Xingyuan Xu, Thach G. Nguyen, Sai Tak Chu, Brent E. Little, Roberto Morandotti, Arnan Mitchell, and David J. Moss
IEEE Journal of Selected Topics in Quantum Electronics, 2018, Volume 24, Number 4, Page 1
[3]
Wesley B. Cardoso, Luca Salasnich, and Boris A. Malomed
Scientific Reports, 2017, Volume 7, Number 1
[4]
Valery E. Lobanov, Artem V. Cherenkov, Artem E. Shitikov, Igor A. Bilenko, and Michael L. Gorodetsky
The European Physical Journal D, 2017, Volume 71, Number 7
[5]
Wesley B. Cardoso, Luca Salasnich, and Boris A. Malomed
The European Physical Journal D, 2017, Volume 71, Number 5
[6]
Jonathan M. Silver, Changlei Guo, Leonardo Del Bino, and Pascal Del’Haye
Physical Review A, 2017, Volume 95, Number 3
[7]
V. E. Lobanov, G. V. Lihachev, N. G. Pavlov, A. V. Cherenkov, T. J. Kippenberg, and M. L. Gorodetsky
Optics Express, 2016, Volume 24, Number 24, Page 27382

Comments (0)

Please log in or register to comment.
Log in