[1]

Kreibig U, Vollmer M. Optical properties of metal clusters. Berlin: Springer, 1995. Google Scholar

[2]

Maier SA. Plasmonics: fundamentals and applications. New York, NY: Springer, 2007.Google Scholar

[3]

Pelton M, Aizpurua J, Bryant G. Metal-nanoparticle plasmonics. Laser Photon Rev 2008;2:136–59. Google Scholar

[4]

Pelton M, Bryant G. Introduction to metal-nanoparticle plasmonics. Hoboken, NJ: Wiley, 2013. Google Scholar

[5]

Gray SK. Theory and modeling of plasmonic structures. J Phys Chem C 2013; **1**:1983–94. Google Scholar

[6]

Mühlschlegel P, Eisler H-J, Martin OJF, Hecht B, Pohl DW. Resonant optical antennas. Science 2005; 08:1607–9. Google Scholar

[7]

Giannini V, Fernández-Domínguez AI, Heck SC, Maier SA. Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chem Rev 2011; **1**:3888–912. Google Scholar

[8]

Aubry A, Lei DY, Fernández-Domínguez AI, Sonnefraud Y, Maier SA, Pendry JB. Plasmonic light-harvesting devices over the whole visible spectrum. Nano Lett 2010;10:2574–9. Google Scholar

[9]

Vo-Dinh T, Dhawan A, Norton SJ, Khoury CG, Wang H-N, Misra V, Gerhold MD. Plasmonic nanoparticles and nanowires: design, fabrication and application in sensing. J Phys Chem C 2010; **1**:7480–8. Google Scholar

[10]

Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML. Plasmonics for extreme light concentration and manipulation. Nat Mater 2010; **9**:193–204. Google Scholar

[11]

Halas NJ, Lal S, Chang W-S, Link S, Nordlander P. Plasmons in strongly coupled metallic nanostructures. Chem Rev 2011; **1**:3913–61. Google Scholar

[12]

Moskovits M. Surface-enhanced spectroscopy. Rev Mod Phys 1985; **57**:783. Google Scholar

[13]

Xu H, Bjeneld E, Käll M, Börjesson L. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys Rev Lett 1999; **83**:4357–60. Google Scholar

[14]

Lal S, Clare SE, Halas NJ. Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc Chem Res 2008; **41**:1842–51. Google Scholar

[15]

Huang X, El-Sayed MA. Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res 2010; **1**:13–28. Google Scholar

[16]

Marchuk K, Willets KA. Localized surface plasmons and hot electrons. Chem Phys 2014; **4**:95–104. Google Scholar

[17]

Sundararaman R, Narang P, Jermyn AS, Goddard III WA, Atwater HA. Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat Commun 2014; **5**:5788. Google Scholar

[18]

Clavero C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat Photonics 2014; **8**:95–113. Google Scholar

[19]

Yang W-H, Schatz GC, Van Duyne RP. Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes. J Chem Phys 1995; **1**:869–75. Google Scholar

[20]

Taflove A, Hangness SC. Computational electrodynamics: the finite-difference time domain method. Boston, MA: Artech House, 2005. Google Scholar

[21]

García de Abajo FJ. Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides. J Phys Chem C 2008; **1**:17983–7. Google Scholar

[22]

Fernández-Domínguez AI, Wiener A, García-Vidal FJ, Maier SA, Pendry JB. Transformation-optics description of nonlocal effects in plasmonic nanostructures. Phys Rev Lett 2012; **1**:106802. Google Scholar

[23]

Wiener A, Fernández-Domínguez AI, Horsfield AP, Pendry JB, Maier SA. Nonlocal effects in the nanofocusing performance of plasmonic tips. Nano Lett 2012; **12**:3308–14. Google Scholar

[24]

Boardman A. Electromagnetic surface modes. Hydrodynamic theory of plasmon-polaritons on plane surfaces. Chichester: John Wiley & Sons, 1982. Google Scholar

[25]

Raza S, Bozhevolnyi SI, Wubs M, Mortensen NA. Nonlocal optical response in metallic nanostructures. J Phys Cond Matter 2015; **27**:183204. Google Scholar

[26]

Luo Y, Fernández-Domínguez AI, Wiener A, Maier SA, Pendry JB. Surface plasmons and nonlocality: a simple model. Phys Rev Lett 2013; **1**:093901. Google Scholar

[27]

Anderegg M, Feuerbacher B, Fitton B. Optically excited longitudinal plasmons in potassium. Phys Rev Lett 1971;27;1565. Google Scholar

[28]

Ruppin R. Extinction properties of thin metallic nanowires. Opt Commun 2001; **1**:205. Google Scholar

[29]

Raza S, Toscano G, Jauho A-P, Wubs M, Mortensen NA. Unusual resonances in nanoplasmonic structures due to nonlocal response. Phys Rev B 2011; **84**:121412(R). Google Scholar

[30]

Liebsch A. Surface-plasmon dispersion and size dependence of Mie resonance: silver versus simple metals. Phys Rev B 1993; **48**:11317–28. Google Scholar

[31]

Bennett AJ. Influence of the electron charge distribution on surface-plasmon dispersion. Phys Rev B 1970; **1**:203–7. Google Scholar

[32]

Savage KJ, Hawkeye MM, Esteban R, Borisov AG, Aizpurua J, Baumberg J. Revealing the quantum regime in tunnelling plasmonics. Nature 2012; **4**:574–7. Google Scholar

[33]

Scholl JA, García-Etxarri A, Koh AL, Dionne JA. Observation of quantum tunneling between two plasmonic nanoparticles. Nano Lett 2013; **13**:564–9.Google Scholar

[34]

Tan SF, Wu L, Yang JKW, Bai P, Bosman M, Nijhuis CA. Quantum plasmon resonances controlled by molecular tunnel junctions. Science 2014; **3**:1496–9.Google Scholar

[35]

Cha H, Yoon JH, Yoon S. Probing quantum plasmon coupling using gold nanoparticle dimers with tunable interparticle distances down to the subnanometer range. ACS Nano 2014; **8**:8554–63.Google Scholar

[36]

Kravtsov V, Berweger S, Atkin JM, Raschke MB. Control of plasmon emission and dynamics at the transition from classical to quantum coupling. Nano Lett 2014; **14**:5270–5.Google Scholar

[37]

Zhu W, Crozier KB. Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering. Nat Commun 2014; **5**:5228.Google Scholar

[38]

Hajisalem G, Nezami MS, Gordon R. Probing the quantum tunneling limit of plasmonic enhancement by third harmonic generation. Nano Lett 2014; **14**:6651–4. Google Scholar

[39]

Zuloaga J, Prodan E, Nordlander P. Quantum description of the plasmon resonances of a nanoparticle dimer. Nano Lett 2009; **9**:887–91. Google Scholar

[40]

Marinica DC, Kazansky AK, Nordlander P, Aizpurua J, Borisov AG. Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer. Nano Lett 2012; **12**:1333–9. Google Scholar

[41]

Esteban R, Borisov AG, Nordlander P, Aizpurua J. Bridging quantum and classical plasmonics with a quantum corrected model. Nat Commun 2012; **3**:825. Google Scholar

[42]

Tame MS, McEnery KR, Özdemir SK, Lee J, Maier SA, Kim MS. Quantum plasmonics. Nat Phys 2013; **9**:329–40. Google Scholar

[43]

Runge E, Gross EKU. Density-functional theory for time-dependent systems. Phys Rev Lett 1984; **52**:997–1000. Google Scholar

[44]

Lundqvist S. Density Oscillations in Nonuniform Systems. In: Lundqvist S, March NH, eds. Theory of the inhomogeneous electron gas. New York: Plenum, 1983. Google Scholar

[45]

Toscano G, Straubel J, Kwiatkowski A, Rockstuhl C, Evers F, Xu H, Mortensen NA, Wubs M. Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics. Nat Commun 2015; **6**:7132. Google Scholar

[46]

Eguiluz A, Quinn JJ. Influence of the electron density profile on surface plasmons: retardation effects. Phys Lett A 1975; **53**:151–3. Google Scholar

[47]

Pitarke JM, Silkin VM, Chulkov EV, Echenique PM. Theory of surface plasmon and surface-plasmon polaritons. Rep Prog Phys 2007; **70**:1–87. Google Scholar

[48]

Domps A, Reinhardt P-G, Suraud E. Time-dependent Thomas-Fermi approach for electron dynamics in metal clusters. Phys Rev Lett 1998; **80**:5520–3. Google Scholar

[49]

Banerjee A, Harbola MK. Hydrodynamic approach to time-dependent density functional theory; response properties of metal clusters. J Chem Phys 2000; **1**:5614–23. Google Scholar

[50]

Zaremba E, Tso HC. Thomas-Fermi-Dirac-von Weizsäcker hydrodynamics in parabolic wells. Phys Rev B 1994; **49**:8147. Google Scholar

[51]

Crouseilles N, Hervieux P-A, Manfredi G. Quantum hydrodynamic model for the nonlinear dynamics in thin metal films. Phys Rev B 2008; **78**:155412. Google Scholar

[52]

Onida G, Reining L, Rubio A. Electronic excitations: density-functional versus many-body Green’s-function approaches. Rev Mod Phys 2002; **74**:601. Google Scholar

[53]

Pines D. Elementary excitations in solids. New York, NY: Perseus Books, 1999. Google Scholar

[54]

Liebsch A. Electronic excitations at metal surfaces. New York, NY: Plenum, 1997. Google Scholar

[55]

Bernadotte S, Evers F, Jacob CR. Plasmon in molecules. J Phys Chem C 2013; **1**:1863–78. Google Scholar

[56]

Townsend E, Bryant GW. Which resonances in small metallic nanoparticles are plasmonic? J Opt 2014; **16**:114022.Google Scholar

[57]

Krauter CM, Schirmer J, Jacob CR, Pernpointner M, Dreuw A. Plasmon in molecules: microscopic characterization based on orbital transitions and momentum conservation. J Chem Phys 2014; **1**:104101.Google Scholar

[58]

Guidez EB, Aikens CM. Plasmon resonance analysis with configuration interaction. Phys Chem Chem Phys 2014; **16**:15501–9.Google Scholar

[59]

Jain PK. Plasmon-in-a-box: on the physical nature of few-carrier plasmon resonances. J Phys Chem Lett 2014; **5**:3112–9. Google Scholar

[60]

Fiolhais C, Nogueira F, Marques MAL, eds. A primer in density functional theory. Berlin: Springer, 2003. Google Scholar

[61]

Marques MAL, Ullrich CA, Nogueira F, Rubio A, Burke K, Gross EKU, eds. Time-dependent density functional theory. Berlin: Springer, 2006.Google Scholar

[62]

Ullrich CA. Time-dependent density functional theory: concepts and applications. Oxford: Oxford University Press, 2011.Google Scholar

[63]

Marques MAL, Maitra NT, Nogueira FMS, Gross EKU, Rubio A, eds. Fundamentals of time-dependent density functional theory. Berlin: Springer, 2012. Google Scholar

[64]

Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev 1964; **1**:B864. Google Scholar

[65]

Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys Rev 1965; **1**: A1133–8. Google Scholar

[66]

Fetter AL, Walecka JD. Quantum theory of many-particle systems. New York: McGraw Hill, 1971. Google Scholar

[67]

Petersilka M, Gossmann UJ, Gross EKU. Excitation energies from time-dependent density functional theory. Phys Rev Lett 1996; **76**:1212–5. Google Scholar

[68]

Casida ME. Time-dependent density functional theory for molecules. In: Chong DE, editor. Recent advances in density functional methods. Singapore: World Scientific, 1995. Google Scholar

[69]

Grabo T, Petersilka M, Gross EKU. Molecular excitation energies from time-dependent density functional theory. J Mol Struct Theochem 2000;501– **2**:353–67. Google Scholar

[70]

Zangwill A, Soven P. Density-functional approach to local-fields effects in finite systems: photoabsorption in the rare gases. Phys Rev A 1980; **21**:1561–72. Google Scholar

[71]

Eckardt W. Dynamical polarizability of small metal particles: self-consistent spherical jellium background model. Phys Rev Lett 1984; **52**:1925–28. Google Scholar

[72]

Puska MJ, Nieminen RM, Manninen M. Electronic polarizability of small metal spheres. Phys Rev B 1985; **31**:3486–95. Google Scholar

[73]

Ekardt W. Size-dependent photoabsorption and photoemission of small metal particles. Phys Rev B 1985; **31**:6360–70. Google Scholar

[74]

Ekardt W. Collective multipole excitations in small metal particles: critical angular momentum l^{cr} for the existence of collective surface modes. Phys Rev B 1985; **32**:1961–70.Google Scholar

[75]

Beck DE. Self-consistent calculation of eigenfrequencies for the electronic excitations in small jellium spheres. Phys Rev B 1987; **35**:7325–33. Google Scholar

[76]

Cottancin E, Celep G, Lermé J, Pellarin M, Huntzinger JR, Vialle JJ, Broyer M. Optical properties of noble metal clusters as a function of the size: comparison between experiments and a semi-quantal theory. Theor Chem Acc 2006; **1**:514–23. Google Scholar

[77]

Lermé J, Palpant B, Prével B, Pellarin M, Treilleux M, Vialle JL, Perez A, Broyer M. Quenching of the size effects in free and matrix-embedded silver clusters. Phys Rev Lett 1998; **80**:5105–8. Google Scholar

[78]

Lermé J, Baida H, Bonnet C, Broyer M, Cottancin E, Crut A, Maioli P, Del Fatti N, Vallée F, Pellarin M. Size dependence of the surface plasmon resonance damping in metal nano-spheres. J Phys Chem Lett 2010; **1**:2922–8. Google Scholar

[79]

Lermé J. Size evolution of the surface plasmon resonance damping in silver nanoparticles: confinement and dielectric effects. J Phys Chem C 2011; **1**:14098–110. Google Scholar

[80]

Prodan E, Nordlander P. Electronic structure and polarizability of metallic nanoshells. Chem Phys Lett 2002; **3**:140–6. Google Scholar

[81]

Prodan E, Nordlander P. Structural tunability of the plasmon resonances in metallic nanoshells. Nano Lett 2003; **3**:543–7.Google Scholar

[82]

Prodan E, Nordlander P, Halas NJ. Electronic structure and optical properties of gold nanoshells. Nano Lett 2003; **3**:1411–5. Google Scholar

[83]

Kulkarni V, Prodan E, Nordlander P. Quantum plasmonics: optical properties of an nanomatryushka. Nano Lett 2013; **13**:5873–9. Google Scholar

[84]

Lin L, Zapata M, Xiong M, Liu Z, Wang S, Xu H, Borisov AG, Gu H, Nordlander P, Aizpurua J, Ye J. Nanooptics of plasmonic nanomatryoshkas: shrinking the size of a core-shell junction to subnanometer. Nano Lett 2015; **15**:6419–28.Google Scholar

[85]

Zapata M, Camacho Beltrán AS, Borisov AG, Aizpurua J. Quantum effects in the optical response of extended plasmonic gaps: validation of the quantum corrected model in core-shell nano nanomatryoshkas. Opt Express 2015; **23**:8134–49. Google Scholar

[86]

Smogunov AN, Kurkina LI, Farberovich OV. Electronic structure and polarizability of quantum metallic wires. Phys Solid State 2000; **42**:1898–907. Google Scholar

[87]

Zuloaga J, Prodan E, Nordlander P. Optical properties and tunability of metallic nanorods. ACS Nano 2010; **4**:5269–76. Google Scholar

[88]

de Heer WA. The physics of simple metal clusters: experimental aspects and simple models. Rev Mod Phys 1993; **65**:611–76. Google Scholar

[89]

Brack M. The physics of simple metal clusters: self-consistent jellium model and semiclassical approaches. Rev Mod Phys 1993; **65**:677–732. Google Scholar

[90]

Tiggesbäumker J, Köller L, Meiwes-Broer K-H, Liebsch A. Blue shift of the Mie plasma frequency in Ag clusters and particles. Phys Rev A 1993; **48**:R1749(R). CrossrefGoogle Scholar

[91]

Serra L, Rubio A. Core polarization in the optical response of metal clusters: generalized time-dependent density-functional theory. Phys Rev Lett 1997; **78**:1428–31. Google Scholar

[92]

Zhang H, Kulkarni V, Prodan E, Nordlander P, Govorov O. Theory of quantum plasmon resonances in doped semiconductor nanocrystals. J Phys Chem C 2014; **1**:16035–42. Google Scholar

[93]

Yannouleas C, Vigezzi E, Broglia RA. Evolution of the optical properties of alkali-metal microclusters towards the bulk: the matrix random-phase approximation description. Phys Rev B 1993; **47**:9849–61. Google Scholar

[94]

Monreal RC, Antosiewicz TJ, Apell SP. Competition between surface screening and size quantization for surface plasmons in nanoparticles. N J Phys 2013; **15**:083044. Google Scholar

[95]

Andrade X, Botti S, Marques MAL, Rubio A. Time-dependent density functional theory scheme for efficient calculations of dynamical (hyper)polarizabilities. J Chem Phys 2007; **1**:184106. Google Scholar

[96]

Yabana K, Bertsch GF. Time-dependent local-density approximation in real time. Phys Rev B 1996; **54**:4484–7. Google Scholar

[97]

Teperik TV, Nordlander P, Aizpurua J, Borisov AG. Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response. Phys Rev Lett 2013; **1**:263901. Google Scholar

[98]

Teperik TV, Nordlander P, Aizpurua J, Borisov AG. Quantum effects and nonlocality in strongly coupled plasmonic nanowire dimers. Opt Express 2013; **21**:27306–25. Google Scholar

[99]

Marques MAL, Castro A, Bertsch GF, Rubio A. Octopus: a first-principles tool for excited electron-ion dynamics. Comput Phys Commun 2003; **1**:60–78. Google Scholar

[100]

Castro A, Appel H, Oliveira M, Rozzi CA, Andrade X, Lorenzen F, Marques MAL, Gross EKU, Rubio A. Octopus: a tool for the application of time-dependent density functional theory. Phys Stat Sol B 2006; **2**:2465–88.Google Scholar

[101]

Andrade X, Alberdi-Rodriguez J, Strubbe DA, Oliveira MJT, Nogueira F, Castro A, Muguerza J, Arruabarrena A, Louie SG, Aspuru-Guzik A, Rubio A, Marques MAL. Time-dependent density-functional theory in massively parallel computer architectures: the Octopus project. J Phys Condens Matter 2012; **24**:233202.Google Scholar

[102]

Andrade X, Strubbe D, De Giovannini U, Larsen AH, Oliveira MJT, Alberdi-Rodriguez J, Varas A, Theophilou I, Helbig N, Verstraete MJ, Stella L, Nogueira F, Aspuru-Guzik A, Castro A, Marques MAL, Rubio A. Real-space grids and the Octopus code as tools for the development of new simulation approaches for electronic systems. Phys Chem Chem Phys 2015; **17**:31371–96. Google Scholar

[103]

Stella L, Zhang P, García-Vidal FJ, Rubio A, García-González P. Performance of nonlocal optics when applied to plasmonic nanostructures. J Phys Chem C 2013; **1**:8941–9. Google Scholar

[104]

COMSOL Multiphysics 3.5a. Stockholm: COMSOL AB.

[105]

Toscano G, Raza S, Jauho A-P, Mortensen NA, Wubs M. Modified field enhancement in plasmonic nanowire dimers due to nonlocal response. Opt Express 2012; **20**:4176–88. Google Scholar

[106]

Hiremath KR, Zschiedrich L, Schmidt F. Numerical solution of nonlocal hydrodynamic Drude model for arbitrary shaped nano-plasmonic structures using Nédélec finite elements. J Comp Phys 2012; **2**:5890–6. Google Scholar

[107]

Prodan E, Radloff C, Halas NJ, Nordlander P. A hybridization model for the plasmon response of complex nanostructures. Science 2003; **3**:419–22. Google Scholar

[108]

Nordlander P, Oubre C, Prodan E, Li K, Stockman MI. Plasmon hybridization in nanoparticle dimers. Nano Lett 2004; **4**: 899–903. Google Scholar

[109]

Lopata K, Neuhauser D. Multiscale Maxwell-Schrödinger modeling: a split field finite-difference time-domain approach to molecular nanopolaritonics. J Chem Phys 2009; **1**:104707. Google Scholar

[110]

Chen H, McMahon JM, Ratner MA, Schatz GC. Classical electrodynamics coupled to quantum mechanics for calculation of molecular optical properties: a RT-TDDFT/FDTD approach. J Phys Chem C 2010; **1**:14384–92.Google Scholar

[111]

Sakko A, Rossi TP, Nieminen RM. Dynamical coupling of plasmons and molecular excitations by hybrid quantum/classical calculations: time-domain approach. J Phys Cond Matt 2014; **26**:315013. Google Scholar

[112]

Bonacic-Koutecky V, Fantucci P, Koutecky J. Quantum chemistry of small clusters of elements of groups Ia, Ib, and IIa: fundamental concepts, predictions, and interpretation of experiments. Chem Rev 19991; **91**:1035–108. Google Scholar

[113]

Daniel M-C, Astruc D. Gold nanoparticles: assembly, supra-molecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 2004; **1**:293–346.Google Scholar

[114]

Morton SM, Silverstein DW, Jensen L. Theoretical studies of plasmonics using electronic structure methods. Chem Rev 2011; **1**:3962–94.Google Scholar

[115]

Fernando A, Dimuthu KL, Weerawardene M, Karimova NV, Aikens CM. Quantum mechanical studies of large metal, metal oxide, and metal chalcogenide nanoparticles and clusters. Chem Rev 2015; **1**:6112–6. Google Scholar

[116]

Johnson HE, Aikens CM. Electronic structure and TDDFT optical absorption spectra of silver nanorods. J Phys Chem A 2009; **1**:4445–50. Google Scholar

[117]

Liao M-S, Bonifassi P, Leszczynski J, Ray PC, Huang M-J, Watts JD. Structure, bonding, and linear optical properties of a series of silver and gold nanorod clusters: DFT/TDDFT studies. J Phys Chem A 2010; **1**:12701–8.Google Scholar

[118]

Guidez EB, Aikens CM. Diameter dependence of the excitation spectra of silver and gold nanorods. J Phys Chem C 2013; **1**:12325–36.Google Scholar

[119]

Piccini GM, Havenith RWA, Broer R, Stener M. Gold nanowires: a time-dependent density functional assessment of plasmonic behavior. J Phys Chem C 2013; **1**:17196–204.Google Scholar

[120]

López-Lozano X, Barron H, Mottet C, Weissker H-C. Aspect-ratio- and size-dependent emergence of the surface-plasmon resonance in gold nanorods – an ab initio TDDFT study. Phys Chem Chem Phys 2014; **16**:1820–3. Google Scholar

[121]

Stener M, Nardelli A, De Francesco R, Fronzoni G. Optical excitations of gold nanoparticles: a quantum chemical scalar relativistic time dependent density functional study. J Phys Chem C 2007; **1**:11862–71. Google Scholar

[122]

Joswig J-O, Tunturivuori LO, Nieminen RM. Photoabsorption in sodium clusters on the basis of time-dependent density-functional theory. J Chem Phys 2008; **1**:014707.Google Scholar

[123]

Baishya K, Idrobo JC, Ögüt S, Yang M, Jackson K, Jellinek J. Optical absorption spectra of intermediate-size silver clusters from first principles. Phys Rev B 2008; **78**:075439.Google Scholar

[124]

Aikens CM, Li S, Schatz GC. From discrete electronic states to plasmons: TDDFT optical absorption properties of Ag_{n} (n 10, 20, 35, 56, 84, 120) tetrahedral clusters. J Phys Chem C 2008; **1**:11272–9.Google Scholar

[125]

Bae G-T, Aikens CM. Time-dependent density functional theory studies of optical properties of Ag nanoparticles: octahedra, truncated octahedra, and icosahedra. J Phys Chem C 2012; **1**:10356–67.Google Scholar

[126]

Rabilloud F. UV-visible absorption spectra of metallic clusters from TDDFT calculations. Eur Phys J D 2013; **67**:18.Google Scholar

[127]

Li J-H, Hayashi M, Guo G-Y. Plasmonic excitations in quantum-sized sodium nanoparticles studied by time-dependent density functional calculations. Phys Rev B 2013; **88**:155437.Google Scholar

[128]

Weissker H-C, Mottet C. Optical properties of pure and core-shell noble-metal nanoclusters from TDDFT: the influence of the atomic structure. Phys Rev B 2011; **84**:165443.Google Scholar

[129]

Kuisma M, Sakko A, Rossi TP, Larsen AH, Enkovaara J, Lehtovaara L, Rantala TT. Localized surface plasmon resonance in silver nanoparticles: atomistic first-principles time-dependent density-functional theory calculations. Phys Rev B 2015; **91**:115431. Google Scholar

[130]

Barcaro G, Broyer M, Durante N, Fortunelli A, Stener M. Alloying effects on the optical properties of Ag-Au nanoclusters from TDDFT calculations. J Phys Chem C 2011; **1**:24085–91. Google Scholar

[131]

López Lozano X, Mottet C, Weissker H-Ch. Effect of alloying on the optical properties of Ag-Au nanoparticles. J Phys Chem C 2013; **1**:3062–8.Google Scholar

[132]

Rossi TP, Lehtola S, Sakko A, Puska MJ, Nieminen RM. Nanoplasmonics simulations at the basis set limit through completeness-optimized, local numerical basis sets. J Chem Phys 2015; **1**:094114. Google Scholar

[133]

Guidez EB, Mäkinen V, Häkkinen H, Aikens CM. Effects of silver doping on the geometric and electronic structure and optical absorption spectra of the Au_{25-n} Ag_{n} (SH)_{18} (n 1, 2, 4, 6, 8, 10, 12) bimetallic nanoclusters. J Phys Chem C 2012; **1**:20617–24. Google Scholar

[134]

Malola S, Lehtovaara L, Enkovaara J, Häkkinen H. Birth of the localized surface plasmon resonance in monolayer-protected gold nanoclusters. ACS Nano 2013; **7**:10263–70.Google Scholar

[135]

Weissker H-Ch, Escobar HB, Thanthirige VD, Kwak K, Lee D, Ramakrishna G, Whetten RL, López-Lozano X. Information on quantum states pervades the visible spectrum of the ubiquitous Au_{144} (SR)_{60} gold nanocluster. Nat Commun 2014; **5**:3785.Google Scholar

[136]

Barcaro G, Sementa L, Fortunelli A, Stener M. Optical properties of silver nanoshells from time-dependent density functional theory calculations. J Phys Chem C 2014; **1**:12450–8.Google Scholar

[137]

Weissker H-Ch, Whetten RL, López-Lozano X. Optical response of quantum-sized Ag and Au cluster-cage vs. compact structures and the remarkable insensitivity to compression. Phys Chem Chem Phys 2014; **16**:12495–502.Google Scholar

[138]

Knoppe S, Häkkinen H, Verbiest T. Nonlinear optical properties of thiolate-protected gold clusters: a theoretical survey of the first hyperpolarizabilities. J Phys Chem C 2015; **1**:27676–82. Google Scholar

[139]

Manjavacas A, Marchesin F, Thongrattanasiri S, Koval P, Nordlander P, Sánchez-Pórtal D, García de Abajo FJ. Tunable molecular plasmons in polycyclic aromatic hydrocarbons. ACS Nano 2013; **7**:3635–43. Google Scholar

[140]

Bae G-T, Aikens CM. TDDFT and CIS studies of optical properties of dimers of silver tetrahedra. J Phys Chem A 2012; **1**:8260–9. Google Scholar

[141]

Zhang P, Feist J, Rubio A, García-González P, García-Vidal FJ. Ab initio nanoplasmonics: the impact of atomic structure. Phys Rev B 2014; **90**:161407(R). Google Scholar

[142]

Varas A, García-González P, García-Vidal FJ, Rubio A. Anisotropy effects on the plasmonic response of nanoparticle dimers. J Phys Chem Lett 2015; **6**:1891–8. Google Scholar

[143]

Barbry M, Koval P, Marchesin F, Esteban R, Borisov AG, Aizpurua J, Sánchez-Portal D. Atomistic near-field nanoplasmonics: reaching atomic-scale resolution in nanooptics. Nano Lett 2015; **15**:3410–9. Google Scholar

[144]

Rossi TP, Zugarramurdi A, Puska MJ, Nieminen RM. Quantized evolution of the plasmonic response in a stretched nanorod. Phys Rev Lett 2015; **1**:236804.Google Scholar

[145]

Marchesin F, Koval P, Barbry M, Aizpurua J, Sanchez-Portal D. Plasmonic response of metallic nanojunctions driven by single atom motion: quantum transport revealed in optics. ACS Photon 2016; **3**:269–77. Google Scholar

[146]

Troullier N, Martins JL. Efficient pseudopotentials for plane-wave calculations. Phys Rev B 1991; **43**:1993–2006. Google Scholar

[147]

Noya EG, Doye JPK, Wales DJ, Aguado A. Geometric magic numbers of sodium clusters: interpretation of the melting behaviour. Eur Phys J D 2007; **43**:57–60. Google Scholar

[148]

Esteban R, Zugarramurdi A, Zang P, Nordlander P, García-Vidal FJ, Borisov AG, Aizpurua J. A classical treatment of optical tunneling in plasmonic gaps: extending the quantum corrected model to practical situations. Faraday Discuss 2015; **1**:151–83. Google Scholar

[149]

Bitzek E, Koskinen P, Gähler F, Moseler M, Gumbsch P. Structural relaxation made simple. Phys Rev Lett 2006; **97**:170201. Google Scholar

[150]

Romero I, Aizpurua J, Bryant GW, García de Abajo FJ. Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. Opt Express 2006; **14**:9988–99. Google Scholar

[151]

Lei DY, Aubry A, Luo Y, Maier SA, Pendry JB. Plasmonic interaction between overlapping nanowires. ACS Nano 2011; **5**:597–607. Google Scholar

[152]

Marinica DC, Zapata M, Nordlander P, Kazansky AK, Echenique PM, Aizpurua J, Borisov AG. Active quantum plasmonics. Sci Adv 2015; **1**:e1501095. Google Scholar

[153]

Varas A, García-González P, Garca-Vidal FJ, Rubio A. Unpublished. Google Scholar

## Comments (0)