Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Nanophotonics

Editor-in-Chief: Sorger, Volker


IMPACT FACTOR 2018: 6.908
5-year IMPACT FACTOR: 7.147

CiteScore 2018: 6.72

In co-publication with Science Wise Publishing

Open Access
Online
ISSN
2192-8614
See all formats and pricing
More options …
Volume 5, Issue 2

Issues

Multifrequency sources of quantum correlated photon pairs on-chip: a path toward integrated Quantum Frequency Combs

Lucia Caspani
  • Corresponding author
  • Institut National de la Recherche Scientifique - Énergie Matériaux et Télécommunications, Université du Québec, 1650 Boulevard Lionel-Boulet, Varennes, Québec, Canada J3X 1S2 and Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Christian Reimer
  • Institut National de la Recherche Scientifique - Énergie Matériaux et Télécommunications, Université du Québec, 1650 Boulevard Lionel-Boulet, Varennes, Québec, Canada J3X 1S2
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michael Kues
  • Institut National de la Recherche Scientifique - Énergie Matériaux et Télécommunications, Université du Québec, 1650 Boulevard Lionel-Boulet, Varennes, Québec, Canada J3X 1S2
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Piotr Roztocki
  • Institut National de la Recherche Scientifique - Énergie Matériaux et Télécommunications, Université du Québec, 1650 Boulevard Lionel-Boulet, Varennes, Québec, Canada J3X 1S2
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Matteo Clerici
  • Institut National de la Recherche Scientifique - Énergie Matériaux et Télécommunications, Université du Québec, 1650 Boulevard Lionel-Boulet, Varennes, Québec, Canada J3X 1S2
  • School of Engineering, University of Glasgow, Glasgow G12 8LT, UK
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Benjamin Wetzel
  • Institut National de la Recherche Scientifique - Énergie Matériaux et Télécommunications, Université du Québec, 1650 Boulevard Lionel-Boulet, Varennes, Québec, Canada J3X 1S2
  • Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9RH, UK
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yoann Jestin
  • Institut National de la Recherche Scientifique - Énergie Matériaux et Télécommunications, Université du Québec, 1650 Boulevard Lionel-Boulet, Varennes, Québec, Canada J3X 1S2
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marcello Ferrera
  • Institut National de la Recherche Scientifique - Énergie Matériaux et Télécommunications, Université du Québec, 1650 Boulevard Lionel-Boulet, Varennes, Québec, Canada J3X 1S2
  • Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marco Peccianti
  • Institut National de la Recherche Scientifique - Énergie Matériaux et Télécommunications, Université du Québec, 1650 Boulevard Lionel-Boulet, Varennes, Québec, Canada J3X 1S2
  • Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9RH, UK
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alessia Pasquazi
  • Institut National de la Recherche Scientifique - Énergie Matériaux et Télécommunications, Université du Québec, 1650 Boulevard Lionel-Boulet, Varennes, Québec, Canada J3X 1S2
  • Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9RH, UK
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Luca Razzari
  • Institut National de la Recherche Scientifique - Énergie Matériaux et Télécommunications, Université du Québec, 1650 Boulevard Lionel-Boulet, Varennes, Québec, Canada J3X 1S2
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Brent E. Little
  • State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Science
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sai T. Chu
  • Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ David J. Moss / Roberto Morandotti
  • Institut National de la Recherche Scientifique - Énergie Matériaux et Télécommunications, Université du Québec, 1650 Boulevard Lionel-Boulet, Varennes, Québec, Canada J3X 1S2
  • Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-06-17 | DOI: https://doi.org/10.1515/nanoph-2016-0029

Abstract

Recent developments in quantum photonics have initiated the process of bringing photonic-quantumbased systems out-of-the-lab and into real-world applications. As an example, devices to enable the exchange of a cryptographic key secured by the laws of quantum mechanics are already commercially available. In order to further boost this process, the next step is to transfer the results achieved by means of bulky and expensive setups into miniaturized and affordable devices. Integrated quantum photonics is exactly addressing this issue. In this paper, we briefly review the most recent advancements in the generation of quantum states of light on-chip. In particular, we focus on optical microcavities, as they can offer a solution to the problem of low efficiency that is characteristic of the materials typically used in integrated platforms. In addition, we show that specifically designed microcavities can also offer further advantages, such as compatibility with telecom standards (for exploiting existing fibre networks) and quantum memories (necessary to extend the communication distance), as well as giving a longitudinal multimode character for larger information transfer and processing. This last property (i.e., the increased dimensionality of the photon quantum state) is achieved through the ability to generate multiple photon pairs on a frequency comb, corresponding to the microcavity resonances. Further achievements include the possibility of fully exploiting the polarization degree of freedom, even for integrated devices. These results pave the way for the generation of integrated quantum frequency combs that, in turn, may find important applications toward the realization of a compact quantum-computing platform.

References

  • [1] W. H. Louisell, A. Yariv, and A. E. Siegman, "Quantum fluctuations and noise in parametric processes. I.," Phys. Rev. 124, 1646-1654 (1961).CrossrefGoogle Scholar

  • [2] D. N. Klyshko, "Coherent photon decay in a nonlinear medium," Pis’ma Zh. Eksp. Teor. Fiz. 6, 490 (1967).Google Scholar

  • [3] S. A. Akhmanov, V. V. Fadeev, R. V. Khokhlov, and O. N. Chunaev, "Quantum noise in parametric light amplifers," Pis’ma Zh. Eksp. Teor. Fiz. 6, 575-578 (1967).Google Scholar

  • [4] S. E. Harris, M. K. Oshman, and R. L. Byer, "Observation of tunable optical parametric fluorescence," Phys. Rev. Lett. 18, 732-734 (1967).CrossrefGoogle Scholar

  • [5] D. Magde and H. Mahr, "Study in ammonium dihydrogen phosphate of spontaneous parametric interaction tunable from 4400 to 16 000 Å," Phys. Rev. Lett. 18, 905-907 (1967).Google Scholar

  • [6] E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, and W. Sohler, "Waveguide-based OPO source of entangled photon pairs," New J. Phys. 11, 113042 (2009).Google Scholar

  • [7] R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs, "Monolithic source of photon pairs," Phys. Rev. Lett. 108, 153605 (2012).CrossrefGoogle Scholar

  • [8] K.-H. Luo, H. Herrmann, S. Krapick, B. Brecht, R. Ricken, V. Quiring, H. Suche, W. Sohler, and C. Silberhorn, "Direct generation of genuine single-longitudinal-mode narrowband photon pairs," New J. Phys. 17, 73039 (2015).Google Scholar

  • [9] G. Agrawal, Applications of Nonlinear Fiber Optics, 2nd ed. (Academic Press, 2008).Google Scholar

  • [10] J. O’Brien, B. Patton, M. Sasaki, and J. Vučković, "Focus on integrated quantum optics," New J. Phys. 15, 035016 (2013).Google Scholar

  • [11] A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, "Silica-on-silicon waveguide quantum circuits," Science 320, 646-649 (2008).Google Scholar

  • [12] A. Politi, J. C. F. Matthews, and J. L. O’Brien, "Shor’s quantum factoring algorithm on a photonic chip," Science 325, 1221 (2009).Google Scholar

  • [13] H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, "Entanglement generation using silicon wire waveguide," Appl. Phys. Lett. 91, 201108 (2007).CrossrefGoogle Scholar

  • [14] S. Clemmen, K. Phan Huy, W. Bogaerts, R. G. Baets, P. Emplit, and S. Massar, "Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators," Opt. Express 17, 16558-16570 (2009).CrossrefGoogle Scholar

  • [15] J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, C. Marquardt, and G. Leuchs, "Quantum light from a whisperinggallery- mode disk resonator," Phys. Rev. Lett. 106, 113901 (2011).CrossrefGoogle Scholar

  • [16] S. Azzini, D. Grassani, M. J. Strain, M. Sorel, L. G. Helt, J. E. Sipe, M. Liscidini, M. Galli, and D. Bajoni, "Ultra-low power generation of twin photons in a compact silicon ring resonator," Opt. Express 20, 23100-23107 (2012).CrossrefGoogle Scholar

  • [17] N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, "A monolithically integrated polarization entangled photon pair source on a silicon chip," Sci. Rep. 2, 817 (2012).Google Scholar

  • [18] S. Tanzilli, A. Martin, F. Kaiser, M. P. De Micheli, O. Alibart, and D. B. Ostrowsky, "On the genesis and evolution of integrated quantum optics," Laser Photon. Rev. 6, 115-143 (2012).CrossrefGoogle Scholar

  • [19] D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, "New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics," Nature Phot. 7, 597-607 (2013).CrossrefGoogle Scholar

  • [20] L. G. Helt, Z. Yang, M. Liscidini, and J. E. Sipe, "Spontaneous four-wave mixing in microring resonators," Opt. Lett. 35, 3006 (2010).CrossrefGoogle Scholar

  • [21] M. J. Collins, M. J. Steel, T. F. Krauss, B. J. Eggleton, and A. S. Clark, "Photonic crystal waveguide sources of photons for quantum communication applications," IEEE J. Sel. Top. Quantum Electron. 21, 205-214 (2015).CrossrefGoogle Scholar

  • [22] K. J. Vahala, "Optical microcavities," Nature 424, 839-846 (2003).Google Scholar

  • [23] Z. Ou and Y. Lu, "Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons," Phys. Rev. Lett. 83, 2556-2559 (1999).CrossrefGoogle Scholar

  • [24] K. Garay-Palmett, Y. Jeronimo-Moreno, and a B. U’Ren, "Theory of cavity-enhanced spontaneous four wave mixing," Laser Phys. 23, 015201 (2013).CrossrefGoogle Scholar

  • [25] N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, "Quantum repeaters based on atomic ensembles and linear optics," Rev. Mod. Phys. 83, 33-80 (2011).CrossrefGoogle Scholar

  • [26] E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, "Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement," Opt. Express 21, 27826-27834 (2013).CrossrefGoogle Scholar

  • [27] R. Kumar, J. R. Ong, J. Recchio, K. Srinivasan, and S. Mookherjea, "Spectrally multiplexed and tunable-wavelength photon pairs at 1.55 μm from a silicon coupled-resonator optical waveguide," Opt. Lett. 38, 2969-2971 (2013).Google Scholar

  • [28] D. Grassani, S. Azzini, M. Liscidini, M. Galli, M. J. Strain, M. Sorel, J. E. Sipe, and D. Bajoni, "Micrometer-scale integrated silicon source of time-energy entangled photons," Optica 2, 88 (2015).CrossrefGoogle Scholar

  • [29] C. Xiong, X. Zhang, A. Mahendra, J. He, D.-Y. Choi, C. J. Chae, D. Marpaung, A. Leinse, R. G. Heideman, M. Hoekman, C. G. H. Roeloffzen, R. M. Oldenbeuving, P. W. L. van Dijk, C. Taddei, P. H. W. Leong, and B. J. Eggleton, "Compact and reconfigurable silicon nitride time-bin entanglement circuit," Optica 2, 724 (2015).CrossrefGoogle Scholar

  • [30] I. C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, "Generation of multiphoton entangled quantum states by means of integrated frequency combs," Science 351, 1176-1180 (2016).Google Scholar

  • [31] M. Förtsch, J. U. Fürst, C. Wittmann, D. Strekalov, A. Aiello, M. V Chekhova, C. Silberhorn, G. Leuchs, and C. Marquardt, "A versatile source of single photons for quantum information processing," Nat. Commun. 4, 1818 (2013).CrossrefGoogle Scholar

  • [32] C.-S. Chuu, G. Y. Yin, and S. E. Harris, "A miniature ultrabright source of temporally long, narrowband biphotons," Appl. Phys. Lett. 101, 051108 (2012).CrossrefGoogle Scholar

  • [33] F. Monteiro, a. Martin, B. Sanguinetti, H. Zbinden, and R. T. Thew, "Narrowband photon pair source for quantum networks," Opt. Express 22, 4371 (2014).CrossrefGoogle Scholar

  • [34] J. Leach, B. Jack, J. Romero, A. K. Jha, A. M. Yao, S. Franke- Arnold, D. G. Ireland, R. W. Boyd, S. M. Barnett, and M. J. Padgett, "Quantum correlations in optical angle-orbital angular momentum variables," Science 329, 662-665 (2010).Google Scholar

  • [35] A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, "Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities," Nature Phys. 7, 677-680 (2011).CrossrefGoogle Scholar

  • [36] I. Ali Khan and J. Howell, "Experimental demonstration of high two-photon time-energy entanglement," Phys. Rev. A 73, 031801 (2006).Google Scholar

  • [37] I. Ali-Khan, C. Broadbent, and J. Howell, "Large-alphabet quantum key distribution using energy-time entangled bipartite states," Phys. Rev. Lett. 98, 060503 (2007).CrossrefGoogle Scholar

  • [38] M. Kolobov, "The spatial behavior of nonclassical light," Rev. Mod. Phys. 71, 1539-1589 (1999).CrossrefGoogle Scholar

  • [39] C. Reimer, L. Caspani, M. Clerici, M. Ferrera, M. Kues, M. Peccianti, A. Pasquazi, L. Razzari, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, "Integrated frequency comb source of heralded single photons," Opt. Express 22, 6535-6546 (2014).CrossrefGoogle Scholar

  • [40] W. C. Jiang, X. Lu, J. Zhang, O. Painter, and Q. Lin, "Silicon-chip source of bright photon pairs," Opt. Express 23, 20884 (2015).CrossrefGoogle Scholar

  • [41] M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, "Demonstration of a stable ultrafast laser based on a nonlinear microcavity," Nat. Commun. 3, 765 (2012).CrossrefGoogle Scholar

  • [42] A. Pasquazi, L. Caspani, M. Peccianti, M. Clerici, M. Ferrera, L. Razzari, D. Duchesne, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, "Self-locked optical parametric oscillation in a CMOS compatible microring resonator: a route to robust optical frequency comb generation on a chip," Opt. Express 21, 13333 (2013).CrossrefGoogle Scholar

  • [43] C. H. Bennett and G. Brassard, "Quantum cryptography: public key distribution and coin tossing," in IEEE International Conference on Computers, Systems and Signal Processing (1984), pp. 175-179.Google Scholar

  • [44] W. K. Wootters and W. H. Zurek, "A single quantum cannot be cloned," Nature 299, 802-803 (1982).Google Scholar

  • [45] D. Dieks, "Communication by EPR devices," Phys. Lett. A 92, 271-272 (1982).CrossrefGoogle Scholar

  • [46] C. Reimer, M. Kues, L. Caspani, B. Wetzel, P. Roztocki, M. Clerici, Y. Jestin, M. Ferrera, M. Peccianti, A. Pasquazi, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, "Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip," Nat. Commun. 6, 8236 (2015).CrossrefGoogle Scholar

  • [47] Q. Lin, F. Yaman, and G. Agrawal, "Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization," Phys. Rev. A 75, 023803 (2007).Google Scholar

  • [48] E. Brainis, "Four-photon scattering in birefringent fibers," Phys. Rev. A 79, 023840 (2009).Google Scholar

  • [49] P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, "Ultrabright source of polarization-entangled photons," Phys. Rev. A 60, R773-R776 (1999).Google Scholar

  • [50] J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, "Qubit entanglement between ring-resonator photon-pair sources on a silicon chip," Nat. Commun. 6, 7948 (2015).CrossrefGoogle Scholar

  • [51] R. Raussendorf and H. J. Briegel, "A one-way quantum computer," Phys. Rev. Lett. 86, 5188-5191 (2001).CrossrefGoogle Scholar

  • [52] N. C. Menicucci, P. van Loock, M. Gu, C. Weedbrook, T. C. Ralph, and M. a. Nielsen, "Universal quantum computation with continuous-variable cluster states," Phys. Rev. Lett. 97, 110501 (2006).CrossrefGoogle Scholar

  • [53] J. Zhang and S. L. Braunstein, "Continuous-variable Gaussian analog of cluster states," Phys. Rev. A 73, 032318 (2006).Google Scholar

  • [54] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).Google Scholar

  • [55] S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, "Ultra-large-scale continuous-variable cluster states multiplexed in the time domain," Nature Phot. 7, 982-986 (2013).CrossrefGoogle Scholar

  • [56] O. Pfister, S. Feng, G. Jennings, R. Pooser, and D. Xie, "Multipartite continuous-variable entanglement from concurrent nonlinearities," Phys. Rev. A 70, 020302 (2004).CrossrefGoogle Scholar

  • [57] O. Pinel, P. Jian, R. M. de Araújo, J. Feng, B. Chalopin, C. Fabre, and N. Treps, "Generation and characterization of multimode quantum frequency combs," Phys. Rev. Lett. 108, 083601 (2012).CrossrefGoogle Scholar

  • [58] J. Roslund, R. M. de Araújo, S. Jiang, C. Fabre, and N. Treps, "Wavelength-multiplexed quantum networks with ultrafast frequency combs," Nature Phot. 8, 109-112 (2013).CrossrefGoogle Scholar

  • [59] M. Pysher, Y. Miwa, R. Shahrokhshahi, R. Bloomer, and O. Pfister, "Parallel generation of quadripartite cluster entanglement in the optical frequency comb," Phys. Rev. Lett. 107, 030505 (2011).CrossrefGoogle Scholar

  • [60] M. Chen, N. C. Menicucci, and O. Pfister, "Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb," Phys. Rev. Lett. 112, 120505 (2014).Google Scholar

About the article

Received: 2015-10-29

Accepted: 2016-02-23

Published Online: 2016-06-17

Published in Print: 2016-06-01


Citation Information: Nanophotonics, Volume 5, Issue 2, Pages 351–362, ISSN (Online) 2192-8614, ISSN (Print) 2192-8606, DOI: https://doi.org/10.1515/nanoph-2016-0029.

Export Citation

© 2016. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Zhanqiang Hui, Min Yang, Deng Pan, Tiantian Zhang, Jiamin Gong, Meizhi Zhang, and Xiangmei Zeng
Applied Optics, 2019, Volume 58, Number 21, Page 5728
[2]
Stefania Sciara, Christian Reimer, Michael Kues, Piotr Roztocki, Alfonso Cino, David J. Moss, Lucia Caspani, William J. Munro, and Roberto Morandotti
Physical Review Letters, 2019, Volume 122, Number 12
[3]
Piotr Roztocki, Stefania Sciara, Christian Reimer, Luis Romero Cortes, Yanbing Zhang, Benjamin Wetzel, Mehedi Islam, Bennet Fischer, Alfonso Cino, Sai T. Chu, Brent E. Little, David J. Moss, Lucia Caspani, Jose Azana, Michael Kues, and Roberto Morandotti
Journal of Lightwave Technology, 2019, Volume 37, Number 2, Page 338
[4]
Yin-Hai Li, Wen-Tan Fang, Zhi-Yuan Zhou, Shi-Long Liu, Shi-Kai Liu, Zhao-Huai Xu, Chen Yang, Yan Li, Li-Xin Xu, Guang-Can Guo, and Bao-Sen Shi
Optics Express, 2018, Volume 26, Number 22, Page 28429
[5]
Zhengbing Hu, Sergey V. Petoukhov, and Elena S. Petukhova
Biosystems, 2018
[6]
Sun Kyung Lee, Noh Soo Han, Tai Hyun Yoon, and Minhaeng Cho
Communications Physics, 2018, Volume 1, Number 1
[7]
Christian Reimer, Yanbing Zhang, Piotr Roztocki, Stefania Sciara, Luis Romero Cortés, Mehedi Islam, Bennet Fischer, Benjamin Wetzel, Alfonso Carmelo Cino, Sai Tak Chu, Brent Little, David Moss, Lucia Caspani, José Azaña, Michael Kues, and Roberto Morandotti
Frontiers of Optoelectronics, 2018
[8]
Lucia Caspani, Chunle Xiong, Benjamin J Eggleton, Daniele Bajoni, Marco Liscidini, Matteo Galli, Roberto Morandotti, and David J Moss
Light: Science & Applications, 2017, Volume 6, Number 11, Page e17100
[9]
Guoping Lin, Aurélien Coillet, and Yanne K. Chembo
Advances in Optics and Photonics, 2017, Volume 9, Number 4, Page 828
[10]
Rigoberto Castro-Beltrán, Vinh M. Diep, Soheil Soltani, Eda Gungor, and Andrea M. Armani
ACS Photonics, 2017
[11]
Lin Yu, Lei Chen, Weigang Zhang, Yunshan Zhang, Song Wang, Yanxin Zhang, Tieyi Yan, and Jiang Yang
Applied Optics, 2017, Volume 56, Number 25, Page 7294
[12]
Piotr Roztocki, Michael Kues, Christian Reimer, Benjamin Wetzel, Stefania Sciara, Yanbing Zhang, Alfonso Cino, Brent E. Little, Sai T. Chu, David J. Moss, and Roberto Morandotti
Optics Express, 2017, Volume 25, Number 16, Page 18940

Comments (0)

Please log in or register to comment.
Log in