[1]

D. E. Chang, V. Vuletić and M. D. Lukin, “Quantum nonlinear optics - photon by photon,” *Nature Photonics*, vol. **8**, no. 9, pp. 685-694, 2014. Google Scholar

[2]

Thorlabs Inc., *Various Fibres (HC-800B, HC-1060, HC-1550, HC19-1550, ESM-12B, LMA-25, NL-2.4-800, BL-3.2-890, LMAPM-15, LMA-PM-5, 780-HP, 1550-BHP)*.

[3]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletić and M. D. Lukin, “Eflcient all-optical switching using slow light within a hollow fiber,” *Physical Review Letters*, vol. **102**, no. 20, pp. 1-4, 2009. Google Scholar

[4]

V. Venkataraman, K. Saha and A. L. Gaeta, “Phase modulation at the few-photon level for weak-nonlinearity-based quantum computing,” *Nature Photonics*, vol. **7**, p. 138, 2013. Google Scholar

[5]

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X.-M. Jin, W. S. Kolthammer, A. Abdolvand, P. S. J. Russell and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” *Nature Photonics*, vol. **8**, no. 4, pp. 287-291, 2014. Google Scholar

[6]

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins and H. Schmidt, “Slow light on a chip via atomic quantum state control,” *Nature Photonics*, vol. **4**, no. 11, pp. 776-779, Nov 2010. Google Scholar

[7]

S. E. Harris, “Electromagnetically Induced Transparency,”*Physics Today*, vol. **50**, p. 36, 1997. Google Scholar

[8]

M. Fleischhauer and M. D. Lukin, “Dark-State Polaritons in Electromagnetically Induced Transparency,” *Physical Review Letters*, vol. **84**, pp. 5094-5097, 2000. Google Scholar

[9]

H. Tanji-Suzuki, W. Chen, R. Landig, J. Simon and V. Vuletić, “Vacuum-Induced Transparency,” *Science*, vol. **333**, no. 6047, pp. 1266-1269, 2011. Google Scholar

[10]

S.-P. Yu, J. D. Hood, J. A. Muniz, M. J. Martin, R. Norte, C.-L. Hung, S. M. Meenehan, J. D. Cohen, O. Painter and H. J. Kimble, “Nanowire photonic crystal waveguides for single-atom trapping and strong light-matter interactions,” *Applied Physics Letters*, vol. **104**, p. 111103, 2014. Google Scholar

[11]

M. Bajcsy, S. Hofferberth, T. Peyronel, V. Balic, Q. Liang, a. S. Zibrov, V. Vuletic and M. D. Lukin, “Laser-cooled atoms inside a hollow-core photonic-crystal fiber,” *Physical Review A*, vol. **83**, pp. 1-9, 2011. Google Scholar

[12]

M. Skorobogatiy, “Microstructured and Photonic Bandgap Fibers for Applications in the Resonant Bio- and Chemical Sensors,” *Journal of Sensors*, vol. **2009**, pp. 1-20, 2009. Google Scholar

[13]

G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger and P. S. J. Russell, “Models for guidance in kagome-structured hollow-core photonic crystal fibres,” *Optics Express*, vol. **15**, no. 20, pp. 12680-12685, 2007. Google Scholar

[14]

P. Yeh, A. Yariv and E. Marom, “Theory of Bragg fiber,” *Journal of the Optical Society of America*, vol. **68**, no. 9, pp. 1196-1201, 1978. Google Scholar

[15]

P. S. J. Russell, “Photonic band gaps,” *Physics World*, vol. **5**, no. 8, pp. 37-42, 1992. Google Scholar

[16]

J. C. Knight, T. A. Birks, P. S. J. Russell and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” *Optics Letters*, vol. **21**, no. 19, pp. 1547-1549, 1996. Google Scholar

[17]

F. Benabid, F. Gerome, B. Debord and M. Alharbi, “Fiber for Fiber Lasers: Kagome PC fiber goes to extremes for ultrashort-pulse lasers,” *Laser Focus World*, 2014. Google Scholar

[18]

R. Buczynski, “Photonic crystal fibers,” *Science*, vol. **299**, no. 5605, pp. 358-362, 2003. Google Scholar

[19]

P. Russell, “Photonic-crystal fibers,” *Journal of Lightwave Technology*, vol. **24**, no. 12, pp. 4729-4749, 2006.Google Scholar

[20]

P. Russell, “Photonic crystal fibers,” *Science*, vol. **299**, no. 5605, pp. 358-362, 2003.Google Scholar

[21]

J. D. Joannopoulos, S. G. Johnson, J. N. Winn and R. D. Meade, Photonic Crystals Molding the Flow of Light, Second ed., Woodstock, Oxfordshire: Princeton University Press, 2008. Google Scholar

[22]

E. Lunt, B. Wu, J. Keeley, P. Measor, H. Schmidt and A. Hawkins, “Hollow ARROW Waveguides on Self-Aligned Pedestals for Improved Geometry and Transmission,” *IEEE Photonics Technology Letters*, vol. **22**, no. 15, pp. 1147-1149, 2010. Google Scholar

[23]

P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight and P. St J Russell, “Ultimate low loss of hollow-core photonic crystal fibres.,” *Optics Express*, vol. **13**, no. 1, pp. 236-244, 2005. Google Scholar

[24]

K. Nagayama, M. Kakui, M. Matsui, I. Saitoh and Y. Chigusa, “Ultra-low-loss (0.1484 dB/km) pure silica core fibre and extension of transmission distance,” *Electronics Letters*, vol. **38**, p. 1168, 2002. Google Scholar

[25]

F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” *Journal of Modern Optics*, vol. **58**, p. 87, 2011. Google Scholar

[26]

S. B. Cohn, “Properties of Ridge Wave Guide,” *Proceedings of the IRE*, vol. **35**, no. 8, pp. 783-788, Aug 1947. Google Scholar

[27]

R. Hunsperger, Integrated Optics: Theory and Technology, 6 ed., Springer-Verlag New York, 2009. Google Scholar

[28]

M. A. Duguay, Y. Kokubun, T. L. Koch and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2 *∖*Si multilayer structures,” *Applied Physics Letters*, vol. **49**, no. 1, pp. 13-15, 1986. Google Scholar

[29]

T. Delonge and H. Fouckhardt, “Integrated optical detection cell based on Bragg reflecting waveguides,” *Journal of Chromatography A*, vol. **716**, no. 1-2, pp. 135-139, 1995. Google Scholar

[30]

L. Mawst, D. Botez, C. Zmudzinski and C. Tu, “Design optimization of ARROW-type diode lasers,” *Photonics Technology Letters, IEEE*, vol. **4**, no. 11, pp. 1204-1206, 1992. Google Scholar

[31]

H. Schmidt and A. Hawkins, “Optofluidic waveguides: I. Concepts and implementations,” *Microfluidics and Nanofluidics*, vol. **4**, no. 1-2, pp. 3-16, 2008. Google Scholar

[32]

W. Yang, J. Ferrara, K. Grutter, A.Yeh, C. Chase, Y. Yue, A. E. Willner and M. C. Wu, “Low loss hollow-core waveguide on a silicon substrate,” *Nanophotonics*, vol. **1**, no. 1, pp. 23-29, June 2012. Google Scholar

[33]

D. Yin, H. Schmidt, J. Barber and A. Hawkins, “Integrated ARROW waveguides with hollow cores,” *Optics Express*, vol. **12**, no. 12, pp. 2710-2715, Jun 2004. Google Scholar

[34]

C. Chen, P. Berini, D. Feng, S. Tanev and V. Tzolov, “Eflcient and accurate numerical analysis of multilayer planar optical waveguides in lossy anisotropic media,” *Optics Express*, vol. **7**, no. 8, pp. 260-272, 2000. Google Scholar

[35]

Y. Zhao, M. Jenkins, P. Measor, K. Leake, S. Liu, H. Schmidt and A. R. Hawkins, “Hollow waveguides with low intrinsic photoluminescence fabricated with Ta2O5 and SiO2 films,” *Applied Physics Letters*, vol. **98**, no. 9, p. 091104, 2011. Google Scholar

[36]

R. Bernini, S. Campopiano, L. Zeni and P. M. Sarro, “ARROW optical waveguides based sensors,” *Sensors and Actuators B: Chemical*, vol. **100**, no. 1-2, pp. 143-146, 2004. Google Scholar

[37]

J. Barber, D. Conkey, J. Lee, N. Hubbard, L. Howell, D. Yin, H. Schmidt and A. Hawkins, “Fabrication of hollow waveguides with sacrificial aluminum cores,” *Photonics Technology Letters, IEEE*, vol. **17**, no. 2, pp. 363-365, Feb 2005. Google Scholar

[38]

Microchem Corporation, *SU-8 Negative Epoxy Series Resists*.

[39]

E. J. Lunt, “Low-Loss Hollow Waveguide Platforms for Optical Sensing and Manipulation,” Ph.D Dissertation, Brigham Young University, 2010. Google Scholar

[40]

C. W. Smelser, S. J. Mihailov, D. G., P. Lu, R. B. Walker, H. Ding and X. Dai, “Multiple-beam interference patterns in optical fiber generated with ultrafast pulses and a phase mask,” *Optics Letters*, vol. **29**, no. 13, pp. 1458-1460, Jul 2004. Google Scholar

[41]

K. Nayak and K. Hakuta, “Photonic crystal formation on optical nanofibers using femtosecond laser ablation technique,” *Optics Express*, vol. **21**, no. 2, pp. 2480-2490, 2013. Google Scholar

[42]

B. Malo, K. Hill, F. Bilodeau, D. Johnson and J. Albert, “Pointby-point fabrication of micro-Bragg gratings in photosensitive fibre using single excimer pulse refractive index modification techniques,” *Electronics Letters*, vol. **29**, no. 18, pp. 1668-1669, 1993. Google Scholar

[43]

G. Meltz, W. W. Morey and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” *Optics Letters*, vol. **14**, no. 15, pp. 823-825, 1989. Google Scholar

[44]

C. Askins, M. Putnam, G. Williams and E. Friebele, “Stepped-wavelength optical-fiber Bragg grating arrays fabricated in line on a draw tower,” *Optics Letters*, vol. **19**, no. 2, pp. 147-149, 1994.Google Scholar

[45]

D. Anderson, V. Mizrahi, T. Erdogan and A. White, “Production of in-fibre gratings using a diffractive optical element,” *Electronics Letters*, vol. **29**, no. 6, pp. 566-568, 1993.Google Scholar

[46]

M. L. Dockney, S. W. James and R. P. Tatam, “Fibre Bragg gratings fabricated using a wavelength tuneable laser source and a phase mask based interferometer,” *Measurement Science and Technology*, vol. **7**, no. 4, p. 445, 1996. Google Scholar

[47]

Gianluigi Zito and Stavros Pissadakis, “Holographic polymer-dispersed liquid crystal Bragg grating integrated inside a solid core photonic crystal fiber,” *Optics Letters* 38, 3253, 2013. Google Scholar

[48]

D. Noordegraaf, L. Scolari, J. Lćgsgaard, L. Rindorf and T. T. Alkeskjold, “Electrically and mechanically induced long period gratings in liquid crystalphotonic bandgap fibers,” *Optics Express*, vol. **15**, no. 13, p. 7901, 2007. Google Scholar

[49]

J. Flannery, V. Bhaskara, G. Bappi, O. Alshehri and M. Bajcsy, “Bragg gratings in hollow-core photonic-crystal fibers,” *in preparation*, 2015. Google Scholar

[50]

H. Baghdasaryan, T. Knyazyan, T. Baghdasaryan, B. Witzig-mann and F. Roemer, “Absorption loss influence on optical characteristics of multilayer distributed Bragg reflector: wavelength-scale analysis by the method of single expression,” *Opto-Electronics Review*, vol. **18**, no. 4, pp. 438-445, 2010. Google Scholar

[51]

A. Othonos, “Fiber Bragg gratings,” *Review of Scientific Instruments*, vol. **68**, no. 12, pp. 4309-4341, 1997. Google Scholar

[52]

Lumerical Solutions Inc., *FDTD, MODE Solutions*.

[53]

NKT Photonics, *Hollow Core Photonic Crystal Fibre Hc-800B*.

[54]

K. Sugioka and Y. Cheng, “Femtosecond laser processing for optofluidic fabrication,” *Lab on a Chip*, vol. **12**, no. 19, pp. 3576-3589, 2012. Google Scholar

[55]

K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” *Journal of Non-Crystalline Solids*, vol. **239**, no. 1, pp. 91-95, 1998. Google Scholar

[56]

L. Xiao, W. Jin, M. Demokan, H. Ho, Y. Hoo and C. Zhao, “Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer,” *Optics Express*, vol. **13**, no. 22, pp. 9014-9022, 2005. Google Scholar

[57]

Y. Huang, Y. Xu and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” *Applied Physics Letters*, vol. **85**, no. 22, pp. 5182-5184, 2004. Google Scholar

[58]

K. Nielsen, D. Noordegraaf, T. Sřrensen, A. Bjarklev and T. P. Hansen, “Selective filling of photonic crystal fibres,” *Journal of Optics A*, vol. **7**, no. 8, p. L13, 2005. Google Scholar

[59]

C. Martelli, J. Canning, K. Lyytikainen and N. Groothoff, “Water-core Fresnel fiber,” *Optics Express*, vol. **13**, no. 10, p. 3890, 2005. Google Scholar

[60]

J. Canning, M. Stevenson, T. K. Yip, S. K. Lim and C. Martelli, “White light sources based on multiple precision selective micro-filling of structured optical waveguides,” *Optics Express*, vol. **16**, no. 20, p. 15700, 2008. Google Scholar

[61]

Y. Wang, C. Liao and D. Wang, “Femtosecond laser-assisted selective infiltration of microstructured optical fibers,” *Optics Express*, vol. **18**, no. 17, pp. 18056-18060, 2010. Google Scholar

[62]

A. Arbabi, Y. Horie, M. Bagheri and A. Faraon, “Dielectric meta-surfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” *Nature Nanotechnology*, vol. **10**, pp. 937-943, 2015. Google Scholar

[63]

S. Fan and J. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” *Physical Review B*, vol. **65**, no. 23, p. 235112, 2002. Google Scholar

[64]

V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard and S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” *Optics Express*, vol. **12**, no. 8, pp. 1575-1582, 2004. Google Scholar

[65]

G. Shambat, “From Solid State to Soft Matter: Photonic Nanocavities as Advanced Optoelectronic Devices and Single-Cell Biomedical Probes,” Ph.D. Dissertation, Stanford University, 2013. Google Scholar

[66]

J. Thompson, “A quantum interface between single atoms and nanophotonic structures,” Ph.D. Dissertation, Harvard University, 2014. Google Scholar

[67]

H. J. Kimble, “Strong Interactions of Single Atoms and Photons in Cavity QED,” *Physica Scripta*, vol. T76, no. 1, p. 127, 1998. Google Scholar

[68]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” *Nature*, vol. **432**, no. 7014, pp. 197-200, 2004. Google Scholar

[69]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu and A. Imamoglu, “Quantum nature of a strongly-coupled single quantum dot-cavity system,” *Nature*, vol. **445**, no. February, p. 14, 2006.Google Scholar

[70]

J. R. Tischler, M. Scott Bradley, Q. Zhang, T. Atay, A. Nurmikko and V. Bulović, “Solid state cavity QED: Strong coupling in organic thin films,” *Organic Electronics*, vol. **8**, no. 2-3, pp. 94-113, 2007. Google Scholar

[71]

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch and J. Reichel, “A fiber Fabry-Perot cavity with high finesse,” *New Journal of Physics*, vol. **12**, no. 6, p. 065038, 2010. Google Scholar

[72]

X. Liu, K.-H. Brenner, M. Wilzbach, M. Schwarz, T. Fernholz and J. Schmiedmayer, “Fabrication of alignment structures for a fiber resonator by use of deep-ultraviolet lithography,” *Applied Optics*, vol. **44**, no. 32, pp. 6857-6860, 2005. Google Scholar

[73]

B. Brandstätter, “Integration of Fiber Mirrors and Ion Traps for a High-Fidelity Quantum Interface,” Ph.D. Dissertation, University of Innsbruck, 2013. Google Scholar

[74]

D. Heine, M. Wilzbach, T. Raub, B. Hessmo and J. Schmied-mayer, “Integrated atom detector: Single atoms and photon statistics,” *Physical Review A*, vol. **79**, p. 021804, 2009. Google Scholar

[75]

H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” *Nature Photonics*, vol. **4**, p. 261, 2010. Google Scholar

[76]

D. A. B. Miller, “Are optical transistors the logical next step?,” *Nature Photonics*, vol. **4**, p. 3, 2010. Google Scholar

[77]

W. Chen, K. M. Beck, R. Bücker, M. Gullans, M. D. Lukin, H. Tanji-Suzuki and V. Vuletic, “All-Optical Switch and Transistor Gated by One Stored Photon,” *Science*, vol. **341**, no. 6147, pp. 768-770, 2013. Google Scholar

[78]

J. G. Bohnet, Z. Chen, J. M. Weiner, D. Meiser, M. J. Holland and J. K. Thompson, “A steady-state superradiant laser with less than one intracavity photon,” *Nature*, vol. **484**, no. 7392, pp. 78-81, 2012. Google Scholar

[79]

S. J. M. Kuppens, M. P. van Exter and J. P. Woerdman, “Quantum-Limited Linewidth of a Bad-Cavity Laser,” *Physical Review Letters*, vol. **72**, pp. 3815-3818, 1994. Google Scholar

[80]

V. Vuletić, “An almost lightless laser,” *Nature*, vol. **484**, p. 43, 2012. Google Scholar

[81]

R. Oulton, G. Bartal, D. Pile and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” *New Journal of Physics*, vol. **10**, no. 10, p. 105018, 2008.Google Scholar

[82]

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” *Optics Letters*, vol. **36**, no. 5, pp. 669-671, 2011.Google Scholar

[83]

A. Szameit, F. Dreisow, T. Pertsch, S. Nolte and A. Tünnermann, “Control of directional evanescent coupling in fs laser written waveguides,” *Optics Express*, vol. **15**, no. 4, pp. 1579-1587, 2007.Google Scholar

[84]

T. Alasaarela, D. Korn, L. Alloatti, A. Säynätjoki, A. Tervonen, R. Palmer, J. Leuthold, W. Freude and S. Honkanen, “Reduced propagation loss in silicon strip and slot waveguides coated by atomic layer deposition,” *Optics Express*, vol. **19**, no. 12, pp. 11529-11538, 2011.Google Scholar

[85]

Q. Xu, V. R. Almeida, R. R. Panepucci and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” *Optics Letters*, vol. **29**, no. 14, pp. 1626-1628, 2004.Google Scholar

[86]

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” *Nature Photonics*, vol. **1**, no. 2, pp. 115-118, 2007.Google Scholar

[87]

F. Couny, F. Benabid and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” *Optics Letters*, vol. **31**, pp. 3574-3576, 2006.Google Scholar

[88]

T. D. Bradley, Y. Wang, M. Alharbi, B. Debord, C. FourcadeDutin, B. Beaudou, F. Gerome and F. Benabid, “Optical properties of low loss (70dB/km) hypocycloid-core Kagome hollow core photonic crystal fiber for Rb and Cs based optical applications,” *Journal of Lightwave Technology*, vol. **31**, no. 16, pp. 2752-2755, 2013.Google Scholar

[89]

P. Dong, W. Qian, S. Liao, H. Liang, C.-C. Kung, N.-N. Feng, R. Shafiiha, J. Fong, D. Feng, A. V. Krishnamoorthy and M. Asghari, “Low loss shallow-ridge silicon waveguides,” *Optics Express*, vol. **18**, pp. 14474-14479, 2010.Google Scholar

[90]

J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, L. A. Orozco and S. L. Rolston, “Ultrahigh transmission optical nanofibers,” *AIP Advances*, vol. **4**, p. 067124, 2014.Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.