Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Editor-in-Chief: Sorger, Volker

IMPACT FACTOR 2018: 6.908
5-year IMPACT FACTOR: 7.147

CiteScore 2018: 6.72

In co-publication with Science Wise Publishing

Open Access
See all formats and pricing
More options …
Volume 5, Issue 2


Normal-dispersion microresonator Kerr frequency combs

Xiaoxiao Xue
  • Corresponding author
  • School of Electrical and Computer Engineering, Purdue University, 465 Northwestern Avenue, West Lafayette, Indiana 47907-2035, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Minghao Qi
  • School of Electrical and Computer Engineering, Purdue University, 465 Northwestern Avenue, West Lafayette, Indiana 47907-2035, USA and Birck Nanotechnology Center, Purdue University, 1205 West State Street, West Lafayette, Indiana 47907, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andrew M. Weiner
  • School of Electrical and Computer Engineering, Purdue University, 465 Northwestern Avenue, West Lafayette, Indiana 47907-2035, USA and Birck Nanotechnology Center, Purdue University, 1205 West State Street, West Lafayette, Indiana 47907, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-06-17 | DOI: https://doi.org/10.1515/nanoph-2016-0016


Optical microresonator-based Kerr frequency comb generation has developed into a hot research area in the past decade. Microresonator combs are promising for portable applications due to their potential for chip-level integration and low power consumption. According to the group velocity dispersion of the microresonator employed, research in this field may be classified into two categories: the anomalous dispersion regime and the normal dispersion regime. In this paper, we discuss the physics of Kerr comb generation in the normal dispersion regime and review recent experimental advances. The potential advantages and future directions of normal dispersion combs are also discussed.

Keywords : frequency comb; microresonator; Kerr effect; four-wave mixing; group velocity dispersion; mode coupling; modulational instability; dark soliton; thermo-optic effect; pulse shaping; mode-locking


  • [1] Ye J, Cundiff ST. Femtosecond Optical Frequency Comb: Principle, Operation, and Applications. Boston, MA, USA, Springer, 2005.Google Scholar

  • [2] Udem Th, Holzwarth R, Hänsch TW. Optical frequency metrology. Nature 2002; 416:233-237.CrossrefGoogle Scholar

  • [3] Ye J, Schnatz H, Hollberg LW. Optical frequency combs: from frequency metrology to optical phase control. J Sel Top Quantum Electron 2003; 9: 1041-1058.CrossrefGoogle Scholar

  • [4] Adler F, Thorpe MJ, Cossel KC, Ye J. Cavity-enhanced direct frequency comb spectroscopy: technology and applications. Annu. Rev. Anal. Chem. 2010; 3: 175-205.CrossrefGoogle Scholar

  • [5] Fortier TM, Kirchner MS, Quinlan F, et al. Generation of ultrastable microwaves via optical frequency division. Nature Photon 2011; 5: 425-429.CrossrefGoogle Scholar

  • [6] Supradeepa VR, Long CM, Wu R. Comb-based radiofrequency photonic filters with rapid tunability and high selectivity. Nature Photon 2012; 6: 186-194.CrossrefGoogle Scholar

  • [7] Xue X, Xuan Y, Kim HJ, et al. Programmable single-bandpass photonic RF filter based on Kerr comb from a microring. J Lightwave Technol 2014; 32: 3557-3565.CrossrefGoogle Scholar

  • [8] LiangW, Eliyahu D, Ilchenko VS, et al. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nature Commum 2015; 6: 7957.CrossrefGoogle Scholar

  • [9] Hillerkuss D, Schmogrow R, Schellinger T, et al. 26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing. Nature Photon 2011; 5: 364-371.CrossrefGoogle Scholar

  • [10] Hillerkuss D, Schmogrow R, Meyer M, et al. Single-laser 32.5 Tbit/s Nyquist WDM transmission. J Opt Commun Netw 2012; 4: 715-723.CrossrefGoogle Scholar

  • [11] Pfeifle J, Brasch V, Lauermann M, et al. Coherent terabit communications with microresonator Kerr frequency combs. Nature Photon 2014; 8: 375-380.CrossrefGoogle Scholar

  • [12] Fermann ME, Hartl I. Ultrafast fibre lasers. Nature Photon 2013; 7: 868-874.CrossrefGoogle Scholar

  • [13] Torres-Company V, Weiner AM. Optical frequency comb technology for ultra-broadband radio-frequency photonics. Laser Photon Rev 2014; 8: 368-393.CrossrefGoogle Scholar

  • [14] Kippenberg TJ, Holzwarth R, Diddams SA. Microresonatorbased optical frequency combs. Science 2011; 332: 555-559.CrossrefGoogle Scholar

  • [15] Kippenberg TJ, Spillane SM, Vahala KJ. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys Rev Lett 2004; 93: 083904.CrossrefGoogle Scholar

  • [16] Savchenkov AA,Matsko AB, Strekalov D,Mohageg M, Ilchenko VS,Maleki L. Lowthreshold optical oscillations in a whispering gallery mode CaF2 resonator. Phys Rev Lett 2004; 93: 243905.CrossrefGoogle Scholar

  • [17] Del’Haye P, Schliesser A, Arcizet O,Wilken T, Holzwarth R, Kippenberg TJ. Optical frequency comb generation from a monolithic microresonator. Nature 2007; 450: 1214-1217.CrossrefGoogle Scholar

  • [18] Agha IH, Okawachi Y, Foster MA, Sharping JE, Gaeta AL. Four-wave-mixing parametric oscillations in dispersioncompensated high-Q silica microspheres. Phys Rev A 2007; 76: 043837.CrossrefGoogle Scholar

  • [19] Papp SB, Del’Haye P, Diddams SA. Mechanical control of a microrod-resonator optical frequency comb. Phys Rev X 2013; 3: 031003.Google Scholar

  • [20] Savchenkov AA, Matsko AB, Ilchenko VS, Solomatine I, Seidel D, Maleki L. Tunable optical frequency comb with a crystalline whispering gallery mode resonator. Phys Rev Lett 2008; 101: 093902.CrossrefGoogle Scholar

  • [21] Grudinin IS, Baumgartel L, Yu N. Frequency comb from a microresonatorwith engineered spectrum. Opt Express 2012; 20: 6604-6609.CrossrefGoogle Scholar

  • [22] Wang CY, Herr T, Del’Haye P, et al. Mid-infrared optical frequency combs at 2.5 μmbased on crystalline microresonators. Nature Commun 2013; 4: 1345.CrossrefGoogle Scholar

  • [23] Ilchenko VS, Savchenkov AA, Matsko AB, Maleki L. Generation of Kerr frequency combs in a sapphire whispering gallery mode microresonator. Opt Eng 2014; 53: 122607.CrossrefGoogle Scholar

  • [24] Razzari L, Duchesne D, Ferrera M, et al. CMOS-compatible integrated optical hyperparametric oscillator. Nature Photon 2009; 4: 41-45.CrossrefGoogle Scholar

  • [25] Levy JS, Gondarenko A, Foster MA, Turner-Foster AC, Gaeta AL, Lipson M. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nature Photon 2009; 4: 37-40.Google Scholar

  • [26] Jung H, Xiong C, Fong KY, Zhang X, Tang HX. Optical frequency comb generation from aluminum nitride microring resonator. Opt Lett 2013; 38: 2810-2813.CrossrefGoogle Scholar

  • [27] Hausmann BJM, Bulu I, Venkataraman V, Deotare P, Lončar M. Diamond nonlinear photonics. Nature Photon 2014; 8: 369-375.CrossrefGoogle Scholar

  • [28] Griflth AG, Lau RKW, Cardenas J, et al. Silicon-chip midinfrared frequency comb generation. Nature Commun 2015; 6: 6299.CrossrefGoogle Scholar

  • [29] Del’Haye P, Herr T, Gavartin E, Gorodetsky ML, Holzwarth R, Kippenberg TJ. Octave spanning tunable frequency comb from a microresonator. Phys Rev Lett 2011; 107: 063901.CrossrefGoogle Scholar

  • [30] Okawachi Y, Saha K, Levy JS, Wen YH, Lipson M, Gaeta AL. Octave-spanning frequency comb generation in a silicon nitride chip. Opt Lett 2011; 36: 3398-3400.CrossrefGoogle Scholar

  • [31] Ferdous F, Miao H, Leaird DE, et al. Spectral line-by-line pulse shaping of on-chip microresonator frequency combs. Nature Photon 2011; 5: 770-776.CrossrefGoogle Scholar

  • [32] Papp SB, Diddams SA. Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb. Phys Rev A 2011; 84: 053833.CrossrefGoogle Scholar

  • [33] Herr T, Hartinger K, Riemensberger J, et al. Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nature Photon 2012; 6: 480-487.CrossrefGoogle Scholar

  • [34] Li J, Lee H, Chen T, Vahala KJ. Low-pump-power, low-phasenoise, and microwave to millimeter-wave repetition rate operation in microcombs. Phys Rev Lett 2012; 109: 233901.CrossrefGoogle Scholar

  • [35] Saha K, Okawachi Y, Shim B, et al. Modelocking and femtosecond pulse generation in chip-based frequency combs. Opt Express 2013; 21: 1335-1343.CrossrefGoogle Scholar

  • [36] Herr T, Brasch V, Jost JD, et al. Temporal solitons in optical microresonators. Nature Photon 2014; 8: 145-152.Google Scholar

  • [37] Del’Haye P, Beha K, Papp SB, Diddams SA. Self-injection locking and phase-locked states in microresonator-based optical frequency combs. Phys Rev Lett 2014; 112: 043905.Google Scholar

  • [38] Herr T, Brasch V, Jost JD, et al. Mode spectrum and temporal soliton formation in optical microresonators. Phys Rev Lett 2014; 113: 123901.CrossrefGoogle Scholar

  • [39] Del’Haye P, Coillet A, Loh W, Beha K, Papp SB, Diddams SA. Phase steps and resonator detuning measurements in microresonator frequency combs. Nature Commun 2015; 6: 5668.Google Scholar

  • [40] Savchenkov AA, Matsko AB, Liang W, Ilchenko VS, Seidel D, Maleki L. Kerr frequency comb generation in overmoded resonators. Opt Express 2012; 20: 27290-27298.CrossrefGoogle Scholar

  • [41] Wang PH, Ferdous F, Miao H, et al. Observation of correlation between route to formation, coherence, noise, and communication performance of Kerr combs. Opt Express 2012; 20: 29284-29295.CrossrefGoogle Scholar

  • [42] Wang PH, Xuan Y, Fan L, et al. Drop-port study of microresonator frequency combs: power transfer, spectra and timedomain characterization. Opt Express 2013; 21: 22441-22452.CrossrefGoogle Scholar

  • [43] Coillet A, Balakireva I, Henriet R, et al. Azimuthal Turing patterns, bright and dark cavity solitons in Kerr combs generated with whispering-gallery-mode resonators. Photon J 2013; 5: 6100409.CrossrefGoogle Scholar

  • [44] LiangW, Savchenkov AA, Ilchenko VS, et al. Generation of a coherent near-infrared Kerr frequency comb in a monolithic microresonator with normal GVD. Opt Lett 2014; 39: 2920-2923.CrossrefGoogle Scholar

  • [45] Liu Y, Xuan Y, Xue X, et al. Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation. Optica 2014; 1: 137-144.CrossrefGoogle Scholar

  • [46] Xue X, Xuan Y, Liu Y, et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nature Photon 2015; 9: 594-600.CrossrefGoogle Scholar

  • [47] Xue X, Xuan Y, Wang PH, et al. Normal-dispersion microcombs enabled by controllable mode interactions. Laser Photon Rev 2015; 9: 4, L23-L28.Google Scholar

  • [48] Huang SW, Zhou H, Yang J, et al. Mode-locked ultrashort pulse generation from on-chip normal dispersion microresonators. Phys Rev Lett 2015; 114: 053901.CrossrefGoogle Scholar

  • [49] Matsko AB, Savchenkov AA, Liang W, Ilchenko VS, Seidel D, Maleki L. Mode-locked Kerr frequency combs. Opt Lett 2011; 36: 2845-2847.CrossrefGoogle Scholar

  • [50] Matsko AB, Savchenkov AA, Maleki L. Normal group-velocity dispersion Kerr frequency comb. Opt Lett 2012; 37: 43-45.CrossrefGoogle Scholar

  • [51] Coen S, Randle HG, Sylvestre T, Erkintalo M. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model. 2013; 38: 37-39.Google Scholar

  • [52] Lamont MRE, Okawachi Y, Gaeta AL. Route to stabilized ultrabroadband microresonator-based frequency combs. Opt Lett 2013; 38: 3478-3479.CrossrefGoogle Scholar

  • [53] Parra-Rivas P, Gomila D, Matías MA, Coen S, Gelens L. Dynamics of localized and patterned structures in the Lugiato- Lefever equation determine the stability and shape of optical frequency combs. Phys Rev A 2014; 89: 043813.CrossrefGoogle Scholar

  • [54] Godey C, Balakireva IV, Coillet A, Chembo YK. Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes. Phys Rev A 2014; 89: 063814.CrossrefGoogle Scholar

  • [55] Lobanov VE, Lihachev G, Kippenberg TJ, Gorodetsky ML. Frequency combs and platicons in optical microresonators with normal GVD. Opt Express 2015; 23: 7713-7721.CrossrefGoogle Scholar

  • [56] Jaramillo-Villegas JA, Xue X, Wang PH, Leaird DE, and Weiner AM. Deterministic single soliton generation and compression in microring resonators avoiding the chaotic region. Opt Express 2015; 23: 9618-9626.CrossrefGoogle Scholar

  • [57] Agrawal GP. Nonlinear Fiber Optics. San Diego, CA, USA, Academic Press, 2001.Google Scholar

  • [58] Haelterman M, Trillo S, Wabnitz S. Dissipative modulation instability in a nonlinear dispersive ring cavity. Opt Commun 1992; 91: 401-407.CrossrefGoogle Scholar

  • [59] Coen S, Haelterman M. Modulational instability induced by cavity boundary conditions in a normally dispersive optical fiber. Phys Rev Lett 1997; 79: 4139-4142.CrossrefGoogle Scholar

  • [60] Weiner AM. Ultrafast Optics. Hoboken, NJ, USA, John Wiley & Sons, 2009.Google Scholar

  • [61] Haus HA, Fujimoto JG, and Ippen EP. Structures for additive pulse mode locking. J Opt Soc Am 1991; 8: 2068-2076.CrossrefGoogle Scholar

  • [62] Tamura K, Ippen EP, Haus HA, and Nelson LE. 77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser. Opt Lett 1993; 18: 1080-1082.CrossrefGoogle Scholar

  • [63] Chong A, Buckley J, Renninger W, and Wise F. All-normaldispersion femtosecond fiber laser. Opt Exp 2006; 14: 10095-10100.CrossrefGoogle Scholar

  • [64] Del’Haye P, ArcizetO, Gorodetsky ML, Holzwarth R, Kippenberg TJ. Frequency comb assisted diode laser spectroscopy formeasurement of microcavity dispersion. Nature Photon 2009; 3: 529-533.CrossrefGoogle Scholar

  • [65] Zhang L, Mu J, Singh V, Agarwal AM, Kimerling LC, Michel J. Intracavity dispersion of microresonators and its engineering for octave-spanning Kerr frequency comb generation. IEEE J Sel Top Quantum Electron 2014; 20: 5900207.Google Scholar

  • [66] Refractive Index Database and the references therein. (Accessed October 4, 2015, at http://refractiveindex.info).Google Scholar

  • [67] Grudinin IS, Yu N. Dispersion engineering of crystalline resonators via microstructuring. Optica 2015; 2: 221-224.CrossrefGoogle Scholar

  • [68] Turner AC, Manolatou C, Schmidt BS, Lipson M. Tailored anomalous group-velocity dispersion in silicon channel waveguides. Opt Express 2006; 14: 4357-4362.CrossrefGoogle Scholar

  • [69] Willner AE, Zhang L, Yue Y. Tailoring of dispersion and nonlinear properties of integrated silicon waveguides for signal processing applications. Semicond Sci Technol 2011; 26: 014044.CrossrefGoogle Scholar

  • [70] Riemensberger J, Hartinger K, Herr T, Brasch V, Holzwarth R, Kippenberg TJ. Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition. Opt Express 2012; 20: 27661-27669.CrossrefGoogle Scholar

  • [71] Chavez Boggio JM, Bodenmüller D, Fremberg T, et al. Dispersion engineered silicon nitridewaveguides by geometrical and refractive-index optimization. J Opt Soc Am B 2014; 31: 2846-2857.CrossrefGoogle Scholar

  • [72] Coen S, Haelterman M, Emplit P, Delage L, Simohamed LM, Reynaud F. Bistable switching induced by modulational instability in a normally dispersive all-fibre ring cavity. J Opt B 1999; 1: 36-42.CrossrefGoogle Scholar

  • [73] Carmon T, Yang L, Vahala KJ. Dynamical thermal behavior and thermal self-stability of microcavities. Opt Express 2004; 12: 4742-4750.CrossrefGoogle Scholar

  • [74] Ghosh G. Handbook of Optical Constants of Solids: Handbook of Thermo-Optic Coeflcients of OpticalMaterials with Applications. 1st ed. Academic Press, 1998.Google Scholar

  • [75] Berkhoer AL, Zakharov VE. Self excitation of waves with different polarizations in nonlinear media. Zh Eksp Teor Fiz 1970; 58: 903-911 [J Exp Theor Phys 1970; 31: 486-490].Google Scholar

  • [76] Agrawal GP. Modulation instability induced by cross-phase modulation. Phys Rev Lett 1987; 59: 880-883.CrossrefGoogle Scholar

  • [77] Zolotovskii IO, Petrov AN, Sementsov DI. Modulation instability of wave packets in the presence of linear and nonlinear mode coupling. Zh Eksp Teor Fiz 2006; 76: 90-95 [Tech Phys 2006; 51: 236-241].Google Scholar

  • [78] Haus HA, Popović MA, Watts MR, Manolatou C, Little BE, Chu ST. Optical resonators and filters. In: Vahala K, ed. Optical Mi crocavities. Singapore, World Scientific Publishing, 2004, 9.Google Scholar

  • [79] Grudinin IS, Baumgartel L, and Yu N. Impact of cavity spectrum on span in microresonator frequency combs. Opt Exp 2013; 21: 26929-26935.CrossrefGoogle Scholar

  • [80] Weiner AM. Femtosecond pulse shaping using spatial light modulators. Rev Sci Instrum 2000; 71: 1929-1960.CrossrefGoogle Scholar

  • [81] Weiner AM, Heritage JP, Hawkins RJ, et al. Experimental observation of the fundamental dark soliton in optical fibers. Phys Rev Lett 1988; 61: 2445-2448.CrossrefGoogle Scholar

  • [82] Hasegawa A, Matsumoto M. Optical Solitons in Fibers. Springer, 2003.Google Scholar

  • [83] Rosanov NN. Spatial Hysteresis and Optical Patterns. NY, USA, Springer, 2002.Google Scholar

  • [84] Coen S, Tlidi M, Emplit Ph, Haelterman M, Convection versus Dispersion in Optical Bistability. Phys Rev Lett 1999; 83: 2328-2331.CrossrefGoogle Scholar

  • [85] Gentry CM, Zeng X, Popović MA. Tunable coupled-mode dispersion compensation and its application to on-chip resonant four-wave mixing. Opt Lett 2014; 39: 5689-5692.CrossrefGoogle Scholar

  • [86] Brasch V, Herr T, Geiselmann M, et al. Photonic chip based optical frequency comb using soliton induced Cherenkov radiation. arXiv:1410.8598v2 [physics.optics].Google Scholar

About the article

Received: 2015-10-16

Accepted: 2015-12-23

Published Online: 2016-06-17

Published in Print: 2016-06-01

Citation Information: Nanophotonics, Volume 5, Issue 2, Pages 244–262, ISSN (Online) 2192-8614, ISSN (Print) 2192-8606, DOI: https://doi.org/10.1515/nanoph-2016-0016.

Export Citation

© 2016. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Mohammed S. Alshaykh, Yi Xuan, Daniel E. Leaird, Jason D. McKinney, Minghao Qi, and Andrew M. Weiner
Journal of Lightwave Technology, 2019, Volume 37, Number 23, Page 5773
Dongyu Chen, Andre Kovach, Sumiko Poust, Vincent Gambin, and Andrea M. Armani
Applied Physics Letters, 2019, Volume 115, Number 5, Page 051105
Valery E. Lobanov, Nikita M. Kondratiev, Artem E. Shitikov, Ramzil R. Galiev, and Igor A. Bilenko
Physical Review A, 2019, Volume 100, Number 1
Xiaoxiao Xue, Yi Xuan, Chengying Bao, Shangyuan Li, Xiaoping Zheng, Bingkun Zhou, Minghao Qi, and Andrew M. Weiner
Journal of Lightwave Technology, 2018, Volume 36, Number 12, Page 2312
Jiayang Wu, Xingyuan Xu, Thach G. Nguyen, Sai Tak Chu, Brent E. Little, Roberto Morandotti, Arnan Mitchell, and David J. Moss
IEEE Journal of Selected Topics in Quantum Electronics, 2018, Volume 24, Number 4, Page 1
A. V. Cherenkov, N. M. Kondratiev, V. E. Lobanov, A. E. Shitikov, D. V. Skryabin, and M. L. Gorodetsky
Optics Express, 2017, Volume 25, Number 25, Page 31148

Comments (0)

Please log in or register to comment.
Log in