Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Editor-in-Chief: Sorger, Volker

12 Issues per year

CiteScore 2017: 6.57

IMPACT FACTOR 2017: 6.014
5-year IMPACT FACTOR: 7.020

In co-publication with Science Wise Publishing

Open Access
See all formats and pricing
More options …
Volume 5, Issue 2


Kerr optical frequency combs: theory, applications and perspectives

Yanne K. Chembo
  • FEMTO-ST Institute, CNRS & University Bourgogne Franche-Comté, Optics Department, 15B Avenue des Montboucons, 25030 Besançon cedex, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-06-17 | DOI: https://doi.org/10.1515/nanoph-2016-0013


The optical frequency comb technology is one of the most important breakthrough in photonics in recent years. This concept has revolutionized the science of ultra-stable lightwave and microwave signal generation. These combs were originally generated using ultrafast mode-locked lasers, but in the past decade, a simple and elegant alternativewas proposed,which consisted in pumping an ultra-high-Q optical resonator with Kerr nonlinearity using a continuous-wave laser. When optimal conditions are met, the intracavity pump photons are redistributed via four-wave mixing to the neighboring cavity modes, thereby creating the so-called Kerr optical frequency comb. Beyond being energy-efficient, conceptually simple, and structurally robust, Kerr comb generators are very compact devices (millimetric down to micrometric size) which can be integrated on a chip. They are, therefore, considered as very promising candidates to replace femtosecond mode-locked lasers for the generation of broadband and coherent optical frequency combs in the spectral domain, or equivalently, narrow optical pulses in the temporal domain. These combs are, moreover, expected to provide breakthroughs in many technological areas, such as integrated photonics, metrology, optical telecommunications, and aerospace engineering. The purpose of this review article is to present a comprehensive survey of the topic of Kerr optical frequency combs.We provide an overview of the main theoretical and experimental results that have been obtained so far. We also highlight the potential of Kerr combs for current or prospective applications, and discuss as well some of the open challenges that are to be met at the fundamental and applied level.


  • [1] Matsko A. B., Ilchenko V. S., Optical resonators with whispering gallery modes I: Basics, IEEE J. Sel. Top. Quantum Electron. 2006, 12, 3.CrossrefGoogle Scholar

  • [2] Ilchenko V. S., Matsko A. B., Optical Resonators With Whispering-Gallery Modes-Part II: Applications, IEEE J. Sel. Top. Quantum Electron. 2006, 12, 15.CrossrefGoogle Scholar

  • [3] Chiasera A., Dumeige Y., Féron P., Ferrari M., Jestin Y., Nunzi Conti G., Pelli S., Soria S., Righini G. C., Spherical whisperinggallery- mode microresonators, Laser Photon. Rev. 2010, 51, 457.CrossrefGoogle Scholar

  • [4] Kippenberg T. J., Spillane S. M., Vahala K. J., Kerr-Nonlinearity Optical Parametric Oscillation in an Ultrahigh-Q Toroid Microcavity, Phys. Rev. Lett. 2004, 93, 083904.CrossrefGoogle Scholar

  • [5] Savchenkov A. A., Matsko A. B., Strekalov D., Mohageg M., Ilchenko V. S.,Maleki L., Low Threshold Optical Oscillations in a WhisperingGallery ModeCaF2 Resonator, Phys. Rev. Lett. 2004, 93, 243905.CrossrefGoogle Scholar

  • [6] Del’Haye P., Schliesser A., Arcizet A., Holzwarth R., Kippenberg T. J., Optical frequency comb generation from a monolithic microresonator, Nature 2007, 450, 1214.CrossrefGoogle Scholar

  • [7] Kippenberg T. J., Holzwarth R., Diddams S. A., Microresonator- Based Optical Frequency Combs, Science 2011, 322, 555.CrossrefGoogle Scholar

  • [8] Chembo Y. K., Strekalov D. V., Yu N., Spectrum and Dynamics of Optical Frequency Combs Generated with Monolithic Whispering Gallery Mode Resonators, Phys. Rev. Lett. 2010, 104, 103902.CrossrefGoogle Scholar

  • [9] Chembo Y. K., Yu N., Modal expansion approach to opticalfrequency- comb generation with monolithic whisperinggallery- mode resonators, Phys. Rev. A 2010, 82, 033801.CrossrefGoogle Scholar

  • [10] Chembo Y. K., Yu N., On the generation of octave-spanning optical frequency combs using monolithic whispering-gallery-mode microresonators, Opt. Lett. 2010, 35, 2696.CrossrefGoogle Scholar

  • [11] Matsko A. B., Savchenkov A. A., Maleki L., Normal groupvelocity dispersion Kerr frequency comb, Opt. Lett. 2012, 37, 43.CrossrefGoogle Scholar

  • [12] Agha I. H., Okawachi Y., Gaeta A. L., Opt. Express 2009, 17, 16209.CrossrefGoogle Scholar

  • [13] Matsko A. B., Savchenkov A. A., Liang W., Ilchenko V. S., Seidel D., Maleki L., Mode-locked Kerr frequency combs, Opt. Lett. 2011, 36, 2845.CrossrefGoogle Scholar

  • [14] Chembo Y. K., Menyuk C. R., Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators, Phys. Rev. A 2013, 87, 053852.CrossrefGoogle Scholar

  • [15] Coen S., Randle H. G., Sylvestre T., Erkintalo M., Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model, Opt. Lett. 2013, 38, 37.CrossrefGoogle Scholar

  • [16] Lugiato L. A., Lefever R., Spatial Dissipative Structures in Passive Optical Systems, Phys. Rev. Lett. 1987, 58, 2209.CrossrefGoogle Scholar

  • [17] Coillet A., Balakireva I., Henriet R., Saleh K., Larger L., Dudley J. M., Menyuk C. R., Chembo Y. K., Azimuthal Turing Patterns, Bright and Dark Cavity Solitons in Kerr Combs generated with Whispering-Gallery Mode Resonators, IEEE Photonics Journal 2013, 5, 6100409.CrossrefGoogle Scholar

  • [18] Godey C., Balakireva I. V., Coillet A., Chembo Y. K., Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes, Phys. Rev. A. 2014, 89, 063814.CrossrefGoogle Scholar

  • [19] Parra-Rivas P., Gomila D., Matias M. A., Coen S., Gelens L., Dynamics of localized and patterned structures in the Lugiato- Lefever equation determine the stability and shape of optical frequency combs, Phys. Rev. A. 2014, 89, 043813.CrossrefGoogle Scholar

  • [20] Levy J. S., Gondarenko A., Foster M. A., Turner-Foster A. C.,Gaeta A. L., Lipson M.,CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects, Nature Photonics 2010, 4, 37.CrossrefGoogle Scholar

  • [21] Ferdous F., Miao H., Leaird D. E., Srinivasan K.,Wang J., Chen L., Varghese L. T., Weiner A. M., Spectral line-by-line pulse shaping of on-chip microresonator frequency combs, Nature Photonics 2011, 5, 770.CrossrefGoogle Scholar

  • [22] Moss D. J., Morandotti R., Gaeta A. L., Lipson M., New CMOScompatible platforms based on silicon nitride and Hydex for nonlinear optics, Nature Photonics 2013, 7, 597.CrossrefGoogle Scholar

  • [23] Liang W., Eliyahu D., Ilchenko V. S., Savchenkov A. A., Matsko A. B., Seidel D., Maleki L., High spectral purity Kerr frequency comb radio frequency photonic oscillator, Nature Communications 2015, 6, 7957.CrossrefGoogle Scholar

  • [24] Savchenkov A. A., Matsko A. B., Ilchenko V. S., Maleki L., Optical resonators with ten million finesse, Opt. Express 2007, 115, 6768.CrossrefGoogle Scholar

  • [25] Grudinin I. S., Yu N., Maleki L., Generation of optical frequency combs with a CaF2 resonator, Opt. Lett. 2009, 34, 878-880.CrossrefGoogle Scholar

  • [26] Sprenger B., Schwefel H. G. L., Lu Z. H., Svitlov S., Wang, L. J., CaF2 whispering-gallery-mode-resonator stabilized-narrowlinewidth laser, Opt. Lett. 2010, 35, 2870-2872CrossrefGoogle Scholar

  • [27] Tavernier H., Salzenstein P., Volyanskiy K., Chembo Y. K., Larger L., Magnesium Fluoride Whispering Gallery Mode Disk- Resonators for Microwave Photonics Applications, IEEE Phot. Tech. Lett. 2010, 22, 1629-1631.Google Scholar

  • [28] Liang W., Savchenkov A. A., Matsko A. B., Ilchenko V. S., Seidel D.,Maleki L., Generation of near-infrared frequency combs from a MgF2 whispering gallery mode resonator, Opt. Lett. 2011, 36, 2290.CrossrefGoogle Scholar

  • [29] Henriet R., Coillet A., Saleh K., Larger L., Chembo Y. K., Barium fluoride and lithium fluoride whispering-gallery mode resonators for photonics applications, Opt. Eng. 2014, 53, 071821.CrossrefGoogle Scholar

  • [30] Lin G., Diallo S., Henriet R., Jacquot M., Chembo Y. K., Barium fluoride whispering-gallery-mode disk-resonator with one billion quality-factor, Opt. Lett. 2014, 39, 6009.CrossrefGoogle Scholar

  • [31] Henriet R., Lin G., Coillet A., Jacquot M., Furfaro L., Larger L., Chembo Y. K. Kerr optical frequency comb generation in strontium fluoride whispering-gallery mode resonators with billion quality factor, Opt. Lett. 2015, 40, 1567.CrossrefGoogle Scholar

  • [32] Volyanskiy K., Salzenstein P., Tavernier H., Pogurmirskiy M., Chembo Y. K., Larger L., Compact optoelectronic microwave oscillators using ultra-high Q whispering gallery mode diskresonators and phase modulation, Opt. Express. 2010, 18, 22358-22363.CrossrefGoogle Scholar

  • [33] Papp S. B., Diddams S. A. Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb. Phys. Rev. A 2011, 84, 053833.CrossrefGoogle Scholar

  • [34] Ilchenko V. S., Savchenkov A. A., Byrd J., Solomatine I., Matsko A. B., Seidel D., Maleki L., Crystal quartz optical whisperinggallery resonators, Opt. Lett. 2008, 33, 1569-1571.CrossrefGoogle Scholar

  • [35] Hausmann B. J. M., Bulu I., Venkataraman V., Deotare P., Loncar M., Diamond nonlinear photonics, Nature Photonics 2014, 8, 369-374.CrossrefGoogle Scholar

  • [36] Coillet A., Henriet R., Huy K. P., Jacquot M., Furfaro L., Balakireva I., Larger L., Chembo Y. K., Microwave Photonics Systems Based on Whispering-gallery-mode Resonators, J. Vis. Exp. 2013, 78, e50423.Google Scholar

  • [37] Papp S. B., Del’Haye P., Diddams S. A., Mechanical Control of a Microrod-Resonator Optical Frequency Comb, Phys. Rev. X. 2013, 3, 031003.CrossrefGoogle Scholar

  • [38] Maleki L., The optoelectronic oscillator, Nature Photonics 2011, 5, 728.CrossrefGoogle Scholar

  • [39] Dumeige Y., Trebaol S., Ghisa L., Nguyen T. K. N., Tavernier H., Féron P., Determination of coupling regime of high-Q resonators and optical gain of highly selective amplifiers, J. Opt. Soc. Am. B 2008, 25, 2073.CrossrefGoogle Scholar

  • [40] Coillet A., Henriet R., Salzenstein P., Phan Huy K., Larger L., Chembo Y. K., Time-domain Dynamics and Stability Analysis of Optoelectronic Oscillators based on Whispering-Gallery Mode Resonators, IEEE J. Sel. Top. Quantum Electron. 2013, 19, 6000112.Google Scholar

  • [41] Saleh K., Lin G., Chembo Y. K., Effect of Laser Coupling and Active Stabilization on the Phase Noise Performance of Optoelectronic Microwave Oscillators Based on Whispering-Gallery- Mode Resonators, IEEE Phot. J. 2015, 7, 5500111.Google Scholar

  • [42] Saleh K., Henriet R., Diallo S., Lin G.,Martinenghi R., Balakireva I. V., Salzenstein P., Coillet A., Chembo Y. K., Phase noise performance comparison between optoelectronic oscillators based on optical delay lines and whispering gallery mode resonators, Opt. Express 2014, 22, 32158-32173CrossrefGoogle Scholar

  • [43] Agrawal G. P., Nonlinear Fiber Optics, Fifth Edition, Academic Press (2013).Google Scholar

  • [44] Haelterman M., Trillo S., Wabnitz S., Additive-modulationinstability ring laser in the normal dispersion regime of a fiber Opt. Lett. 1992, 17, 745.Google Scholar

  • [45] Leo F., Coen S., Kockaert P., Gorza S.-P., Emplit P., Haelterman M., Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer, Nature Photonics 2010 4, 471.CrossrefGoogle Scholar

  • [46] Chembo Y. K., Quantum Dynamics of Kerr Optical Frequency Combs below and above Threshold: Spontaneous Four- Wave-Mixing, Entanglement and Squeezed States of Light, arXiv:1412.5700v2 [quant-ph], 2015.Google Scholar

  • [47] Hansson T., Modotto D., Wabnitz S., Dynamics of the modulational instability in microresonator frequency combs, Phys. Rev. A 2013, 88, 023819.CrossrefGoogle Scholar

  • [48] Turing A. M., The Chemical Basis of Morphogenesis, Phil. Trans. of the R. Soc. Ser. B 1952, 237, 37.CrossrefGoogle Scholar

  • [49] Coillet A. and Chembo Y. K., On the robustness of phase locking in Kerr optical frequency combs, Opt. Lett. 2014, 39, 1529.CrossrefGoogle Scholar

  • [50] Lin G., Saleh K., Henriet R., Diallo S., Martinenghi R., Coillet A., Chembo Y. K., Wide-range tunability, thermal locking, and mode-crossing effects in Kerr optical frequency combs, Opt. Eng. 2014, 53, 122602.CrossrefGoogle Scholar

  • [51] Herr T., Brasch V., Jost J. D., Wang C. Y., Kondratiev N. M., Gorodetsky M. L., Kippenberg T. J., Temporal solitons in optical microresonators, Nature Photon. 2014, 8, 145.Google Scholar

  • [52] Taheri H., Eftekhar A. A., Wiesenfeld K., Adibi A., Soliton Formation in Whispering-Gallery-Mode Resonators via Input Phase Modulation, IEEE Phot. J. 2015, 7, 2200309.Google Scholar

  • [53] Lobanov V. E., Lihachev G., Kippenberg T. J., Gorodetsky M. L., Frequency combs and platicons in optical microresonators with normal GVD, Opt. Express 2015, 23, 7713. CrossrefGoogle Scholar

  • [54] Matsko A. B., Liang W., Savchenkov A. A., Maleki L., Chaotic dynamics of frequency combs generated with continuously pumped nonlinear microresonators, Opt. Lett. 2013, 38, 525.CrossrefGoogle Scholar

  • [55] A. Coillet and Y. K. Chembo, Routes to spatiotemporal chaos in Kerr optical frequency combs, Chaos 24, 013313 (2014).Google Scholar

  • [56] Coillet A., Dudley J., Genty G., Larger L., Chembo Y. K., Optical Rogue Waves in Whispering-Gallery-Mode Resonators, Phys. Rev. A 2014, 89, 013835.CrossrefGoogle Scholar

  • [57] Akhmediev N., Pelinovsky E., Editors, Rogue waves - Towards a unifying concept, Special issue of the Eur. Phys. J. Spe. Top., 2010.Google Scholar

  • [58] Akhmediev N., Dudley J. M., Solli D. R., Turitsyn S. K., Recent progress in investigating optical rogue waves, J. Opt. 2013, 15, 060201.CrossrefGoogle Scholar

  • [59] Pfeifle J., Coillet A., Henriet R., Saleh K., Schindler P., Weimann C., Freude W., Balakireva I. V., Larger L., Koos C., Chembo Y. K., Optimally Coherent Kerr Combs Generatedwith Crystalline Whispering Gallery Mode Resonators for Ultrahigh Capacity Fiber Communications, Phys. Rev. Lett. 2015, 114, 093902.CrossrefGoogle Scholar

  • [60] Li J., Lee H., Chen T., Vahala K. J., Low-Pump-Power, Low-Phase- Noise, and Microwave to Millimeter-Wave Repetition Rate Operation in Microcombs, Phys. Rev. Lett. 2012, 109, 233901.CrossrefGoogle Scholar

  • [61] Savchenkov A. A., Eliyahu D., Liang W., Ilchenko V. S., Byrd J., Matsko A. B., Seidel D., Maleki L., Stabilization of a Kerr frequency comb oscillator, Opt. Lett. 2013, 38, 2636.CrossrefGoogle Scholar

  • [62] Del’Haye P., Papp S. B., Diddams S. A., Hybrid Electro-Optically Modulated Microcombs, Phys. Rev. Lett. 2012, 109, 263901.CrossrefGoogle Scholar

  • [63] Papp S. B., Beha K., Del’Haye P., Quinlan F., Lee H., Vahala K. J., Diddams S. A., Microresonator frequency comb optical clock, Optica 2014, 1, 10.CrossrefGoogle Scholar

  • [64] Del’Haye P., Herr T., Gavartin E., Gorodetsky M.L., Holzwarth R., Kippenberg T.J., Octave Spanning Tunable Frequency Comb from a Microresonator, Phys. Rev. Lett. 2011, 107, 63901.CrossrefGoogle Scholar

  • [65] Okawachi Y., Saha K., Levy J. S., Wen Y. H., Lipson M.,Gaeta A. L., Octave-spanning frequency comb generation in a silicon nitride chip, Opt. Lett. 2011, 36, 3398.CrossrefGoogle Scholar

  • [66] Liang W., Savchenkov A. A., Xie Z., McMillan J. F., Burkhart J., Ilchenko V. S., Wong C. W., Matsko A. B., Maleki L., Miniature multioctave light source based on a monolithic microcavity, Optica 2015, 2, 40.CrossrefGoogle Scholar

  • [67] Matsko A. B., Maleki L., Noise conversion in Kerr comb RF photonic oscillators, J. Opt. Soc. Am. B 2015, 32, 232.CrossrefGoogle Scholar

  • [68] Wang P.-H., Ferdous F., Miao H.,Wang J., Leaird D. E., Srinivasan K., Chen L., Aksyuk V., Weiner A. M., Observation of correlation between route to formation, coherence, noise, and communication performance of Kerr combs, Opt. Express 2012, 20, 29284.CrossrefGoogle Scholar

  • [69] Levy J., Saha K., Okawachi Y., Foster M., Gaeta A., Lipson M., High-performance silicon-nitride-based multiple-wavelength source, IEEE Phot. Tech. Lett. 2012, 24, 1375.CrossrefGoogle Scholar

  • [70] T. W. Hansch, Nobel Lecture: Passion for precision, Rev. Mod. Phys. 2006, 78, 1297.Google Scholar

  • [71] Schliesser A., Picqué N., Hänsch T. W., Mid-infrared frequency combs, Nature Photonics 2012, 6, 440.CrossrefGoogle Scholar

  • [72] Savchenkov A. A., Matsko A. B., Liang W., Ilchenko V. S., Seidel D., Maleki L., Kerr combs with selectable central frequency, Nature Photonics 2011, 5, 293.CrossrefGoogle Scholar

  • [73] Savchenkov A. A., Ilchenko V. S., Di Teodoro F., Belden P. M., LotshawW. T.,Matsko A. B.,Maleki L., Generation of Kerr combs centered at 4.5 μm in crystalline microresonators pumped with quantum-cascade lasers, Opt. Lett 2015, 40, 3468.CrossrefGoogle Scholar

  • [74] Wang C. Y., Herr T., Del’Haye P., Schliesser A., Hofer J., Holzwarth R., Hänsch T. W., Picqué N., Kippenberg, T. J., Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators, Nature Communications 2013, 4, 1345.CrossrefGoogle Scholar

  • [75] Griflth A. G., Lau R. K. W., Cardenas J., Okawachi Y., Mohanty A. , Fain R., Lee Y. H. D., Yu M., Phare C. T., Poitras C. B., Gaeta A. L., Lipson M., Silicon-chip mid-infrared frequency comb generation, Nature Communications 2015, 6, 6299.CrossrefGoogle Scholar

  • [76] Lecaplain C., Javerzac-Galy C., Lucas E., Jost J. D., Kippenberg T. J., Quantum cascade laser Kerr frequency comb, arXiv:1506.00626, 2015.Google Scholar

  • [77] Lin G., Chembo Y. K., On the dispersion management of fluorite whispering-gallery mode resonators for Kerr optical frequency comb generation in the telecom and mid-infrared range, Opt. Express 2015, 23, 1594-1604.CrossrefGoogle Scholar

  • [78] Sharping J. E., Lee K. F., Foster M. A., Turner A. C., Schmidt B. S., Lipson M., Gaeta A. L., Kumar P., Generation of correlated photons in nanoscale siliconwaveguides, Optics Express 2006, 14, 12388.CrossrefGoogle Scholar

  • [79] Clemmen S., Phan-Huy K., Bogaerts W., Baets R. G., Emplit Ph., Massar S., Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators, Opt. Express 2009, 17, 16558.CrossrefGoogle Scholar

  • [80] Helt L. G., Yang Z., Liscidini M., Sipe J. E., Spontaneous fourwave mixing in microring resonators, Opt. Lett. 2010, 35, 3006.CrossrefGoogle Scholar

  • [81] Chen J., Levine Z. H., Fan J., Migdall A. L., Frequency-bin entangled comb of photon pairs from a Silicon-on-Insulator microresonator, Opt. Express 2011, 19, 1470.CrossrefGoogle Scholar

  • [82] Azzini S., Grassani D., Strain M. J., Sorel M., Helt L. G., Sipe J. E., Liscidini M., Galli M., Bajoni D., Ultra-low power generation of twin photons in a compact silicon ring resonator, Opt. Express 2012, 20, 23100.CrossrefGoogle Scholar

  • [83] Helt L. G., Liscidini M., Sipe J. E., How does it scale? Comparing quantum and classical nonlinear optical processes in integrated devices, J. Opt. Soc. Am. 2012, 29, 2199.CrossrefGoogle Scholar

  • [84] Azzini S., Grassani D., Galli M., Andreani L. C., Sorel M., Strain M. J., Helt L. G., Sipe J. E., Liscidini M., Bajoni D., From classical four-wave mixing to parametric fluorescence in silicon microring resonators, Opt. Express 2012, 37, 3807.Google Scholar

  • [85] Camacho R. M., Entangled photon generation using four-wave mixing in azimuthally symmetric microresonators, Opt. Express 2012, 20, 21977.CrossrefGoogle Scholar

  • [86] Matsuda N., Le Jeannic H., Fukuda H., Tsuchizawa T., Munro W. J., Shimizu K., Yamada K., Tokura Y., Takesue H., A monolithically integrated polarization entangled photon pair source on a silicon chip, Sci. Rep. 2012, 2, 817.Google Scholar

  • [87] Engin E., Bonneau D., Natarajan C. M., Clark A. S., Tanner M. G., Hadfield R. H., Dorenbos S. N., Zwiller V., Ohira K., Suzuki N., Yoshida H., Iizuka N., Ezaki M., O’Brien J. L., Thompson M. G., Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement, Opt. Express 2013, 21, 27826.CrossrefGoogle Scholar

  • [88] Reimer C., Caspani L., Clerici M., Ferrera M., Kues M., Peccianti M., Pasquazi A., Razzari L., Little B. E., Chu S. T., Moss D. J., Morandotti R., Integrated frequency comb source of heralded single photons, Opt. Express 2014, 22, 6535.CrossrefGoogle Scholar

  • [89] Vernon Z., Sipe J. E., Spontaneous four-wave mixing in lossy microring resonators, arXiv:1502.05900 [quant-ph], 2015.Google Scholar

  • [90] Grassani D., Azzini S., Liscidini M., Galli M., Strain M. J., Sorel M., Sipe J. E., Bajoni D., Micrometer-scale integrated silicon source of time-energy entangled photons, Optica 2015, 2, 88. CrossrefGoogle Scholar

  • [91] Fabre C., Squeezed states of light, Phys. Rep. 1992, 19, 215.CrossrefGoogle Scholar

  • [92] Sanders B. C., Review of coherent entangled states, J. Phys. A: Math. Theor. 2012, 45, 244002.CrossrefGoogle Scholar

  • [93] Lugiato L. A., Castelli F., Quantum Noise Reduction in a Spatial Dissipative Structure, Phys. Rev. Lett., 1992, 68, 3284.CrossrefGoogle Scholar

  • [94] Dutt A., Luke K.,Manipatruni S., Gaeta A. L., Nussenzveig P., Lipson M., On-Chip Optical Squeezing, Phys. Rev. Applied 2015, 3, 044005.CrossrefGoogle Scholar

  • [95] Haragus M., Iooss G., Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems, Springer, 2010.Google Scholar

  • [96] Miyaji T., Ohnishi I., Tsutsumi Y., Bifurcation analysis to the Lugiato-Lefever equation in one space dimension, Physica D 2010, 239, 2066.CrossrefGoogle Scholar

  • [97] Kozyreff G., Localized Turing patterns in nonlinear optical cavities, Physica D 2012, 241, 936.Google Scholar

  • [98] Herr T., Hartinger K., Riemensberger J., Wang C. Y., Gavartin E., Holzwarth R., Gorodetsky M. L., Kippenberg T. J., Universal formation dynamics and noise of Kerr-frequency combs in microresonators Nature Photonics, 2012, 6, 480.Google Scholar

  • [99] Del’Haye P., Beha K., Papp S. B., Diddams S. A., Self-Injection Locking and Phase-Locked States in Microresonator-Based Optical Frequency Combs, Phys. Rev. Lett. 2014, 112, 043905.CrossrefGoogle Scholar

  • [100] Del’Haye P., Coillet A., Loh W., Beha K., Papp S. B., Diddams S. A., Phase steps and resonator detuning measurements in microresonator frequency combs, Nature Communications 2015, 6, 5668.CrossrefGoogle Scholar

  • [101] Bao C., Zhang L., Matsko A., Nonlinear conversion eflciency in Kerr frequency comb generation, Opt. Lett. 2014, 39, 6126.CrossrefGoogle Scholar

  • [102] Chembo Y. K., Grudinin I. S., Yu N., Spatiotemporal dynamics of Kerr-Raman optical frequency combs, Phys. Rev. A 2015, 92, 043818.CrossrefGoogle Scholar

  • [103] Grudinin I. S., Yu N., Dispersion engineering of crystalline resonators via microstructuring, Optica 2015, 2, 221.CrossrefGoogle Scholar

  • [104] Lin G., Diallo S., Saleh K., Martinenghi R., Beugnot J.-C., Sylvestre T., Chembo Y. K., Cascaded Brillouin lasing in monolithic barium fluoride whispering gallery mode resonators, Appl. Phys. Lett. 2014, 105, 231103.CrossrefGoogle Scholar

  • [105] Diallo S., Lin G., Chembo Y. K., Giant thermo-optical relaxation oscillations in millimeter-size whispering gallery mode disk resonators, Opt. Lett. 2015, 40, 3834.CrossrefGoogle Scholar

  • [106] Lin G., Martinenghi R., Diallo S., Saleh K., Coillet A., Chembo Y. K., Spectro-temporal dynamics of Kerr combs with parametric seeding Appl. Opt. 2015, 54, 2407.Google Scholar

  • [107] Matsko A. B., Savchenkov A. A., Yu N., Maleki L., Whisperinggallery- mode resonators as frequency references. I. Fundamental limitations, J. Opt. Soc. Am. B 2007, 24, 1324.CrossrefGoogle Scholar

  • [108] Savchenkov A. A.,Matsko A. B., Ilchenko V. S., Yu N.,Maleki L., Whispering-gallery-mode resonators as frequency references. II. Stabilization, J. Opt. Soc. Am. B 2007, 24, 2988.CrossrefGoogle Scholar

About the article

Received: 2015-09-30

Accepted: 2016-01-04

Published Online: 2016-06-17

Published in Print: 2016-06-01

Citation Information: Nanophotonics, Volume 5, Issue 2, Pages 214–230, ISSN (Online) 2192-8614, ISSN (Print) 2192-8606, DOI: https://doi.org/10.1515/nanoph-2016-0013.

Export Citation

© 2016. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Kangmei Li and Amy C. Foster
Proceedings of the IEEE, 2018, Volume 106, Number 12, Page 2196
L. A. Lugiato, F. Prati, M. L. Gorodetsky, and T. J. Kippenberg
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2018, Volume 376, Number 2135, Page 20180113
Tobias J. Kippenberg, Alexander L. Gaeta, Michal Lipson, and Michael L. Gorodetsky
Science, 2018, Volume 361, Number 6402, Page eaan8083
Daniel C. Cole, Alessandra Gatti, Scott B. Papp, Franco Prati, and Luigi Lugiato
Physical Review A, 2018, Volume 98, Number 1
Irina V. Balakireva and Yanne K. Chembo
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2018, Volume 376, Number 2124, Page 20170381
Jiayang Wu, Xingyuan Xu, Thach G. Nguyen, Sai Tak Chu, Brent E. Little, Roberto Morandotti, Arnan Mitchell, and David J. Moss
IEEE Journal of Selected Topics in Quantum Electronics, 2018, Volume 24, Number 4, Page 1
Rodrigues D. Dikandé Bitha and Alain M. Dikandé
Physical Review A, 2018, Volume 97, Number 3
Guoping Lin, Rémi Henriet, Aurélien Coillet, Maxime Jacquot, Luca Furfaro, Gilles Cibiel, Laurent Larger, and Yanne K. Chembo
Optics Letters, 2018, Volume 43, Number 3, Page 495
Souleymane Diallo, Jean-Pierre Aubry, and Yanne K. Chembo
Optics Express, 2017, Volume 25, Number 24, Page 29934
Guoping Lin, Aurélien Coillet, and Yanne K. Chembo
Advances in Optics and Photonics, 2017, Volume 9, Number 4, Page 828
Ryo Suzuki, Takumi Kato, Tomoya Kobatake, and Takasumi Tanabe
Optics Express, 2017, Volume 25, Number 23, Page 28806
Souleymane Diallo and Yanne K. Chembo
Optics Letters, 2017, Volume 42, Number 18, Page 3522
Yu Pan, Guoping Lin, Souleymane Diallo, Xianmin Zhang, and Yanne K. Chembo
IEEE Photonics Journal, 2017, Volume 9, Number 4, Page 1
Jimmi H. Talla Mbé, Carles Milián, and Yanne K. Chembo
The European Physical Journal D, 2017, Volume 71, Number 7
Valery E. Lobanov, Artem V. Cherenkov, Artem E. Shitikov, Igor A. Bilenko, and Michael L. Gorodetsky
The European Physical Journal D, 2017, Volume 71, Number 7
Fabrizio Castelli, Massimo Brambilla, Alessandra Gatti, Franco Prati, and Luigi A. Lugiato
The European Physical Journal D, 2017, Volume 71, Number 4
Marco A. G. Porcel, Florian Schepers, Jörn P. Epping, Tim Hellwig, Marcel Hoekman, René G. Heideman, Peter J. M. van der Slot, Chris J. Lee, Robert Schmidt, Rudolf Bratschitsch, Carsten Fallnich, and Klaus-J. Boller
Optics Express, 2017, Volume 25, Number 2, Page 1542
Yanne K. Chembo, Lukas Baumgartel, and Nan Yu
IEEE Photonics Journal, 2017, Volume 9, Number 1, Page 1

Comments (0)

Please log in or register to comment.
Log in