Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Nanophotonics

Editor-in-Chief: Sorger, Volker


CiteScore 2017: 6.57

IMPACT FACTOR 2017: 6.014
5-year IMPACT FACTOR: 7.020


In co-publication with Science Wise Publishing

Open Access
Online
ISSN
2192-8614
See all formats and pricing
More options …
Volume 5, Issue 2

Issues

Aluminum nitride as nonlinear optical material for on-chip frequency comb generation and frequency conversion

Hojoong Jung / Hong X. Tang
Published Online: 2016-06-17 | DOI: https://doi.org/10.1515/nanoph-2016-0020

Abstract

A number of dielectric materials have been employed for on-chip frequency comb generation. Silicon based dielectrics such as silicon dioxide (SiO2) and silicon nitride (SiN) are particularly attractive comb materials due to their low optical loss and maturity in nanofabrication. They offer third-order Kerr nonlinearity (χ(3)), but little second-order Pockels (χ(2)) effect. Materials possessing both strong χ(2) and χ(3) are desired to enable selfreferenced frequency combs and active control of comb generation. In this review, we introduce another CMOS-compatible comb material, aluminum nitride (AlN),which offers both second and third order nonlinearities. A review of the advantages of AlN as linear and nonlinear optical material will be provided, and fabrication techniques of low loss AlN waveguides from the visible to infrared (IR) region will be discussed.We will then show the frequency comb generation including IR, red, and green combs in high-Q AlN micro-rings from single CW IR laser input via combination of Kerr and Pockels nonlinearity. Finally, the fast speed on-off switching of frequency comb using the Pockels effect of AlN will be shown,which further enriches the applications of the frequency comb.

References

  • [1] Th. Udem, R. Holzwarth & T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233-237 (2002).Google Scholar

  • [2] S. T. Cundiff and Jun Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75, 325 (2003).CrossrefGoogle Scholar

  • [3] S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, D. J. Wineland, “An Optical Clock Based on a Single Trapped 199Hg+ Ion,” Science 293(5531), 825-828, (2001).Google Scholar

  • [4] H. S. Margolis, G. P. Barwood, G. Huang, H. A. Klein, S. N. Lea, K. Szymaniec, P. Gill, “Hertz-Level Measurement of the Optical Clock Frequency in a Single 88Sr+ Ion,” Science 306(5700) 1355-1358 (2004).Google Scholar

  • [5] K. Takahata, T. Kobayashi, H. Sasada, Y. Nakajima, H. Inaba, and F.-L. Hong, “Absolute frequency measurement of sub- Doppler molecular lines using a 3.4−μm difference-frequencygeneration spectrometer and a fiber-based frequency comb,” Phys. Rev. A 80, 032518 (2009)Google Scholar

  • [6] A. Schliesser, M. Brehm, F. Keilmann, and D. W. van der Weide, “Frequency-comb infrared spectrometer for rapid, remote chemical sensing,” Opt. Exp. 13(22) 9029-9038 (2005).CrossrefGoogle Scholar

  • [7] G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. P. Tans, I. Coddington, and N. R. Newbury, “Frequency-combbased remote sensing of greenhouse gases over kilometer air paths,” Optica 1(5) 290-298 (2014).Google Scholar

  • [8] S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photon. 4, 760-766 (2010).CrossrefGoogle Scholar

  • [9] G. G. Ycas, F. Quinlan, S. A. Diddams, S. Osterman, S. Mahadevan, S. Redman, R. Terrien, L. Ramsey, C. F. Bender, B. Botzer, and S. Sigurdsson, “Demonstration of on-sky calibration of astronomical spectra using a 25 GHz near-IR laser frequency comb,” Opt. Exp. 20(6) 6631-6643 (2012).CrossrefGoogle Scholar

  • [10] T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335-1337 (2008).Web of ScienceGoogle Scholar

  • [11] T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-Based Optical Frequency Combs,” Science 332, 555 (2011).Web of ScienceGoogle Scholar

  • [12] P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214-1217 (2007).Web of ScienceGoogle Scholar

  • [13] P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full Stabilization of a Microresonator-Based Optical Frequency Comb,” Phys. Rev. Lett. 101, 053903 (2008).Web of ScienceGoogle Scholar

  • [14] P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave Spanning Tunable Frequency Comb from a Microresonator,” Phys. Rev. Lett. 107, 063901 (2011).Web of ScienceGoogle Scholar

  • [15] W. Liang, A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Seidel, and L. Maleki, “Generation of near-infrared frequency combs from a MgF2 whispering gallery mode resonator,” Optics Lett. 36, 2290 (2011)Google Scholar

  • [16] I. S. Grudinin, L. Baumgartel, and N. Yu, “Frequency comb from a microresonator with engineered spectrum,” Opt. Exp. 20 (6), 6604-6609 (2012)CrossrefGoogle Scholar

  • [17] C.Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T.W. Hänsch, N. Picque, and T. J. Kippenberg, “Midinfrared optical frequency combs at 2.5 μmbased on crystalline microresonators” Nat. Comm. 4, 1345 (2013)Google Scholar

  • [18] A. A. Savchenkov, A. B. Matsko, D. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, “Low Threshold Optical Oscillations in a Whispering Gallery Mode CaF2 Resonator,” Phys. Rev. Lett. 93, 243905 (2004).CrossrefGoogle Scholar

  • [19] A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L.Maleki, “Tunable Optical Frequency Comb with a Crystalline Whispering Gallery Mode Resonator,” Phys. Rev. Lett. 101, 093902 (2008)Web of ScienceCrossrefGoogle Scholar

  • [20] I. S. Grudinin, N. Yu, and L. Maleki, “Generation of optical frequency combs with a CaF2 resonator,” Optics Lett. 34, 878 (2009)Google Scholar

  • [21] J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photon. 4, 37 (2010)CrossrefGoogle Scholar

  • [22] Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36, 3398 (2011)CrossrefWeb of ScienceGoogle Scholar

  • [23] A. R. Johnson, Y. Okawachi, J. S. Levy, J. Cardenas, K. Saha, M. Lipson, and A. L.Gaeta, “Chip-based frequency combswith sub-100 GHz repetition rates,” Opt. Lett. 37, 875 (2012)CrossrefGoogle Scholar

  • [24] F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J.Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Pho ton. 5, 770-776 (2011).Google Scholar

  • [25] Y. Liu, Y. Xuan, X. Xue, P.-H. Wang, S. Chen, A. J. Metcalf, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation,” Optica, 1(3), 137-144 (2014).Google Scholar

  • [26] L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photon. 4, 41 (2010).CrossrefGoogle Scholar

  • [27] D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” 7, 597-607 (2013).Web of ScienceGoogle Scholar

  • [28] A. G. Griflth, R. K.W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Comm. 6, 6299 (2015).CrossrefGoogle Scholar

  • [29] B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Loncar, “Diamond nonlinear photonics,” Nat. Photon. 8, 369-374 (2014).CrossrefGoogle Scholar

  • [30] H. Jung, C. Xiong, K. Y. Fong, X. Zhang, and H. X. Tang, “Optical frequency comb generation from aluminumnitride microring resonator,” Opt. Lett. 38(15), 2810-2813 (2013).CrossrefGoogle Scholar

  • [31] H. Jung, K. Y. Fong, C. Xiong, and H. X. Tang, “Electrical tuning and switching of an optical frequency comb generated in aluminum nitride microring resonators,” 39 (1), 84-87 (2014).Web of ScienceGoogle Scholar

  • [32] H. Jung, R. Stoll, X. Guo, D. Fischer, and H. X. Tang, “Green, red, and IR frequency comb line generation from single IR pump in AlN microring resonator,” 1(6), 396-399 (2014).Web of ScienceGoogle Scholar

  • [33] C. Xiong, W. H. P. Pernice, and H. X. Tang, “Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing,” Nano Lett. 12, 3562 (2012).CrossrefWeb of ScienceGoogle Scholar

  • [34] W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett. 100, 223501 (2012).CrossrefWeb of ScienceGoogle Scholar

  • [35] C. Xiong,W. Pernice, X. Sun, C. Schuck, K. Y Fong and H. X Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14 095014 (2012).Web of ScienceGoogle Scholar

  • [36] P. M. Lundquist,W. P. Lin, Z. Y. Xu, G. K. Wong, E. D. Rippert, J. A. Helfrich, and J. B. Ketterson, “Ultraviolet second harmonic generation in radio-frequency sputter-deposited aluminum nitride thin films,” Appl. Phys. Lett. 65, 1085 (1994).CrossrefGoogle Scholar

  • [37] P. Gräupner, J. C. Pommier, A. Cachard and J. L. Coutaz, “Electrooptical effect in aluminumnitridewaveguides,” J. Appl. Phys. 71, 4136 (1992).Google Scholar

  • [38] W. P. Lin, P. M. Lundquist, G. K. Wong, E. D. Rippert, and J. B. Ketterson, “Second order optical nonlinearities of radio frequency sputter-deposited AIN thin films,” Appl. Phys. Lett. 63, 2875-2877 (1993).CrossrefGoogle Scholar

  • [39] M. Feneberg, R. A. R. Leute, B. Neuschl, K. Thonke, and M. Bickermann, “High-excitation and high-resolution photoluminescence spectra of bulk AlN,” Phys. Rev. B 82, 075208 (2010).Web of ScienceGoogle Scholar

  • [40] J. Li, K. B. Nam, M. L. Nakarmi, J. Y. Lin, H. X. Jiang, P. Carrier, and S.-H. Wei, “Band structure and fundamental optical transitions in wurtzite AlN,” Appl. Phys. Lett. 83, 5163 (2003).CrossrefGoogle Scholar

  • [41] Yoshitaka Taniyasu, Makoto Kasu, and Toshiki Makimoto, “An aluminiumnitride light-emitting diode with a wavelength of 210 nanometres,” Nature 441, 325-328 (2006).Google Scholar

  • [42] P. T. Lin, H. Jung, L. C. Kimerling, A. Agarwal, and H. X. Tang, “Low-loss aluminium nitride thin film for mid-infrared microphotonics,” Laser Photon. Rev. 8 (2), L23-L28 (2014).Google Scholar

  • [43] G. A. Slack, R. A. Tanzilli. R.O. Pohl, and J.W. Vandersande, “The intrinsic thermal conductivity of AIN,” J. Phys. Chem. Solids, 48 (7) 641-647 (1987).CrossrefGoogle Scholar

  • [44] N. Watanabe, T. Kimoto, and J. Suda, “The temperature dependence of the refractive indices of GaN and AlN from room temperature up to 515 °C,” J. Appl. Phys. 104, 106101 (2008).Web of ScienceGoogle Scholar

  • [45] V. V. Felmetsger, P. N. Laptev and R. J. Graham, “Deposition of ultrathin AlN films for high frequency electroacoustic devices,” J. Vac. Sci. Technol. A 29, 021014 (2011).Google Scholar

  • [46] A. Saxler, P. Kung, C. J. Sun, E. Bigan, and M. Razeghi, “High quality aluminum nitride epitaxial layers grown on sapphire substrates,” Appl. Phys. Lett. 64, 339 (1994).CrossrefGoogle Scholar

  • [47] C. Schwab, J. F. P. Spronckb, A. Tokovininc, and D. A. Fischer, “Design of the CHIRON high-resolution spectrometer at CTIO,” Proc. SPIE 7735, 77354G, (2010).Google Scholar

  • [48] C. Schwab, J. F. P. Spronckb, A. Tokovininc, A. Szymkowiaka, M. Giguerea and D. A. Fischer, “Performance of the CHIRON highresolution Echelle spectrograph,” Proc. SPIE 8446, 84460B, (2012).Google Scholar

  • [49] C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express, 19, 10462 (2011).Web of ScienceCrossrefGoogle Scholar

About the article

Received: 2015-10-22

Accepted: 2015-12-10

Published Online: 2016-06-17

Published in Print: 2016-06-01


Citation Information: Nanophotonics, Volume 5, Issue 2, Pages 263–271, ISSN (Online) 2192-8614, ISSN (Print) 2192-8606, DOI: https://doi.org/10.1515/nanoph-2016-0020.

Export Citation

© 2016. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Tsung-Ju Lu, Michael Fanto, Hyeongrak Choi, Paul Thomas, Jeffrey Steidle, Sara Mouradian, Wei Kong, Di Zhu, Hyowon Moon, Karl Berggren, Jeehwan Kim, Mohammad Soltani, Stefan Preble, and Dirk Englund
Optics Express, 2018, Volume 26, Number 9, Page 11147
[2]
Rong Yu, Chunling Ding, Jiangpeng Wang, and Duo Zhang
Journal of Applied Physics, 2017, Volume 122, Number 24, Page 244303
[3]
Tiening Jin, Hao-Yu Greg Lin, and Pao Tai Lin
ACS Applied Materials & Interfaces, 2017
[4]
Jiahua Li, Rong Yu, Ye Qu, Chunling Ding, Duo Zhang, and Ying Wu
Physical Review A, 2017, Volume 96, Number 1
[5]
Alexander W. Bruch, Kanglin Xiong, Hojoong Jung, Xiang Guo, Cheng Zhang, Jung Han, and Hong X. Tang
Applied Physics Letters, 2017, Volume 110, Number 2, Page 021111
[6]
S. Bogdanov, M. Y. Shalaginov, A. Boltasseva, and V. M. Shalaev
Optical Materials Express, 2017, Volume 7, Number 1, Page 111

Comments (0)

Please log in or register to comment.
Log in