Jump to ContentJump to Main Navigation
Show Summary Details
Weitere Optionen …


Editor-in-Chief: Sorger, Volker

IMPACT FACTOR 2018: 6.908
5-year IMPACT FACTOR: 7.147

CiteScore 2018: 6.72

In co-publication with Science Wise Publishing

Open Access
Alle Formate und Preise
Weitere Optionen …
Band 5, Heft 2


On Frequency Combs in Monolithic Resonators

A. A. Savchenkov / A. B. Matsko / L. Maleki
Online erschienen: 17.06.2016 | DOI: https://doi.org/10.1515/nanoph-2016-0031


Optical frequency combs have become indispensable in astronomical measurements, biological fingerprinting, optical metrology, and radio frequency photonic signal generation. Recently demonstrated microring resonator-based Kerr frequency combs point the way towards chip scale optical frequency comb generator retaining major properties of the lab scale devices. This technique is promising for integrated miniature radiofrequency and microwave sources, atomic clocks, optical references and femtosecond pulse generators. Here we present Kerr frequency comb development in a historical perspective emphasizing its similarities and differences with other physical phenomena. We elucidate fundamental principles and describe practical implementations of Kerr comb oscillators, highlighting associated solved and unsolved problems.

Keywords : frequency comb; monolithic microresonator; whispering gallery mode resonator; photonics; nonlinear optics; four-wave mixing


  • [1] Hocker LO, Javan A, Rao DR, Frenkel L, and Sullivan T. Absolute frequency measurement and spectroscopy of gas laser transitions in the far infrared. Appl. Phys. Lett., 10(5):147-149, 1967.CrossrefGoogle Scholar

  • [2] Evenson KM, Wells JS, Petersen FR, Danielson BL, and Day GW. Accurate frequencies of molecular transitions used in laser stabilization: the 3.39μm transition in CH4 and the 9.33μm and 10.18μm transitions in CO2. Appl. Phys. Lett., 22(4):192-195, 1973.Google Scholar

  • [3] Jennings DA, Hall JL, Layer HP, Pollock CR, Petersen FR, Drullinger RE, Evenson KM, and Wells JS. Direct frequency measurement of the I2-stabilized He-Ne 473-THz (633-nm) laser. Opt. Lett., 8(3):136-138, Mar 1983.Google Scholar

  • [4] F. Riehle, H. Schnatz, B. Lipphardt, G. Zinner, T. Trebst, and J. Helmcke. The optical calcium frequency standard. Instrumentation and Measurement, IEEE Transactions on, 48(2):613-617, Apr 1999.Google Scholar

  • [5] Glauber RJ, Hall JL, and Hänsch TW. Passion for precision. The Nobel Prize in Physics, 2005.Google Scholar

  • [6] TM Fortier, MS Kirchner, F Quinlan, J Taylor, JC Bergquist, T Rosenband, N Lemke, A Ludlow, Y Jiang, CW Oates, et al. Generation of ultrastable microwaves via optical frequency division. Nature Photonics, 5(7):425-429, 2011.CrossrefGoogle Scholar

  • [7] Li CH, Benedick AJ, Fendel P, Glenday AG, Kartner FX, Phillips DF, Sasselov D, Szentgyorgyi A, and Walsworth RL. A laser frequency comb that enables radial velocity measurements with a precision of 1cm s−1. Nature, 452(7187):610 - 612, 2008.Google Scholar

  • [8] Levy JS, Gondarenko A, Foster MA, Turner-Foster AC, Gaeta AL, and Lipson M. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nature Photonic, 4(1):37-40, Jan 2010.CrossrefGoogle Scholar

  • [9] Joerg Pfeifle, Victor Brasch, Matthias Lauermann, Yimin Yu, Daniel Wegner, Tobias Herr, Klaus Hartinger, Philipp Schindler, Jingshi Li, David Hillerkuss. Coherent terabit communications with microresonator Kerr frequency combs. Nature Photonics, 8(5):375-380, 2014.Google Scholar

  • [10] Coddington I, Swann WC, Nenadovic L, and Newbury NR. Rapid and precise absolute distance measurements at long range. Nature Photonics, 3(6):351-356, Jun 2009.CrossrefGoogle Scholar

  • [11] DelHaye P, Schliesser A, Arcizet O, Wilken T, Holzwarth R, and Kippenberg TJ. Optical frequency comb generation from a monolithic microresonator. Nature, 450(7173):1214 - 1217, 2007.Google Scholar

  • [12] Matsko AB, Savchenkov AA, Strekalov D, Ilchenko VS, and Maleki L. Optical hyperparametric oscillations in a whispering-gallery-mode resonator: Threshold and phase diffusion. Phys. Rev. A, 71:033804, Mar 2005.CrossrefGoogle Scholar

  • [13] Matsko AB and Maleki L. On timing jitter of mode locked Kerr frequency combs. Opt. Express, 21(23):28862-28876, Nov 2013.CrossrefGoogle Scholar

  • [14] Maker PD, Terhune RW, and Savage CM. Intensity-dependent changes in the refractive index of liquids. Phys. Rev. Lett., 12:507-509, May 1964.CrossrefGoogle Scholar

  • [15] Agrawal GP. Modulation instability induced by cross-phase modulation. Phys. Rev. Lett., 59:880-883, Aug 1987.CrossrefGoogle Scholar

  • [16] Kaiser W and Garrett GCB. Two-photon excitation in CaF 2 : Eu2+. Phys. Rev. Lett., 7:229-231, 1961.CrossrefGoogle Scholar

  • [17] Woodbury EJ and Ng WK. Ruby laser operation in the near IR. Proc. IRE, 50:2367, 1962.Google Scholar

  • [18] Maker PD, Terhune RW, and Savage CM. Optical third harmonic generation. Quantum Electronics, pp 1559-1578, 1964.Google Scholar

  • [19] Maker PD and Terhune RW. Study of optical effects due to an induced polarization third order in the electric field strength. Phys. Rev. A, 137:801-818, 1965.CrossrefGoogle Scholar

  • [20] Bloembergen N. Recent progress in four-wave mixing spectroscopy. Laser Spectroscopy IV, pp 340-348, 1979.Google Scholar

  • [21] Levenson MD and Kano SS. Introduction to Nonlinear Laser Spectroscopy. Academic Press, San Diego, CA, USA, 1988.Google Scholar

  • [22] Bloembergen N, Lotem H, Lynch RT, and Pure IJ. Study of optical effects due to an induced polarization third order in the electric field strength. Appl. Phys., 16:151, 1978.Google Scholar

  • [23] Bloembergen N. Conservation laws in nonlinear optics. J. Opt. Soc. Am., 70:1429-1436, 1980.CrossrefGoogle Scholar

  • [24] Shen YR. Principles of Nonlinear Optics. Wiley, New York, 1984.Google Scholar

  • [25] Boyd RW. Nonlinear Optics. Academic Press, Burlington, MA, USA, 2008.Google Scholar

  • [26] Chang RK and Campillo AJ. Optical Processes in Microresonators, Advanced Series in Applied Physics v.3. World Scientific, Singapore, 1996.Google Scholar

  • [27] Fields MH, Popp J, and Chang RK. Nonlinear optics in microspheres. Prog. Opt., 41:1-95, 2000.CrossrefGoogle Scholar

  • [28] Datsyuk VV and Izmailov IA. Optics of microdroplets. Usp. Fiz. Nauk, 171:1117-1129, 2001.CrossrefGoogle Scholar

  • [29] Oraevsky AN. Whispering-gallery waves. Quant. Electron, 32:377-400, 2002.CrossrefGoogle Scholar

  • [30] Vahala KJ. Optical microcavities. Nature, 424:839-846, 2003.CrossrefGoogle Scholar

  • [31] Vahala KJ. Optical Microcavities, Advanced Series in Applied Physics. World Scientific, New Jersey, 2004.Google Scholar

  • [32] Matsko AB and Ilchenko VS. Optical resonators with whispering gallery modes I: Basics. J. Sel. Top. Quant. Electron., 12:3-14, 2006.CrossrefGoogle Scholar

  • [33] Matsko AB. Practical Applications of Microresonators in Optics and Photonics. CRC Press, 2009.Google Scholar

  • [34] Heebner J, Grover R, and Ibrahim T. Photonic Microresonator Research and Applications, Springer Series in Optical Sciences vol. 138. Springer-Verlag, London, 2010.Google Scholar

  • [35] Chremmos I, Schwelb O, and Uzunoglu N. Photonic microresonator research and applications, Springer Series in Optical Sciences vol. 156. Springer, New York, 2010.Google Scholar

  • [36] Snow JB, Qian SX, and Chang RK. Stimulated Raman scattering from individual water and ethanol droplets at morpholody-dependent resonances. Opt. Lett, 10:37-39, 1985.CrossrefGoogle Scholar

  • [37] Campillo AJ, Eversole JD, and Lin HB. Resonator quantum electrodynamic enhancement of stimulated emission in microdroplets. Phys. Rev. Lett., 67:437-441, 1991.CrossrefGoogle Scholar

  • [38] Braginsky VB, Gorodetsky ML, and Ilchenko VS. Quality-factor and nonlinear properties of optical whispering-gallery modes. Physics Letters A, 137(7):393 - 397, 1989.CrossrefGoogle Scholar

  • [39] Collot L, Lefevre-Seguin V, Brune M, Raimond JM, and Haroshe S. Very high-Q whispering gallery mode resonances observed in fused silica microspheres. Europhys. Lett., 23:327-334, 1993.CrossrefGoogle Scholar

  • [40] Gorodetsky ML, Savchenkov AA, and Ilchenko VS. Ultimate Q of optical microsphere resonators. Opt. Lett., 21(7):453-455, Apr 1996.CrossrefGoogle Scholar

  • [41] Vernooy DW, Ilchenko VS, Mabuchi H, Streed EW, and Kimble HJ. High- Q measurements of fused-silica microspheres in the near infrared. Opt. Lett., 23:247-249, 1998.CrossrefGoogle Scholar

  • [42] Armani DK, Kippenberg TJ, Spillane SM, and Vahala KJ. Ultrahigh- Q toroid microcavity on a chip. Nature, 421:925-928, 2003.CrossrefGoogle Scholar

  • [43] Gorodetsky ML, Pryamikov AD, and Ilchenko VS. Rayleigh scattering in high-Q microspheres. J. Opt. Soc. Am. B, 17(6):1051-1057, Jun 2000.CrossrefGoogle Scholar

  • [44] Grudinin IS, Matsko AB, Savchenkov AA, Strekalov D, Ilchenko VS, and Maleki L. Ultra-high Q crystalline microcavities. Opt. Commun., 265:33-38, 2006.CrossrefGoogle Scholar

  • [45] Savchenkov AA, Matsko AB, Ilchenko VS, and Maleki L. Optical resonators with ten million finesse. Opt. Express, 15(11):6768-6773, May 2007.CrossrefGoogle Scholar

  • [46] Ilchenko VS, Savchenkov AA, Matsko AB, and Maleki L. Nonlinear optics and crystalline whispering gallery mode cavities. Phys. Rev. Lett., 92:043903, 2004.CrossrefGoogle Scholar

  • [47] Yang Z, Chak P, Bristow AD, Driel HM, Iyer R, Aitchison JS, Smirl AL, and Sipe JE. Enhanced second-harmonic generation in AlGaAs microring resonators. Opt. Lett., 32:826-828, 2007.CrossrefGoogle Scholar

  • [48] Kippenberg TJ, Spillane SM, and Vahala KJ. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys. Rev. Lett., 93:083904, Aug 2004.CrossrefGoogle Scholar

  • [49] Savchenkov AA, Matsko AB, Strekalov D, Mohageg M, Ilchenko VS, and Maleki L. Low threshold optical oscillations in a whispering gallery mode CaF2 resonator. Phys. Rev. Lett., 93:243905, Dec 2004.CrossrefGoogle Scholar

  • [50] Carmon T and Vahala KJ. Visible continuous emission from a silica microphotonic device by third-harmonic generation. Nature Physics, 3:430-435, Jun 2007.CrossrefGoogle Scholar

  • [51] Kippenberg TJ, Holzwarth R, and Diddams SA. Microresonator-based optical frequency combs. Science, 332:555-559, 2011.CrossrefGoogle Scholar

  • [52] Lin HB, Huston AL, Justus BJ, and Campillo AJ. Some characteristics of a droplet whispering-gallery-mode laser. Opt. Lett., 11:614-616, 1986.CrossrefGoogle Scholar

  • [53] Sandoghdar V, Treussart F, Hare J, Lefevre-Seguin V, Raimond JM, and Haroche S. Very low threshold whispering-gallerymode microsphere laser. Phys.Rev. A, 54:R1777-R1780, 1996.CrossrefGoogle Scholar

  • [54] Qian SX, Snow JB, and Chang RK. Coherent Raman mixing and coherent anti-Stokes Raman scattering from individual micrometer-size droplets. Opt. Lett., 10:499-501, 1985.CrossrefGoogle Scholar

  • [55] Lin HB and Campillo AJ. cw nonlinear optics in droplet microcavities displaying enhanced gain. Phys. Rev. Lett., 73:2440-2443, 1994.CrossrefGoogle Scholar

  • [56] Spillane SM, Kippenberg TJ, and Vahala KJ. Ultralowthreshold Raman laser using a spherical dielectric microcavity. Nature, 415:621-623, 2002.CrossrefGoogle Scholar

  • [57] Grudinin IS and Maleki L. Ultralow-threshold Raman lasing with CaF2 resonators. Opt.Lett., 32:166-168, 2007.CrossrefGoogle Scholar

  • [58] Grudinin IS, Matsko AB, and Maleki L. Brillouin lasing with a CaF2 whispering gallery mode resonator. Phys. Rev. Lett., 102:043902, 2009.CrossrefGoogle Scholar

  • [59] Tomes M and Carmon T. Photonic micro-electromechanical systems vibrating at x-band (11-GHz) rates. Phys. Rev. Lett., 102:113601, 2009.CrossrefGoogle Scholar

  • [60] Carmon T, Rokhsari H, Yang L, Kippenberg TJ, and Vahala KJ. Temporal behavior of radiation pressure-induced vibrations of an optical microcavity phonon mode. Phys. Rev. Lett., 94:223902, 2005.CrossrefGoogle Scholar

  • [61] Kippenberg TJ, Rokhsari H, Carmon T, Scherer A, and Vahala KJ. Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity. Phys. Rev. Lett., 95:033901, Jul 2005.CrossrefGoogle Scholar

  • [62] Wabnitz S. Suppression of interactions in a phase-locked soliton optical memory. Opt. Lett., 18(8):601-603, Apr 1993.CrossrefGoogle Scholar

  • [63] Leo F, Coen S, Kockaert P, Gorza SP, Emplit P, and Haelterman M. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nature Photonics, 4:471 - 476, May 2010.CrossrefGoogle Scholar

  • [64] Akhmediev NN and Ankiewicz A. Dissipative solitons: From optics to biology and medicine. Berlin Heidelberg, Springer, 2008.Google Scholar

  • [65] Nakazawa M, Suzuki K, and Haus H. The modulational instability laser. I. experiment. Quantum Electronics, IEEE Journal of, 25(9):2036-2044, Sep 1989.CrossrefGoogle Scholar

  • [66] Nakazawa M, Suzuki K, Kubota H, and Haus H. The modulation instability laser. II. theory. Quantum Electronics, IEEE Journal of, 25(9):2045-2052, Sep 1989.CrossrefGoogle Scholar

  • [67] Haelterman M, Trillo S, and Wabnitz S. Additive-modulation-instability ring laser in the normal dispersion regime of a fiber. Opt. Lett., 17(10):745-747, May 1992. CrossrefGoogle Scholar

  • [68] Coen S and Haelterman M. Modulational instability induced by cavity boundary conditions in a normally dispersive optical fiber. Phys. Rev. Lett., 79:4139-4142, Nov 1997.CrossrefGoogle Scholar

  • [69] Coen S and Haelterman M. Continuous-wave ultrahigh-repetition- rate pulse-train generation through modulational instability in a passive fiber cavity. Opt. Lett., 26(1):39-41, Jan 2001.CrossrefGoogle Scholar

  • [70] Serkland DK and Kumar P. Tunable fiber-optic parametric oscillator. Opt. Lett., 24(2):92-94, Jan 1999.CrossrefGoogle Scholar

  • [71] Sharping JE, Fiorentino M, Kumar P, and Windeler RS. Optical parametric oscillator based on four-wave mixing in microstructure fiber. Opt. Lett., 27(19):1675-1677, Oct 2002.CrossrefGoogle Scholar

  • [72] Matos CJS, Taylor JR, and Hansen KP. Continuous-wave, totally fiber integrated optical parametric oscillator using holey fiber. Opt. Lett., 29(9):983-985, May 2004.CrossrefGoogle Scholar

  • [73] Deng Y, Lin Q, Lu F, Agrawal GP, and Knox WH. Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber. Opt. Lett., 30(10):1234-1236, May 2005.CrossrefGoogle Scholar

  • [74] Xu YQ, Murdoch SG, Leonhardt R, and Harvey JD. Widely-tunable triply-resonant optical parametric ring oscillator. In IEEE/LEOS Winter Topicals Meeting Series, 2009, pp 264-265, Jan 2009.Google Scholar

  • [75] Matsko AB, Savchenkov AS, Liang W, Ilchenko VS, Seidel D, and Maleki L. Whispering gallery mode oscillators and optical comb generators. Symp. Frequency Standards and Metrology, 7:539-558, 2009.Google Scholar

  • [76] Matsko AB, Savchenkov AA, Liang W, Ilchenko VS, Seidel D, and Maleki L. Mode-locked Kerr frequency combs. Opt. Lett., 36:37-40, 2011.Google Scholar

  • [77] Chembo YK and Menyuk CR. Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators. Phys. Rev. A, 87:053852, May 2013.CrossrefGoogle Scholar

  • [78] Firth WJ and Weiss CO. Cavity and feedback solitons. Opt. Photon. News, 13(2):54-58, Feb 2002.CrossrefGoogle Scholar

  • [79] Firth W. Temporal cavity solitons: Buffering optical data. Nature Photonics, 4(7):415-417, 2010.CrossrefGoogle Scholar

  • [80] Maleki L, Ilchenko VS, Mohageg M, Matsko AB, Savchenkov AA, Seidel D, Wells NP, Camparo JC, and Jaduszliwer B. Alloptical integrated atomic clock. In Frequency Control Symposium (FCS), 2010 IEEE International, pp 119-124, June 2010.Google Scholar

  • [81] Maleki L, Savchenkov AA, Ilchenko VS, Liang W, Eliyahu D, Matsko AB, Seidel D, Wells NP, Camparo JC, and Jaduszliwer B. All-optical integrated rubidium atomic clock. In Frequency Control and the European Frequency and Time Forum (FCS), 2011 Joint Conference of the IEEE International, pp 1-5, May 2011.Google Scholar

  • [82] Savchenkov AA, Eliyahu D, Liang W, Ilchenko VS, Byrd J, Matsko AB, Seidel D, and Maleki L. Stabilization of a Kerr frequency comb oscillator. Opt. Lett., 38(15):2636-2639, Aug 2013.CrossrefGoogle Scholar

  • [83] Marconi M, Javaloyes J, Balle S, and Giudici M. How lasing localized structures evolve out of passive mode locking. Phys. Rev. Lett., 112:223901, Jun 2014.CrossrefGoogle Scholar

  • [84] Jang JK, Erkintalo M, Coen S, and Murdoch SG. Temporal tweezing of light through the trapping and manipulation of temporal cavity solitons. Nature Communications, 6, 2015.Google Scholar

  • [85] Jang JK, Erkintalo M, Murdoch SG, and Coen S. Writing and erasing of temporal cavity solitons by direct phase modulation of the cavity driving field. Opt. Lett., 40(20):4755-4758, Oct 2015.CrossrefGoogle Scholar

  • [86] Herr T, Brasch V, Jost JD, Wang CY, Kondratiev NM, Gorodetsky ML, and Kippenberg TJ. Temporal solitons in optical microresonators. Nature Photonics, 8(2):145-152, 2014.Google Scholar

  • [87] Jang JK, Erkintalo M, Luo K, Oppo GL, Coen S, and Murdoch SG. Controlled merging and annihilation of localized dissipative structures in an AC-driven damped nonlinear Schrodinger system. arXiv preprint arXiv:1504.07231, 2015.Google Scholar

  • [88] Taheri H, Eftekhar AA, Wiesenfeld K, and Adibi A. Soliton formation in whispering-gallery-mode resonators via input phase modulation. Photonics Journal, IEEE, 7(2):1-9, April 2015.CrossrefGoogle Scholar

  • [89] Erkintalo M, Luo K, Jang JK, Coen S, and Murdoch SG. Bunching of temporal cavity solitons via forward Brillouin scattering. New Journal of Physics, 17(11):115009, 2015.CrossrefGoogle Scholar

  • [90] Dianov EM, Luchnikov AV, Pilipetskii AN, and Prokhorov AM. Long-range interaction of picosecond solitons through excitation of acoustic waves in optical fibers. Applied Physics B, 54(2):175-180, 1992.CrossrefGoogle Scholar

  • [91] Coillet A and Chembo Y. On the robustness of phase locking in Kerr optical frequency combs. Opt. Lett., 39(6):1529-1532, Mar 2014.CrossrefGoogle Scholar

  • [92] Xue X, Xuan Y, Liu Y, Wang PH, Chen S, Wang J, Leaird DE, Qi M, and Weiner AM. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nature Photonics, 9(9):594-600, 2015.CrossrefGoogle Scholar

  • [93] Stolen RH, Bjorkholm JE, and Ashkin A. Phase-matched three-wave mixing in silica fiber optical waveguides. Applied Physics Letters, 24(7):308-310, 1974.CrossrefGoogle Scholar

  • [94] Stolen RH. Phase-matched-stimulated four-photon mixing in silica-fiber waveguides. Quantum Electronics, IEEE Journal of, 11(3):100-103, 1975.CrossrefGoogle Scholar

  • [95] Hill KO, Johnson DC, Kawasaki BS, and MacDonald RI. cw three-wave mixing in single-mode optical fibers. Journal of Applied Physics, 49(10):5098-5106, 1978.CrossrefGoogle Scholar

  • [96] Liang W, Savchenkov AA, Xie Z, McMillan JF, Burkhart J, Ilchenko VS, Wong CW, Matsko AB, and Maleki L. Miniature multioctave light source based on a monolithic microcavity. Optica, 2(1):40-47, Jan 2015.CrossrefGoogle Scholar

  • [97] Sefler GA and Kitayama K. Frequency comb generation by four-wave mixing and the role of fiber dispersion. J. Lightwave Technol., 16(9):1596, Sep 1998.CrossrefGoogle Scholar

  • [98] Mathlouthi W, Rong H, and Paniccia M. Characterization of eflcient wavelength conversion by four-wave mixing in sub-micron silicon waveguides. Opt. Express, 16(21):16735-16745, Oct 2008.CrossrefGoogle Scholar

  • [99] Melloni A, Morichetti F, and Martinelli M. Four-wave mixing and wavelength conversion in coupled-resonator optical waveguides. J. Opt. Soc. Am. B, 25(12):C87-C97, Dec 2008.CrossrefGoogle Scholar

  • [100] Strekalov DV and Yu N. Generation of optical combs in a whispering gallery mode resonator from a bichromatic pump. Phys. Rev. A, 79:041805, Apr 2009.CrossrefGoogle Scholar

  • [101] Papp SB, Del’Haye P, and Diddams SA. Parametric seeding of a microresonator optical frequency comb. Opt. Express, 21(15):17615-17624, Jul 2013.CrossrefGoogle Scholar

  • [102] Kaup DJ and Newell AC. Theory of nonlinear oscillating dipolar excitations in one-dimensional condensates. Phys. Rev. B, 18:5162, 1978.CrossrefGoogle Scholar

  • [103] Lugiato LA and Lefever R. Spatial dissipative structures in passive optical systems. Phys. Rev. Lett., 58:2209, 1987. CrossrefGoogle Scholar

  • [104] T. Ackemann, W. J. Firth, and G.-L. Oppo. Fundamentals and applications of spatial dissipative solitons in photonic devices. Advances in Atomic, Molecular, and Optical Physics, 57:323-421, 2009.Google Scholar

  • [105] Lomdahl PS and Samuelson MR. Persistent breather excitations in an ac-driven sine-Gordon system with loss. Phys. Rev. A, 34:664, 1986.CrossrefGoogle Scholar

  • [106] Wysin G and Bishop AR. Chaos and coherence in classical one-dimensional magnets. J. Magnetism and Magnet. Materials, 54-57:1132, 1986.Google Scholar

  • [107] Maugin GA and Miled A. Solitary waves in elastic ferromagnets. Phys. Rev. B, 33:4830, 1986.CrossrefGoogle Scholar

  • [108] Nozaki K and Bekki N. Low-dimensional chaos in a driven damped nonlinear Schrödinger equation. Physica (Amsterdam), 21D:381, 1986.CrossrefGoogle Scholar

  • [109] Walls DF and Milburn GJ. Quantum Optics. Springer, New York, 1994.Google Scholar

  • [110] Maleki L, Ilchenko VS, Savchenkov AA, and Matsko AB. Crystalline Whispering Gallery Mode Resonators in Optics and Photonics, Chapter 3. CRC Press, 2009.Google Scholar

  • [111] S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala. Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics. Phys. Rev. Lett., 91:043902, Jul 2003.CrossrefGoogle Scholar

  • [112] Gorodetsky ML and Ilchenko VS. Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes. J. Opt. Soc. Am. B, 16:147-154, 1999.CrossrefGoogle Scholar

  • [113] Yariv A. Critical coupling and its control in optical waveguidering resonator systems. IEEE Photon. Tech. Lett., 14:483-485, 2002.CrossrefGoogle Scholar

  • [114] Savchenkov AA, Rubiola E, Matsko AB, Ilchenko VS, and Maleki L. Phase noise of whispering gallery photonic hyperparametric microwave oscillators. Opt. Express, 16(6):4130-4144, Mar 2008.CrossrefGoogle Scholar

  • [115] Chembo YK and Yu N. Modal expansion approach to opticalfrequency- comb generation with monolithic whisperinggallery- mode resonators. Phys. Rev. A, 82:033801, Sep 2010.CrossrefGoogle Scholar

  • [116] Chembo YK, Strekalov D, and Yu N. Spectrum and dynamics of optical frequency combs generated with monolithic whispering gallery mode resonators. Phys. Rev. Lett., 104:103902, Mar 2010.CrossrefGoogle Scholar

  • [117] Chembo YK and Yu N. On the generation of octave-spanning optical frequency combs using monolithic whispering-gallery-mode microresonators. Opt. Lett., 35(16):2696-2698, Aug 2010.CrossrefGoogle Scholar

  • [118] Matsko AB, Savchenkov AA, and Maleki L. Normal groupvelocity dispersion Kerr frequency comb. Opt. Lett., 37(1):43-45, Jan 2012.CrossrefGoogle Scholar

  • [119] Matsko AB, Savchenkov AA, Ilchenko VS, Seidel D, and Maleki L. Hard and soft excitation regimes of Kerr frequency combs. Phys. Rev. A, 85:023830, Feb 2012.CrossrefGoogle Scholar

  • [120] Savchenkov AA, Matsko AB, Liang W, Ilchenko VS, Seidel D, and Maleki L. Kerr frequency comb generation in overmoded resonators. Opt. Express, 20(24):27290-27298, Nov 2012.CrossrefGoogle Scholar

  • [121] Matsko AB, Savchenkov AA, and Maleki Li. On excitation of breather solitons in an optical microresonator. Opt. Lett., 37:4856-4858, 2012.CrossrefGoogle Scholar

  • [122] Savchenkov AA, Matsko AB, Liang W, Ilchenko VS, Seidel D, and Maleki L. Transient regime of Kerr-frequency-comb formation. Phys. Rev. A, 86:013838, Jul 2012.CrossrefGoogle Scholar

  • [123] Hansson T, Modotto D, and Wabnitz S. On the numerical simulation of Kerr frequency combs using coupled mode equations. Optics Communications, 312:134-136, 2014.CrossrefGoogle Scholar

  • [124] Park QH and Shin HJ. Parametric control of soliton light traffic by cw traflc light. Phys. Rev. Lett., 82:4432-4435, May 1999.CrossrefGoogle Scholar

  • [125] Li S, Li L, Li Z, and Zhou G. Properties of soliton solutions on a cw background in optical fibers with higher-order effects. J. Opt. Soc. Am. B, 21(12):2089-2094, Dec 2004.CrossrefGoogle Scholar

  • [126] Coillet A, Dudley J, Genty G, Larger L, and Chembo YK. Optical rogue waves in whispering-gallery-mode resonators. Physical Review A, 89:013835, 2014.CrossrefGoogle Scholar

  • [127] Blow KJ and Doran NJ. Global and local chaos in the pumped nonlinear Schrödinger equation. Phys. Rev. Lett., 52:526-529, Feb 1984.CrossrefGoogle Scholar

  • [128] Ghidaglia JM. Finite dimensional behavior for weakly damped driven Schrödinger equations. In Annales de l’IHP Analyse non linéaire, v 5, pp 365-405, 1988.Google Scholar

  • [129] Barashenkov IV and Smirnov YS. Existence and stability chart for the ac-driven, damped nonlinear Schrödinger solitons. Phys. Rev. E, 54:5707-5725, Nov 1996.CrossrefGoogle Scholar

  • [130] Afanasjev VV, Malomed BA, and Chu PL. Stability of bound states of pulses in the Ginzburg-Landau equations. Phys. Rev. E, 56:6020-6025, Nov 1997.CrossrefGoogle Scholar

  • [131] Coen S and Erkintalo M. Universal scaling laws of Kerr frequency combs. Opt. Lett., 38(11):1790-1792, Jun 2013.CrossrefGoogle Scholar

  • [132] Matsko AB and Maleki L. Noise conversion in Kerr comb RF photonic oscillators. J. Opt. Soc. Am. B, 32(2):232-240, Feb 2015.CrossrefGoogle Scholar

  • [133] Matsko AB and Maleki L. Feshbach resonances in Kerr frequency combs. Phys. Rev. A, 91:013831, Jan 2015.CrossrefGoogle Scholar

  • [134] Zhang L, Bao C, Singh V, Mu J, Yang C, Agarwal AM, Kimerling LC, and Michel J. Generation of two-cycle pulses and octavespanning frequency combs in a dispersion-flattened microresonator. Opt. Lett., 38(23):5122-5125, Dec 2013.CrossrefGoogle Scholar

  • [135] Coen D, Randle HG, Sylvestre T, and Erkintalo M. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model. Opt. Lett., 38(1):37-39, Jan 2013.CrossrefGoogle Scholar

  • [136] Lamont MRE, Okawachi Y, and Gaeta AL. Route to stabilized ultrabroadband microresonator-based frequency combs. Opt. Lett., 38(18):3478-3481, Sep 2013.CrossrefGoogle Scholar

  • [137] Bao C, Zhang L, Matsko AB, Yan Y, Zhao Z, Xie G, Agarwal AM, Kimerling LC, Michel J, Maleki L, and Willner AE. Nonlinear conversion efficiency in Kerr frequency comb generation. Opt. Lett., 39(21):6126-6129, Nov 2014.CrossrefGoogle Scholar

  • [138] Bao C, Zhang L, Kimerling LC, Michel Y, and Yang. Soliton breathing induced by stimulated Raman scattering and selfsteepening in octave-spanning Kerr frequency comb generation. Opt. Express, 23(14):18665-18670, Jul 2015.CrossrefGoogle Scholar

  • [139] Hansson T and Wabnitz S. Frequency comb generation beyond the Lugiato-Lefever equation: multi-stability and super cavity solitons. J. Opt. Soc. Am. B, 32(7):1259-1266, Jul 2015.CrossrefGoogle Scholar

  • [140] P. Chýlek, H.-B. Lin, J. D. Eversole, and A. J. Campillo. Absorption effects on microdroplet resonant emissionstructure. Opt. Lett., 16(22):1723-1725, Nov 1991.CrossrefGoogle Scholar

  • [141] Absil PP, Hryniewicz JV, Little BE, Cho PS, Wilson RA, Joneckis LG, and Ho PT. Wavelength conversion in GaAs micro-ring resonators. Opt. Lett., 25(8):554-556, Apr 2000.CrossrefGoogle Scholar

  • [142] Fülöp A, Krückel CJ, Castelló-Lurbe D, Silvestre E, and Torres- Company V. Triply resonant coherent four-wave mixing in silicon nitride microresonators. Opt. Lett., 40(17):4006-4009, Sep 2015.CrossrefGoogle Scholar

  • [143] Kourogi M, Nakagawa K, and Ohtsu M. Wide-span optical frequency comb generator for accurate optical frequency difference measurement. IEEE Quantum Electronics, 29(10):2693-2701, Oct 1993.CrossrefGoogle Scholar

  • [144] Brothers LR, Lee D, and Wong NC. Terahertz optical frequency comb generation and phase locking of an optical parametric oscillator at 665 GHz. Opt. Lett., 19(4):245-247, Feb 1994.CrossrefGoogle Scholar

  • [145] Kourogi M, Widiyatomoko B, Takeuchi Y, and Ohtsu M. Limit of optical-frequency comb generation due to material dispersion. IEEE Journal of Quantum Electronics, 31(12):2120-2126, Dec 1995.CrossrefGoogle Scholar

  • [146] Macfarlane GM, Bell AS, Riis E, and Ferguson AI. Optical comb generator as an eflcient short-pulse source. Opt. Lett., 21(7):534-536, Apr 1996.CrossrefGoogle Scholar

  • [147] Ilchenko VS, Savchenkov AA, Matsko AB, and Maleki L. Whispering-gallery-mode electro-optic modulator and photonic microwave receiver. J. Opt. Soc. Am. B, 20(2):333-342, Feb 2003.CrossrefGoogle Scholar

  • [148] Huang YP, Velev V, and Kumar P. Quantum frequency conversion in nonlinear microcavities. Opt. Lett., 38(12):2119-2121, Jun 2013.CrossrefGoogle Scholar

  • [149] Li Q, Davanco M, and Srinivasan K. Eflcient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics. arXiv preprint arXiv:1510.02527, 2015.Google Scholar

  • [150] Hansson T and Wabnitz S. Bichromatically pumped microresonator frequency combs. Phys. Rev. A, 90:013811, Jul 2014.CrossrefGoogle Scholar

  • [151] Hu X, Liu Y, Xu X, Feng Y, Zhang W, Wang W, Song J, Wang Y, and Zhao W. Spatiotemporal evolution of a cosine-modulated stationary field and Kerr frequency comb generation in a microresonator. Appl. Opt., 54(29):8751-8757, Oct 2015.CrossrefGoogle Scholar

  • [152] Lobanov VE, Lihachev G, and Gorodetsky ML. Generation of platicons and frequency combs in optical microresonators with normal GVD by modulated pump. Europhysics Letters, 112(5):54008, 2015.CrossrefGoogle Scholar

  • [153] V.E. Lobanov, G. Lihachev, T. J. Kippenberg, and M.L. Gorodetsky. Frequency combs and platicons in optical microresonators with normal gvd. Opt. Express, 23(6):7713-7721, Mar 2015.CrossrefGoogle Scholar

  • [154] Lin G, Martinenghi R, Diallo S, Saleh K, Coillet A, and Chembo YK. Spectro-temporal dynamics of Kerr combs with parametric seeding. Appl. Opt., 54(9):2407-2412, Mar 2015.CrossrefGoogle Scholar

  • [155] V.S. Ilchenko, J. Byrd, A.A. Savchenkov, D. Eliyahu, Wei Liang, A.B. Matsko, D. Seidel, and L. Maleki. Kerr frequency combbased Ka-band RF photonic oscillator. In 2013 Joint European Frequency and Time Forum International Frequency Control Symposium (EFTF/IFC), pp 29-32, July 2013.Google Scholar

  • [156] Ferdous F, Miao H, Leaird DE, Srinivasan K, Wang J, Chen L, Varghese LT, and Weiner AM. Spectral line-by-line pulse shaping of on-chip microresonator frequency combs. Nature Photonics, 5(12):770-776, 2011.CrossrefGoogle Scholar

  • [157] Turing A. The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society B, 237:37-72, 1952.Google Scholar

  • [158] Klyshko DN. Photons and Nonlinear Optics. Taylor and Francis, New York, New York, USA, 1988.Google Scholar

  • [159] Foster MA, Turner AC, Sharping JE, Schmidt BS, Lipson M, and Gaeta AL. Broad-band optical parametric gain on a silicon photonic chip. Nature, 441(7096):960-963, 2006.Google Scholar

  • [160] Savchenkov AA, Matsko AB, Wei Liang, Vladimir S Ilchenko, David Seidel, and Lute Maleki. Transient regime of Kerr frequency comb formation. arXiv preprint arXiv:1111.3922, 2011.Google Scholar

  • [161] A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki. Transient regime of kerr-frequency-comb formation. Phys. Rev. A, 86:013838, Jul 2012.CrossrefGoogle Scholar

  • [162] Hasegawa A and Brinkman W. Tunable coherent IR and FIR sources utilizing modulational instability. Quantum Electronics, IEEE Journal of, 16(7):694-697, Jul 1980.CrossrefGoogle Scholar

  • [163] Hasegawa A. Soliton-based optical communications: an overview. Selected Topics in Quantum Electronics, IEEE Journal of, 6(6):1161-1172, Nov 2000.Google Scholar

  • [164] Agrawal GP. Nonlinear fiber optics. Academic Press, San Diego, California, USA, 2001.Google Scholar

  • [165] Savchenkov AA, Matsko AB, Ilchenko VS, Solomatine I, Seidel D, and Maleki L. Tunable optical frequency comb with a crystalline whispering gallery mode resonator. Physical Review Letters, 101(9):093902, 2008.CrossrefGoogle Scholar

  • [166] T Herr, K Hartinger, J Riemensberger, CY Wang, E Gavartin, R Holzwarth, ML Gorodetsky, and TJ Kippenberg. Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nature Photonics, 6(7):480-487, 2012.CrossrefGoogle Scholar

  • [167] Matsko AB, Liang W, Savchenkov AA, and Maleki L. Chaotic dynamics of frequency combs generated with continuously pumped nonlinear microresonators. Opt. Lett., 38(4):525-527, Feb 2013.CrossrefGoogle Scholar

  • [168] Andrey B. Matsko and Lute Maleki. Partially coherent Kerr frequency combs. In Nonlinear Optics, page NTu2B.2. Optical Society of America, 2013.Google Scholar

  • [169] Liang W, Matsko AB, Savchenkov AA, Ilchenko VS, Seidel D, and Maleki L. Generation of Kerr combs in MgF2 and CaF2 microresonators. In Frequency Control and the European Frequency and Time Forum (FCS), 2011 Joint Conference of the IEEE International, pp 1-6, May 2011.Google Scholar

  • [170] Liang W, Savchenkov AA, Matsko AB, Ilchenko VS, Seidel D, and Maleki L. Generation of near-infrared frequency combs from a MgF2 whispering gallery mode resonator. Opt. Lett., 36(12):2290-2292, Jun 2011.CrossrefGoogle Scholar

  • [171] Liu Y, Xuan Y, Xue X, Wang PH, Chen S, Metcalf AJ, Wang J, Leaird DE, Qi M, and Weiner AM. Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation. Optica, 1(3):137-144, Sep 2014.CrossrefGoogle Scholar

  • [172] Lin G, Saleh K, Henriet R, Diallo S, Martinenghi R, Coillet A, and Chembo YK. Wide-range tunability, thermal locking, and mode-crossing effects in Kerr optical frequency combs. Optical Engineering, 53(12):122602, 2014.CrossrefGoogle Scholar

  • [173] Farnesi D, Barucci A, Righini GC, Conti GN, and Soria S. Generation of hyper-parametric oscillations in silica microbubbles. Opt. Lett., 40(19):4508-4511, Oct 2015.CrossrefGoogle Scholar

  • [174] Ramelow S, Farsi A, Clemmen S, Levy JS, Johnson AR, Okawachi Y, Lamont MRE, Lipson M, and Gaeta AL. Strong polarization mode coupling in microresonators. Opt. Lett., 39(17):5134-5137, Sep 2014.CrossrefGoogle Scholar

  • [175] Herr T, Brasch V, Jost JD, Mirgorodskiy I, Lihachev G, Gorodetsky ML, and Kippenberg TJ. Mode spectrum and temporal soliton formation in optical microresonators. Phys. Rev. Lett., 113:123901, Sep 2014. CrossrefGoogle Scholar

  • [176] Huang SW, Yang J, Zhou H, Yu M, Kwong DL, and Wong CW. A low-phase-noise 18 GHz Kerr frequency microcomb phaselocked over 65 THz. Scientific Reports, 5:13355, 2015.Google Scholar

  • [177] Del’Haye P, Beha K, Papp SB, and Diddams SA. Self-injection locking and phase-locked states in microresonator-based optical frequency combs. Phys. Rev. Lett., 112:043905, Jan 2014.CrossrefGoogle Scholar

  • [178] Del’Haye P, Coillet A, Loh W, Beha K, Papp SB, and Diddams SA. Phase steps and resonator detuning measurements in microresonator frequency combs. Nature communications, v6, 2015.Google Scholar

  • [179] Saha K, Okawachi Y, Shim B, Levy JS, Salem R, Johnson AR, Foster MA, Lamont MRE, Lipson M, and Gaeta AL. Modelocking and femtosecond pulse generation in chip-based frequency combs. Opt. Express, 21(1):1335-1343, Jan 2013.CrossrefGoogle Scholar

  • [180] Matsko AB, Savchenkov AS, Liang W, Ilchenko VS, Seidel D, and Maleki L. Group velocity dispersion and stability of resonant hyper-parametric oscillations. In Nonlinear Optics, page NWD2. Optical Society of America, 2011.Google Scholar

  • [181] V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science, 351(6271):357-360, 2016.Google Scholar

  • [182] Xu Yi, Qi-Fan Yang, Ki Youl Yang, Myoung-Gyun Suh, and Kerry Vahala. Soliton frequency comb at microwave rates in a high-Q silica microresonator. Optica, 2(12):1078-1085, Dec 2015.Google Scholar

  • [183] Jose A. Jaramillo-Villegas, Xiaoxiao Xue, Pei-Hsun Wang, Daniel E. Leaird, and Andrew M. Weiner. Deterministic single soliton generation and compression in microring resonators avoiding the chaotic region. Opt. Express, 23(8):9618-9626, Apr 2015.Google Scholar

  • [184] Hansson T, Modotto D, and Wabnitz S. Dynamics of the modulational instability in microresonator frequency combs. Phys. Rev. A, 88:023819, Aug 2013.CrossrefGoogle Scholar

  • [185] Mollenauer LF, Gordon JP, and Islam MN. Soliton propagation in long fibers with periodically compensated loss. Quantum Electronics, IEEE Journal of, 22(1):157-173, Jan 1986.CrossrefGoogle Scholar

  • [186] Haus HA, Tamura K, Nelson LE, and Ippen EP. Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment. Quantum Electronics, IEEE Journal of, 31(3):591-598, Mar 1995.CrossrefGoogle Scholar

  • [187] Becker M, Kuizenga Dirk J, and Siegman A. Harmonic mode locking of the Nd: YAG laser. Quantum Electronics, IEEE Journal of, 8(8):687-693, August 1972.CrossrefGoogle Scholar

  • [188] Sato K, Wakita K, Kotaka I, Kondo Y, Yamamoto M, and Takada A. Monolithic strained InGaAsP multiple quantum well lasers with integrated electroabsorption modulators for active mode locking. Applied Physics Letters, 65(1):1-3, 1994.CrossrefGoogle Scholar

  • [189] Arahira S and Ogawa Y. 480-GHz subharmonic synchronous mode locking in a short-cavity colliding-pulse mode-locked laser diode. Photonics Technology Letters, IEEE, 14(4):537-539, April 2002.Google Scholar

  • [190] Harvey GT and Mollenauer LF. Harmonically mode-locked fiber ring laser with an internal Fabry-Perot stabilizer for soliton transmission. Opt. Lett., 18(2):107-109, Jan 1993.CrossrefGoogle Scholar

  • [191] DePriest CM, Yilmaz T, Etamad S, Braun A, Abeles J, and Delfyett PJ. Ultra low noise and supermode suppression in an actively modelocked external-cavity semiconductor diode ring laser. In Optical Fiber Communication Conference and Exhibit, 2002. OFC 2002, pp 589-590, Mar 2002.Google Scholar

  • [192] Chowdhury DQ, Hill SC, and Barber PW. Time dependence of internal intensity of a dielectric sphere on and near resonance. J. Opt. Soc. Am. A, 9(8):1364-1373, Aug 1992.CrossrefGoogle Scholar

  • [193] Khaled EEM, Chowdhury DQ, Hill SC, and Barber PW. Internal and scattered time-dependent intensity of a dielectric sphere illuminated with a pulsed gaussian beam. J. Opt. Soc. Am. A, 11(7):2065-2071, Jul 1994.CrossrefGoogle Scholar

  • [194] Frolov SV, Shkunov M, Vardeny ZV, and Yoshino K. Ring microlasers from conducting polymers. Phys. Rev. B, 56:R4363-R4366, Aug 1997.CrossrefGoogle Scholar

  • [195] Heebner JE, Boyd RW, and Park QH. Scissor solitons and other novel propagation effects in microresonator-modified waveguides. J. Opt. Soc. Am. B, 19(4):722-731, Apr 2002.CrossrefGoogle Scholar

  • [196] Whitten WB, Barnes MD, and Ramsey JM. Propagation of short optical pulses in a dielectric sphere. J. Opt. Soc. Am. B, 14(12):3424-3429, Dec 1997.CrossrefGoogle Scholar

  • [197] Shaw RW, Whitten WB, Barnes MD, and Ramsey JM. Timedomain observation of optical pulse propagation in whispering-gallery modes of glass spheres. Opt. Lett., 23(16):1301-1303, Aug 1998.CrossrefGoogle Scholar

  • [198] Zhang J and Grischkowsky D. Whispering-gallery mode terahertz pulses. Opt. Lett., 27(8):661-662, Apr 2002.CrossrefGoogle Scholar

  • [199] Mees L, Gouesbet G, and Grehan G. Numerical predictions of microcavity internal fields created by femtosecond pulses, with emphasis on whispering gallery modes. Journal of Optics A: Pure and Applied Optics, 4(5):S150, 2002.Google Scholar

  • [200] Maleki L, Savchenkov AA, Ilchenko VS, and Matsko AB. Whispering gallery mode lithium niobate microresonators for photonics applications. volume 5104, pp 1-13, 2003.Google Scholar

  • [201] Huang SW, Zhou H, Yang J, McMillan JF, Matsko AB, Yu M, Kwong DL, Maleki L, and Wong CW. Mode-locked ultrashort pulse generation from on-chip normal dispersion microresonators. Phys. Rev. Lett., 114:053901, Feb 2015.CrossrefGoogle Scholar

  • [202] Brasch V, Geiselmann M, Herr T, Lihachev G, Pfeiffer M, Gorodetsky ML, and Kippenberg K. Photonic chip based optical frequency comb using soliton induced Cherenkov radiation. In CLEO: 2015, page STh4N.1. Optical Society of America, 2015.Google Scholar

  • [203] Grudinin IS and Yu N. Towards eflcient octave-spanning comb with micro-structured crystalline resonator. Proc. SPIE, 9343, pp 93430F-93430F-9, 2015.Google Scholar

  • [204] Liang W, Eliyahu D, Ilchenko VS, Savchenkov AA, Matsko AB, Seidel D, and Maleki L. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nature Communications, v6, 2015.Google Scholar

  • [205] Liang W, Savchenkov AA, Ilchenko VS, Eliyahu D, Seidel D, Matsko AB, and Maleki L. Generation of a coherent nearinfrared Kerr frequency comb in a monolithic microresonator with normal GVD. Opt. Lett., 39(10):2920-2923, May 2014.CrossrefGoogle Scholar

  • [206] Godey C, Balakireva IV, Coillet A, and Chembo YK. Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes. Physical Review A, 89:063814, 2014.CrossrefGoogle Scholar

  • [207] Coillet A, Balakireva I, Henriet R, Saleh K, Larger L, Dudley JM, Menyuk CR, and Chembo YK. Azimuthal turing patterns, bright and dark cavity solitons in Kerr combs generated with whispering-gallery-mode resonators. Photonics Journal, IEEE, 5(4):6100409-6100409, Aug 2013. CrossrefGoogle Scholar

  • [208] Henriet R, Lin G, Coillet A, Jacquot M, Furfaro L, Larger L, and Chembo YK. Kerr optical frequency comb generation in strontium fluoride whispering-gallery mode resonators with billion quality factor. Opt. Lett., 40(7):1567-1570, Apr 2015.CrossrefGoogle Scholar

  • [209] Soltani M, Matsko AB, and Maleki L. Enabling arbitrary wavelength frequency combs on chip. Laser and Photonics Reviews, 10(1):158-162, 2016.Google Scholar

  • [210] NN Rosanov, VA Smirnov, and NV Vyssotina. Numerical simulations of interaction of bright spatial solitons in medium with saturable nonlinearity. Chaos, Solitons & Fractals, 4(8):1767-1782, 1994.CrossrefGoogle Scholar

  • [211] S. Coen, M. Tlidi, Ph. Emplit, and M. Haelterman. Convection versus dispersion in optical bistability. Phys. Rev. Lett., 83:2328-2331, Sep 1999.CrossrefGoogle Scholar

  • [212] P Parra-Rivas, D Gomila, E Knobloch, S Coen, and L Gelens. Origin and stability of dark pulse Kerr combs in normal dispersion resonators. arXiv preprint arXiv:1602.07068, 2016.Google Scholar

  • [213] Savchenkov AA, Ilchenko VS, Teodoro F, Belden PM, Lotshaw WT, Matsko AB, and Maleki L. Generation of Kerr combs centered at 4.5um in crystalline microresonators pumped with quantum-cascade lasers. Opt. Lett., 40(15):3468-3471, Aug 2015.Google Scholar

  • [214] Lecaplain C, Javerzac-Galy C, Lucas E, Jost JD, and Kippenberg T. Quantum cascade laser-based Kerr frequency comb generation. In CLEO: 2015, page SW4F.2. Optical Society of America, 2015.Google Scholar

  • [215] Kuznetsov E. Solitons in a parametrically unstable plasma. Sov. Phys. Dokl., 22:507-508, 1977.Google Scholar

  • [216] Ma YC. The perturbed plane-wave solutions of the cubic Schrodinger equation. Stud. Appl. Math., 60:43-58, 1979.CrossrefGoogle Scholar

  • [217] Kibler B, Fatome J, Finot C, Millot G, Genty G, Wetzel B, Akhmediev N, Dias F, and Dudley JM. Observation of Kuznetsov-Ma soliton dynamics in optical fibre. Sci. Rep., 2:463, 2012.Google Scholar

  • [218] Akhmediev N and Korneev VI. Modulation instability and periodic solutions of the nonlinear Schrodinger equation. Theor. Math. Phys., 69:1089-1093, 1986.CrossrefGoogle Scholar

  • [219] Dudley JM, Genty G, Dias F, Kibler B, and Akhmediev N. Modulation instability, Akhmediev breathers and continuous wave supercontinuum generation. Opt. Express, 17:21497-21508, 2009.CrossrefGoogle Scholar

  • [220] Nozaki K and Bekki N. Chaotic solitons in a plasma driven by an RF field. J. Phys. Soc. Jpn., 54:2363-2366, 1985.CrossrefGoogle Scholar

  • [221] Turaev D, Vladimirov AG, and Zelik S. Long-range interaction and synchronization of oscillating dissipative solitons. Phys. Rev. Lett., 108:263906, 2012.CrossrefGoogle Scholar

  • [222] Fermi E, Pasta J, and Ulam S. Studies of nonlinear problems I. Los Alamos report LA-1940, 1955, reprinted E. Fermi, Collected Papers, II:978, 1965.Google Scholar

  • [223] Simaeys GV, Emplit Ph, and Haelterman M. Experimental demonstration of the Fermi-Pasta-Ulam recurrence in a modulationally unstable optical wave. Phys. Rev. Lett., 87:033902, 2001.CrossrefGoogle Scholar

  • [224] Akhmediev N. Nonlinear physics: Deja vu in optics. Nature, 413:267-268, 2001.CrossrefGoogle Scholar

  • [225] Leo F, Gelens L, Emplit P, Haelterman M, and Coen S. Dynamics of one-dimensional Kerr cavity solitons. Opt. Express, 21:9180-9191, 2013.CrossrefGoogle Scholar

  • [226] Del’Haye P, Herr T, Gavartin E, Gorodetsky ML, Holzwarth R, and Kippenberg TJ. Octave spanning tunable frequency comb from a microresonator. Phys. Rev. Lett., 107:063901, Aug 2011.CrossrefGoogle Scholar

  • [227] Kippenberg TJ, Spillane SM, and Vahala KJ. Modal coupling in traveling-wave resonators. Opt. Lett., 27(19):1669-1671, Oct 2002.CrossrefGoogle Scholar

  • [228] Savchenkov AA, Matsko AB, Strekalov D, Ilchenko VS, and Maleki L. Enhancement of photorefraction in whispering gallery mode resonators. Phys. Rev. B, 74:245119, Dec 2006.CrossrefGoogle Scholar

  • [229] Savchenkov AA, Liang W, Matsko AB, Ilchenko VS, Seidel D, and Maleki L. Tunable optical single-sideband modulator with complete sideband suppression. Opt. Lett., 34(9):1300-1302, May 2009.CrossrefGoogle Scholar

  • [230] Savchenkov AA, Matsko AB, Ilchenko VS, Strekalov D, and Maleki L. Direct visualization of stationary interference patterns of several running whispering gallery modes. In Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, page QTuG6. Optical Society of America, 2007.Google Scholar

  • [231] Carmon T, Schwefel HGL, Yang L, Oxborrow M, Stone AD, and Vahala KJ. Static envelope patterns in composite resonances generated by level crossing in optical toroidal microcavities. Phys. Rev. Lett., 100:103905, Mar 2008.CrossrefGoogle Scholar

  • [232] Grudinin IS, Baumgartel L, and Yu N. Impact of cavity spectrum on span in microresonator frequency combs. Opt. Express, 21(22):26929-26935, Nov 2013.CrossrefGoogle Scholar

  • [233] Matsko AB, Wei L, Ilchenko VS, Savchenkov AA, Byrd J, Seidel D, and Maleki L. Control of Kerr optical frequency comb generation with temperature dependent group velocity dispersion. In Photonics Conference (IPC), 2014 IEEE, pp 108-109, Oct 2014.Google Scholar

  • [234] Xue X, Xuan Y, Wang PH, Liu Y, Leaird DE, Qi M, and Weiner AM. Normal-dispersion microcombs enabled by controllable mode interactions. Laser and Photonics Reviews, 9(4):L23- L28, 2015.Google Scholar

  • [235] Maleki L, Ilchenko VS, Savchenkov AA, Liang W, Seidel D., and Matsko AB. High performance, miniature hyperparametric microwave photonic oscillator. In Frequency Control Symposium (FCS), 2010 IEEE International, pp 558-563, June 2010.Google Scholar

  • [236] Birks TA, Wadsworth WJ, and Russell PSJ. Supercontinuum generation in tapered fibers. Opt. Lett., 25(19):1415-1417, Oct 2000.CrossrefGoogle Scholar

  • [237] Cordeiro CMB, Wadsworth WJ, Birks TA, and Russell PSJ. Engineering the dispersion of tapered fibers for supercontinuum generation with a 1064 nm pump laser. Opt. Lett., 30(15):1980-1982, Aug 2005.CrossrefGoogle Scholar

  • [238] Ilchenko VS, Gorodetsky ML, Yao XS, and Maleki L. Microtorus: a high-finesse microcavity with whispering-gallery modes. Opt. Lett., 26(5):256-258, Mar 2001.CrossrefGoogle Scholar

  • [239] Savchenkov AA, Grudinin IS, Matsko AB, Strekalov D, Mohageg M, Ilchenko VS, and Maleki L. Morphology-dependent photonic circuit elements. Opt. Lett., 31(9):1313-1315, May 2006.CrossrefGoogle Scholar

  • [240] Ferdous F, Demchenko AA, Vyatchanin SP, Matsko AB, and Maleki L. Microcavity morphology optimization. Phys. Rev. A, 90:033826, Sep 2014.CrossrefGoogle Scholar

  • [241] Savchenkov AA, Matsko AB, Liang W, Ilchenko VS, Seidel D, and Maleki L. Kerr combs with selectable central frequency. Nature Photonics, 5(5):293-296, 2011. CrossrefGoogle Scholar

  • [242] Lin G and Chembo YK. On the dispersion management of fluorite whispering-gallery mode resonators for Kerr optical frequency comb generation in the telecom and mid-infrared range. Opt. Express, 23(2):1594-1604, Jan 2015.CrossrefGoogle Scholar

  • [243] Demchenko YA and Gorodetsky ML. Analytical estimates of eigenfrequencies, dispersion, and field distribution in whispering gallery resonators. J. Opt. Soc. Am. B, 30(11):3056-3063, Nov 2013.CrossrefGoogle Scholar

  • [244] Sumetsky M. Whispering-gallery-bottle microcavities: the three-dimensional etalon. Opt. Lett., 29(1):8-10, Jan 2004.CrossrefGoogle Scholar

  • [245] Agha IH, Okawachi Y, Foster MA, Sharping JE, and Gaeta AL. Four-wave-mixing parametric oscillations in dispersioncompensated high-Q silica microspheres. Phys. Rev. A, 76:043837, Oct 2007.CrossrefGoogle Scholar

  • [246] Matsko AB, Savchenkov AA, Liang W, Ilchenko VS, Seidel D, and Maleki L. Spectrum engineering in whispering gallery mode resonators. volume 7913, pp 79130Q-79130Q-10, 2011.Google Scholar

  • [247] Grudinin IS, Baumgartel L, and Yu N. Frequency comb from a microresonator with engineered spectrum. Opt. Express, 20(6):6604-6609, Mar 2012.CrossrefGoogle Scholar

  • [248] Benisty H and Piskunov N. Mastered dispersion of material resonators: Broad corrugated waveguides working under the Littrow regime. Applied Physics Letters, 102(15), 2013.Google Scholar

  • [249] Li M, Wu X, Liu L, and Xu L. Kerr parametric oscillations and frequency comb generation from dispersion compensated silica micro-bubble resonators. Opt. Express, 21(14):16908-16913, Jul 2013.CrossrefGoogle Scholar

  • [250] Moss DJ, Morandotti R, Gaeta AL, and Lipson M. New CMOScompatible platforms based on silicon nitride and hydex for nonlinear optics. Nature Photonics, 7(8):597-607, 2013.CrossrefGoogle Scholar

  • [251] Grudinin IS and Yu N. Dispersion engineering of crystalline resonators via microstructuring. Optica, 2(3):221-224, Mar 2015.CrossrefGoogle Scholar

  • [252] Yang KY, Beha K, Cole DC, Yi X, Del’Haye P, Lee H, Li J, Oh DY, Diddams SA, Papp SB, et al. Broadband dispersion engineered microresonator on-a-chip. arXiv preprint arXiv:1506.07157, 2015.Google Scholar

  • [253] Ilchenko VS, Savchenkov AA, Matsko AB, and Maleki L. Dispersion compensation in whispering-gallery modes. J. Opt. Soc. Am. A, 20(1):157-162, Jan 2003.CrossrefGoogle Scholar

  • [254] Zhang L, Yue Y, Beausoleil RG, and Willner AE. Flattened dispersion in silicon slot waveguides. Opt. Express, 18(19):20529-20534, Sep 2010.CrossrefGoogle Scholar

  • [255] Riemensberger J, Hartinger K, Herr T, Brasch V, Holzwarth R, and Kippenberg TJ. Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition. Opt. Express, 20(25):27661-27669, Dec 2012.CrossrefGoogle Scholar

  • [256] Jiang WC, Zhang J, Usechak NG, and Lin Q. Dispersion engineering of high-Q silicon microresonators via thermal oxidation. Applied Physics Letters, 105(3):-, 2014.Google Scholar

  • [257] Bao C, Yan Y, Zhang L, Yue Y, Ahmed N, Agarwal AM, Kimerling LC, Michel J, and Willner AE. Increased bandwidth with flattened and low dispersion in a horizontal double-slot silicon waveguide. J. Opt. Soc. Am. B, 32(1):26-30, Jan 2015.CrossrefGoogle Scholar

  • [258] Liang W, Ilchenko VS, Savchenkov AA, Matsko AB, Seidel D, and Maleki L. Passively mode-locked Raman laser. Phys. Rev. Lett., 105:143903, Sep 2010.CrossrefGoogle Scholar

  • [259] Chembo YK, Grudinin IS, and Yu N. Spatiotemporal dynamics of Kerr-Raman optical frequency combs. Phys. Rev. A, 92:043818, Oct 2015.CrossrefGoogle Scholar


Erhalten: 12.11.2015

Angenommen: 04.03.2016

Online erschienen: 17.06.2016

Erschienen im Druck: 01.06.2016

Quellenangabe: Nanophotonics, Band 5, Heft 2, Seiten 363–391, ISSN (Online) 2192-8614, ISSN (Print) 2192-8606, DOI: https://doi.org/10.1515/nanoph-2016-0031.

Zitat exportieren

© 2016. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Zitierende Artikel

Hier finden Sie eine Übersicht über alle Crossref-gelisteten Publikationen, in denen dieser Artikel zitiert wird. Um automatisch über neue Zitierungen dieses Artikels informiert zu werden, aktivieren Sie einfach oben auf dieser Seite den „E-Mail-Alert: Neu zitiert“.

Saliya Coulibaly, Majid Taki, Abdelkrim Bendahmane, Guy Millot, Bertrand Kibler, and Marcel Gabriel Clerc
Physical Review X, 2019, Jahrgang 9, Nummer 1
L. A. Lugiato, F. Prati, M. L. Gorodetsky, and T. J. Kippenberg
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2018, Jahrgang 376, Nummer 2135, Seite 20180113
N. G. Pavlov, S. Koptyaev, G. V. Lihachev, A. S. Voloshin, A. S. Gorodnitskiy, M. V. Ryabko, S. V. Polonsky, and M. L. Gorodetsky
Nature Photonics, 2018
A. Bendahmane, J. Fatome, C. Finot, G. Millot, and B. Kibler
Optics Letters, 2018, Jahrgang 43, Nummer 18, Seite 4449
Tobias J. Kippenberg, Alexander L. Gaeta, Michal Lipson, and Michael L. Gorodetsky
Science, 2018, Jahrgang 361, Nummer 6402, Seite eaan8083
Hyungwoo Choi and Andrea M. Armani
Optics Letters, 2018, Jahrgang 43, Nummer 12, Seite 2949
Jiayang Wu, Xingyuan Xu, Thach G. Nguyen, Sai Tak Chu, Brent E. Little, Roberto Morandotti, Arnan Mitchell, and David J. Moss
IEEE Journal of Selected Topics in Quantum Electronics, 2018, Jahrgang 24, Nummer 4, Seite 1
Mulong Liu, Leiran Wang, Qibing Sun, Siqi Li, Zhiqiang Ge, Zhizhou Lu, Weiqiang Wang, Guoxi Wang, Wenfu Zhang, Xiaohong Hu, and Wei Zhao
Photonics Research, 2018, Jahrgang 6, Nummer 4, Seite 238
Andrey B. Matsko and Lute Maleki
Optics Letters, 2017, Jahrgang 42, Nummer 22, Seite 4764
Rigoberto Castro-Beltrán, Vinh M. Diep, Soheil Soltani, Eda Gungor, and Andrea M. Armani
ACS Photonics, 2017
Mulong Liu, Leiran Wang, Qibing Sun, Weiqiang Wang, Guoxi Wang, Siqi Li, Lingxuan Zhang, Wenfu Zhang, Xiaohong Hu, Yongkang Gong, and Wei Zhao
Modern Physics Letters B, 2017, Seite 1750266
Hossein Taheri, Andrey B. Matsko, and Lute Maleki
The European Physical Journal D, 2017, Jahrgang 71, Nummer 6
S. Arafin, A. Simsek, S.-K. Kim, W. Liang, D. Eliyahu, G. Morrison, M. Mashanovitch, A. Matsko, L. Johansson, L. Maleki, M. J. Rodwell, and L. A. Coldren
IEEE Photonics Journal, 2017, Jahrgang 9, Nummer 3, Seite 1
Ivan S. Grudinin, Vincent Huet, Nan Yu, Andrey B. Matsko, Michael L. Gorodetsky, and Lute Maleki
Optica, 2017, Jahrgang 4, Nummer 4, Seite 434
Ivan S. Maksymov and Andrew D. Greentree
Optics Express, 2017, Jahrgang 25, Nummer 7, Seite 7496
A. Bendahmane, J. Fatome, C. Finot, G. Millot, and B. Kibler
Optics Letters, 2017, Jahrgang 42, Nummer 2, Seite 251
D. Ceoldo, A. Bendahmane, J. Fatome, G. Millot, T. Hansson, D. Modotto, S. Wabnitz, and B. Kibler
Optics Letters, 2016, Jahrgang 41, Nummer 23, Seite 5462
V. E. Lobanov, G. V. Lihachev, N. G. Pavlov, A. V. Cherenkov, T. J. Kippenberg, and M. L. Gorodetsky
Optics Express, 2016, Jahrgang 24, Nummer 24, Seite 27382

Kommentare (0)