[1]

Fushman I, Englund D, Faraon A, Stoltz N, Petroff P, Vučković J. Controlled phase shifts with a single quantum dot. Science 2008;320:769–72. Google Scholar

[2]

Englund D, Faraon A, Fushman I, Stoltz N, Petroff P, Vučković J. Controlling cavity reflectivity with a single quantum dot. Nature 2007;450:857–61. Google Scholar

[3]

Bose R, Sridharan D, Kim H, Solomon GS, Waks E. Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity. Phys Rev L 2012;108:227402. Google Scholar

[4]

Volz T, Reinhard A, Winger M, Badolato A, Hennessy KJ, Hu EL, Imamoğlu A. Ultrafast all-optical switching by single photons. Nat Photonics 2012;6:605–9. Google Scholar

[5]

Srinivasan K, Painter O. Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system. Nature 2007;450:862–5. Google Scholar

[6]

Tiecke TG, Thompson JD, de Leon NP, Liu LR, Vuletić V, Lukin MD. Nanophotonic quantum phase switch with a single atom. Nature 2014;508:241–4.Google Scholar

[7]

Goban A, Hung C-L, Yu S-P, Hood JD, Muniz JA, Lee JH, Martin MJ, McClung AC, Choi KS, Chang DE, Painter O, Kimble HJ. Atom-light interactions in photonic crystals. Nat Commun 2014;5:3808. Google Scholar

[8]

Shapiro JH. Single-photon kerr nonlinearities do not help quantum computation. Phys Rev A 2006;73:062305. Google Scholar

[9]

Dove J, Chudzicki C, Shapiro JH. Phase-noise limitations on single-photon cross-phase modulation with differing group velocities. Phys Rev A 2014;90:062314. Google Scholar

[10]

Borregaard J, Kómár P, Kessler EM, Sørensen AS, Lukin, MD. Heralded quantum gates with integrated error detection in optical cavities. Phys Rev Lett 2015;114. http://dx.doi.org/10.1103/PhysRevLett.114.110502. CrossrefGoogle Scholar

[11]

Knill E, Laflamme R, Milburn GJ. A scheme for efficient quantum computation with linear optics. Nature 2001;409:46–52. Google Scholar

[12]

Raussendorf R, Briegel HJ. A One-way quantum computer. Phys Rev L 2001;86:5188–91. Google Scholar

[13]

Browne DE, Rudolph T. Resource-efficient linear optical quantum computation. Phys Rev L 2005;95:010501.Google Scholar

[14]

Kok P, Munro WJ, Nemoto K, Ralph TC, Dowling JP, Milburn GJ. Linear optical quantum computing with photonic qubits. Rev Mod Phys 2007;79:135–74.Google Scholar

[15]

Aspuru-Guzik A, Walther P. Photonic quantum simulators. Nat Phys 2012;8. http://dx.doi.org/10.1038/nphys2253. CrossrefGoogle Scholar

[16]

Politi A, Cryan MJ, Rarity JG, Yu S, O’Brien JL. Silica-on-silicon waveguide quantum circuits. Science 2008;320:646–9. Google Scholar

[17]

Kieling K, O’Brien JL, Eisert J. On photonic controlled phase gates. New J Phys 2010;12:013003. Google Scholar

[18]

Gimeno-Segovia M, Shadbolt P, Browne DE, Rudolph T. From three-photon Greenberger-Horne-Zeilinger states to ballistic universal quantum computation. Phys Rev Lett 2015;115:020502. Google Scholar

[19]

Nielsen MA. Optical quantum computation using cluster states. Phys Rev Lett 2004;93:040503. Google Scholar

[20]

Aaronson S, Brod DJ. Boson Sampling with lost photons. Phys Rev A 2016; 93:012335. Google Scholar

[21]

Rohde PP, Berry DW, Motes KR, Dowling JP. A quantum optics argument for the #P-hardness of a class of multidimensional integrals. arXiv preprint 2016; arXiv:1607.04960. Google Scholar

[22]

Huh J, Guerreschi GG, Peropadre B, McClean JR, Aspuru-Guzik A. Boson sampling for molecular vibronic spectra. Nat Photonics 2015;9:615–20. Google Scholar

[23]

Gard BT, Motes KR, Olson JP, Rohde PP, Dowling JP. An introduction to boson-sampling. In: Malinovskaya SA, Novikova I, Wall ML, Hazzard KRA, Rey AM, Olave RG, Win AL, Kemp K, Roof SJ, Balik S, eds. From atomic to mesoscale: The role of quantum coherence in systems of various complexities. World Scientific Publishing Co. Pte. Ltd., 2015, 167–92. ISBN: 9789814678704. Google Scholar

[24]

Aaronson S, Arkhipov A. The computational complexity of linear optics. Proceedings of the 43rd Annual ACM Symposium on Theory of Computing–STOC 2011. 2011. http://dx.doi.org/10.1145/1993636.1993682. CrossrefGoogle Scholar

[25]

Spring JB. Metcalf BJ, Humphreys PC, Steven Kolthammer W, Jin X-M, Barbieri M, Datta A, Thomas-Peter N, Langford NK, Kundys D, Gates JC, Smith BJ, Smith PGR, Walmsley IA. Boson sampling on a photonic chip. Science 2013;339:798–801. Google Scholar

[26]

Broome MA, Fedrizzi A, Rahimi-Keshari S, Dove J, Aaronson S, Ralph TC, White AG. Photonic boson sampling in a tunable circuit. Science 2013;339:794–8. Google Scholar

[27]

Li Y, Humphreys PC, Mendoza GJ, Benjamin SC. Resource costs for fault-tolerant linear optical quantum computing. Phys Rev X 2015;5:041007. Google Scholar

[28]

Politi A, Matthews J, Thompson M, O’Brien J. Integrated quantum photonics. IEEE J Select Top Quantum Electron 2009;15:1673–84. Google Scholar

[29]

Thompson MG, Politi A, Matthews JC, O’Brien JL. Integrated waveguide circuits for optical quantum computing. IET Circuits Devices Syst 2011;5:94–102.Google Scholar

[30]

O’Brien JL, Furusawa A, Vučković J. Photonic quantum technologies. Nat Photonics 2009;3:687–95. Google Scholar

[31]

Lanyon BP. Whitfield JD, Gillett GG, Goggin ME, Almeida MP, Kassal I, Biamonte JD, Mohseni M, Powell BJ, Barbieri M, Aspuru-Guzik A, White AG. Towards quantum chemistry on a quantum computer. Nat Chem 2010;2;106–11. Google Scholar

[32]

Crespi A, Osellame R, Ramponi R, Brod DJ, Galvão EF, Spagnolo N, Vitelli C, Maiorino E, Mataloni P, Sciarrino F. Integrated multimode interferometers with arbitrary designs for photonic boson sampling. Nat Photonics 2013;7:545–9. Google Scholar

[33]

Carolan J. Harrold C, Sparrow C, Martín-López E, Russell NJ, Silverstone JW, Shadbolt PJ, Matsuda N, Oguma M, Itoh M, Marshall GD, Thompson MG, Matthews JCF, Hashimoto T, O’Brien JL, Laing A. Universal linear optics. Science 2015;349:711–6. Google Scholar

[34]

Tillmann M. Dakić B, Heilmann R, Nolte S, Szameit A, Walther P. Experimental boson sampling. Nat Photonics 2013;7:540–4. Google Scholar

[35]

Metcalf BJ, Spring JB, Humphreys PC, Thomas-peter N, Barbieri M, Steven Kolthammer W, Jin X-M, Langford NK, Kundys D, Gates JC, Smith BJ, Smith PGR, Walmsley IA. Quantum teleportation on a photonic chip. Nat Photonics 2014;8:770–4. Google Scholar

[36]

Peruzzo A. Lobino M, Matthews JCF, Matsuda N, Politi A, Poulios K, Zhou X-Q, Lahini Y, Ismail N, Wörhoff K, Bromberg Y, Silberberg Y, Thompson MG, O’Brien JL. Quantum walks of correlated photons. Science 2010;329:1500–3. Google Scholar

[37]

Watts MR. Adiabatic microring resonators. Opt Lett 2010;35:3231–3. Google Scholar

[38]

Harris NC, Grassani D (equal contribution), Simbula A, Pant M, Galli M, Baehr-Jones T, Hochberg M, Englund D, Bajoni D, Galland C. Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems. Phys Rev X 2014;4:041047. Google Scholar

[39]

Azzini S, Grassani D, Strain MJ, Sorel M, Helt LG, Sipe JE, Liscidini M, Galli M, Bajoni D. Ultra-low power generation of twin photons in a compact silicon ring resonator. Opt Express 2012;20:23100–7.Google Scholar

[40]

Takesue H, Matsuda N, Kuramochi E, Notomi M. Entangled photons from on-chip slow light. Sci Rep 2014;4:3913.Google Scholar

[41]

Grassani D, Azzini S, Liscidini M, Galli M, Strain MJ, Sorel M, Sipe JE, Bajoni D. A micrometer-scale integrated silicon source of time-energy entangled photons. Optica 2014;2: 88–94. Google Scholar

[42]

Silverstone J, Bonneau D, Ohira K, Suzuki N, Yoshida H, Iizuka N, Ezaki M, Natarajan CM, Tanner MG, Hadfield RH, Zwiller V, Marshall GD, Rarity JG, O’Brien JL, Thompson MG. On-chip quantum interference between silicon photon-pair sources. Nat Photonics 2014;8:104–8. Google Scholar

[43]

Silverstone JW, Santagati R, Bonneau D, Strain MJ, Sorel M, O’Brien JL, ThompsonMG. Qubit entanglement between ring-resonator photon-pair sources on a silicon chip. Nat Comms 2015;6:7948. Google Scholar

[44]

Najafi F, Mower J, Harris N, Bellei F, Dane A, Lee C, Kharel P, Marsili F, Assefa S, Berggren KK, Englund D. On-chip detection of non-classical light by scalable integration of single-photon detectors. Nat Commun 2015;6. http://dx.doi.org/10.1038/ncomms6873. CrossrefGoogle Scholar

[45]

Pernice W, Schuck C, Minaeva O, Li M, Goltsman GN, Sergienko AV, Tang HX. High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits. Nat Commun 2012;3:1325. Google Scholar

[46]

Jalali B, Fathpour S. Silicon photonics. J Lightwave Technol 2006;24:4600–15. Google Scholar

[47]

Hochberg M, Baehr-Jones T. Towards fabless silicon photonics. Nat Photonics 2010;4:492–4. Google Scholar

[48]

Harris NC, Steinbrecher GR, Mower J, Lahini Y, Prabhu M, Baehr-Jones T, Hochberg M, Lloyd S, Englund D. Bosonic transport simulations in a large-scale programmable nanophotonic processor. arXiv preprint 2015. arXiv:1507.03406. Google Scholar

[49]

Wang J, Bonneau D, Villa M, Silverstone JW, Santagati R, Miki S, Yamashita T, Fujiwara M, Sasaki M, Terai H, Tanner MG, Natarajan CM, Hadfield RH, O’Brien JL, Thompson MG. Quantum photonic interconnect. Optica 2016;3:407–13. Google Scholar

[50]

Collins M, Xiong C, Rey IH, Vo TD, He J, Shahnia S, Reardon C, Krauss TF, Steel MJ, Clark AS, Eggleton BJ. Integrated spatial multiplexing of heralded single-photon sources. Nat Commun 2013;4:2582. Google Scholar

[51]

Cardenas J. Poitras CB, Robinson JT, Preston K, Chen L, Lipson M. Low loss etchless silicon photonic waveguides. Opt Express 2009;17:4752. Google Scholar

[52]

Baehr-Jones T, Ding R, Ayazi A, Pinguet T, Streshinsky M, Harris N, Li J, He L, Gould M, Zhang Y, Eu-Jin Lim A, Liow T-Y, HweeGee Teo S, Lo G-Q, Hochberg M. A 25 Gb/s silicon photonics platform. ArXiv e-prints 2012. http://adsabs.harvard.edu/ abs/2012arXiv1203.0767B. Google Scholar

[53]

Wörhoff K, Heideman RG, Leinse A, Hoekman M. TriPleX: a versatile dielectric photonic platform. Adv Opt Technol 2015;4:189–207. Google Scholar

[54]

Melchiorri M, Daldosso N, Sbrana F, Pavesi L, Pucker G, Kompocholis C, Bellutti P, Lui A. Propagation losses of silicon nitride waveguides in the near-infrared range. Appl Phys Lett 2005;86:121111. Google Scholar

[55]

Cai L, Wang Y, Hu H. Low-loss waveguides in a single-crystal lithium niobate thin film. Opt Lett 2015;40:3013–6. Google Scholar

[56]

Smit M, Leijtens X, Ambrosius H, Bente E, van der Tol J, Smalbrugge B, de Vries T, Geluk E-J, Bolk J, van Veldhoven R, Augustin L, Thijs P, D’Agostino D, Rabbani H, Lawniczuk K, Stopinski S, Tahvili S, Corradi A, Kleijn E, Dzibrou D, Felicetti M, Bitincka E, Moskalenko V, Zhao J, Santos R, Gilardi G, Yao W, Williams K, Stabile P, Kuindersma P, Pello J, Bhat S, Jiao Y, Heiss D, Roelkens G, Wale M, Firth P, Soares F, Grote N, Schell M, Debregeas H, Achouche M, Gentner J-L, Bakker A, Korthorst T, Gallagher D, Dabbs A, Melloni A, Morichetti F, Melati D, Wonfor A, Penty R, Broeke R, Musk B, Robbins D. An introduction to inp-based generic integration technology. Semicond Sci Tech 2014;29:083001. Google Scholar

[57]

Sun J, Timurdogan E, Yaacobi A, Hosseini ES, Watts MR. Large-scale nanophotonic phased array. Nature 2013;493:195–9. Google Scholar

[58]

Hochberg M, Galland C, Ding R, Liu Y, Zhang Y, Harris N, Baehr-Jones T. “The role of a fabless silicon photonics industry in the era of quantum engineering,” in *Latin America Optics and Photonics Conference*, LM3C-3, Optical Society of America, 2012. Google Scholar

[59]

Nezhad MP, Bondarenko O, Khajavikhan M, Simic A, Fainman Y. Etch-free low loss silicon waveguides using hydrogen silsesquioxane oxidation masks. Opt Express 2011;19:18827. Google Scholar

[60]

Reck M, Zeilinger A, Bernstein HJ, Bertani P. Experimental realization of any discrete unitary operator. Phys Rev Lett 1994;73:58–61. Google Scholar

[61]

Miller DAB. Perfect optics with imperfect components. Optica 2015;2:747–50. Google Scholar

[62]

Miller DAB. Self-configuring universal linear optical component. Photon Res 2013.;1:1–15. Google Scholar

[63]

Harris NC, Ma Y, Mower J, Baehr-Jones T, Englund D, Hochberg M, Galland C. Efficient, compact and low loss thermo-optic phase shifter in silicon. Opt Express 2014;22:10487–93. Google Scholar

[64]

Streshinsky M, Ding R, Liu Y, Novack A, Yang Y, Ma Y, Tu X, Chee EK, Lim AE, Lo PG, Baehr-Jones T, Hochberg M. Low power 50 gb/s silicon traveling wave mach-zehnder modulator near 1300 nm. Opt Express 2013;21:30350. Google Scholar

[65]

Mikkelsen JC, Sacher WD, Poon JKS. Dimensional variation tolerant silicon-on-insulator directional couplers. Opt Express 2014;22:3145–6. Google Scholar

[66]

Soref R, Bennett B. Electrooptical effects in silicon. IEEE J Quantum Electron 1987;23:123–129. Google Scholar

[67]

Jacobsen RS, Andersen KN, Borel PI, Fage-Pedersen J, Frandsen LH, Hansen O, Kristensen M, Lavrinenko AV, Moulin G, Ou H, Peucheret C, Zsigri B, Bjarklev A. Strained silicon as a new electro-optic material. Nature 2006;441:199–202. Google Scholar

[68]

Baehr-Jones T, Ding R, Liu Y, Ayazi A, Pinguet T, Harris NC, Streshinsky M, Lee P, Zhang Y, Eu-Jin Lim A, Liow T-Y, HweeGee Teo S, Lo G-Q, Hochberg M. Ultralow drive voltage silicon traveling-wave modulator. Opt Express 2012;20:12014–20. Google Scholar

[69]

Reed GT, Mashanovich G, Gardes FY, Thomson DJ. Silicon optical modulators. Nat Photonics 2010;4:518–26. Google Scholar

[70]

Watts MR, Sun J, DeRose C, Trotter DC, Young RW, Nielson GN. Adiabatic thermo-optic mach–zehnder switch. Opt Lett 2013;38:733–5. Google Scholar

[71]

Dhand I, Khalid A, Lu H, Sanders BC. Accurate and precise characterization of linear optical interferometers. J Opt 2016;18:035204. Google Scholar

[72]

Mower J, Harris NC, Steinbrecher GR, Lahini Y, Englund D. High-fidelity quantum state evolution in imperfect photonic integrated circuits. Phys Rev A 2015;92:032322. Google Scholar

[73]

Migdall A, Polyakov SV, Fan J, Bienfang JC. Single-photon generation and detection: physics and applications, vol. 45. Cambridge, MA, USA, Academic Press, 2013. Google Scholar

[74]

Leuthold J, Koos C, Freude W. Nonlinear silicon photonics. Nat Photonics 2010;4:535–44. Google Scholar

[75]

Sharping JE, Lee KF, Foster MA, Turner AC, Schmidt BS, Lipson M, Gaeta AL, Kumar P. Generation of correlated photons in nanoscale silicon waveguides. Opt Express 2006;14: 12388–93. Google Scholar

[76]

Takesue H, Tokura Y, Fukuda H, Tsuchizawa T, Watanabe T, Yamada K, Itabashi S-I. Entanglement generation using silicon wire waveguide. Appl Phys Lett 2007;91:201108. Google Scholar

[77]

Xiong C, Monat C, Clark AS, Grillet C, Marshall GD, Steel MJ, Li J, O’Faolain L, Krauss TF, Rarity JG, Eggleton BJ. Slow-light enhanced correlated photon pair generation in a silicon photonic crystal waveguide. Opt Lett 2011;36:3413–5. Google Scholar

[78]

Xiong C, Zhang X, Mahendra A, He J, Choi D-Y, Chae CJ, Marpaung D, Leinse A, Heideman RG, Hoekman M, Roeloffzen CGH, Oldenbeuving RM, van Dijk PWL, Taddei C, Leong PHW, Eggleton BJ. Compact and reconfigurable silicon nitride time-bin entanglement circuit. Optica 2015;2:724–7.Google Scholar

[79]

Xiong C, Collins MJ, Steel MJ, Krauss TF, Eggleton BJ, Clark AS. Photonic crystal waveguide sources of photons for quantum communication applications. IEEE J Select Topics Quantum Electron 2015;21:205–14. Google Scholar

[80]

Azzini S, Grassani D, Galli M, Andreani LC, Sorel M, Strain MJ, Helt LG, Sipe JE, Liscidini M, Bajoni D. From classical four-wave mixing to parametric fluorescence in silicon microring resonators. Opt Lett 2012;37:3807–9. Google Scholar

[81]

Azzini S, Grassani D, Galli M, Gerace D, Patrini M, Liscidini M, Velha P, Bajoni D. Stimulated and spontaneous four-wave mixing in silicon-on-insulator coupled photonic wire nano-cavities. Appl Phys Lett 2013;103:031117.Google Scholar

[82]

Davanco M, Ong JR, Shehata AB, Tosi A, Agha I, Assefa S, Xia F, Green WMJ, Mookherjea S, Srinivasan K. Telecommunications-band heralded single photons from a silicon nanophotonic chip. Appl Phys Lett 2012;100:261104.Google Scholar

[83]

Savanier M, Kumar R, Mookherjea S. Optimizing photon-pair generation electronically using a p-i-n diode incorporated in a silicon microring resonator. Appl Phys Lett 2015;107:131101.Google Scholar

[84]

Ong JR, Kumar R, Mookherjea S. Silicon microring-based wavelength converter with integrated pump and signal suppression. Opt Lett 2014;39:4439–41.Google Scholar

[85]

Matsuda N, Karkus P, Nishi H, Tsuchizawa T, Munro WJ, Takesue H, Yamada K. On-chip generation and demultiplexing of quantum correlated photons using a silicon-silica monolithic photonic integration platform. Opt Express 2014;22:22831–40.Google Scholar

[86]

Clemmen S, Phan Huy K, Bogaerts W, Baets RG, Emplit PH, Massar S. Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators. Opt Express 2009;17:16558–70.Google Scholar

[87]

Gentry CM, Shainline JM, Wade MT, Stevens MJ, Dyer SD, Zeng X, Pavanello F, Gerrits T, Nam SW, Mirin RP, Popović MA. Quantum-correlated photon pairs generated in a commercial complementary metal-oxide semiconductor microelectronics chip. arXiv preprint 2015. arXiv:1507.01121.Google Scholar

[88]

Preble SF, Fanto ML, Steidle JA, Tison CC, Howland GA, Wang Z, Alsing PM. On-chip quantum interference from a single silicon ring-resonator source. Phys Rev Applied 2015;4:021001. Google Scholar

[89]

Krauss TF. Slow light in photonic crystal waveguides. J Phys D Appl Phys 2007;40:2666–70. Google Scholar

[90]

Monat C, Ebnali-Heidari M, Grillet C, Corcoran B, Eggleton BJ, White TP, O’Faolain L, Li J, Krauss TF. Four-wave mixing in slow light engineered silicon photonic crystal waveguides. Opt Express 2010;18:22915–27. Google Scholar

[91]

Helt LG, Yang Z, Liscidini M, Sipe JE. Spontaneous four-wave mixing in microring resonators. Opt Lett 2010;35:3006–8. Google Scholar

[92]

Engin, E, Bonneau D, Natarajan CM, Clark A, Tanner MG, Hadfield RH, Dorenbos SN, Zwiller V, Ohira K, Suzuki N, Yoshida H, Iizuka N, Ezaki M, O’Brien JL, Thompson MG. Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement. Opt Express 2013;21:27826–34. Google Scholar

[93]

Mower J, Englund D. Efficient generation of single and entangled photons on a silicon photonic integrated chip. Phys Rev A 2011;84:052326. Google Scholar

[94]

Francis-Jones RJA, Mosley PJ. Temporal loop multiplexing: a resource efficient scheme for multiplexed photon-pair sources, ArXiv e-prints 2015. arXiv:1503.06178. Google Scholar

[95]

Pittman TB, Jacobs BC, Franson JD. Single photons on pseudodemand from stored parametric down-conversion. Phys Rev A 2002;66:042303. Google Scholar

[96]

Kaneda F, Christensen BG, Wong JJ, McCusker KT, Park HS, Kwiat PG. Time-multiplexed heralded single-photon source. Optica 2015;2:1010–3.Google Scholar

[97]

Xiong C, Zhang X, Liu Z, Collins MJ, Mahendra A, Helt LG, Steel MJ, Choi D-Y Chae CJ, Leong PHW, Eggleton BJ, Xiong C, Zhang X, Liu Z, Collins MJ, Mahendra A, Helt LG, Steel MJ, Choi D-Y, Chae CJ, Leong PHW, Eggleton BJ. Active temporal multiplexing of indistinguishable heralded single photons. Nat Commun 2016;7. arXiv:1508.03429.Google Scholar

[98]

Mendoza GJ, Santagati R, Munns J, Hemsley E, Piekarek M, Martin-Lopez E, Marshall GD, Bonneau D, Thompson MG, O’Brien JL. Active temporal multiplexing of photons. 2015. arXiv:1503.01215. Google Scholar

[99]

Migdall AL, Branning D, Castelletto S. Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source. Phys Rev A 2002;66:053805. Google Scholar

[100]

Shapiro JH, Wong FN. On-demand single-photon generation using a modular array of parametric downconverters with electro-optic polarization controls. Opt Lett 2007;32:2698–700. Google Scholar

[101]

Ma X-S, Zotter S, Kofler J, Jennewein T, Zeilinger A. Experimental generation of single photons via active multiplexing. Phys Rev A 2011;83:043814. Google Scholar

[102]

Hadfield RH. Single-photon detectors for optical quantum information applications. Nat Photonics 2009;3:696–705.Google Scholar

[103]

Marsili F, Verma VB, Stern JA, Harrington S, Lita AE, Gerrits T, Vayshenker I, Baek B, Shaw MD, Mirin RP, Nam SW. Detecting single infrared photons with 93% system efficiency. Nat Photonics 2013;7:210–4.Google Scholar

[104]

Najafi F, Dane A, Bellei F, Zhao Q, Sunter KA, McCaughan AN, Berggren KK. Fabrication process yielding saturated nanowire single-photon detectors with 24-ps Jitter. IEEE J Sel Top Quant 2014;21:1–7.Google Scholar

[105]

Rosfjord KM, Yang JK, Dauler EA, Kerman AJ, Anant V, Voronov BM, Gol’tsman GN, Berggren KK. Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating. Opt Express 2006;14:527–34.Google Scholar

[106]

Heeres RW, Kouwenhoven LP, Zwiller V. Quantum interference in plasmonic circuits. Nat Nanotechnol 2013;8:719–22. Google Scholar

[107]

Sahin D, Gaggero A, Hoang TB, Frucci G, Mattioli F, Leoni R, Beetz J, Lermer M, Kamp M, Höfling S, Fiore A. Integrated autocorrelator based on superconducting nanowires. Opt Express 2013;21:11162–70. Google Scholar

[108]

Pant M, Krovi H, Englund D, Guha S. Rate-distance tradeoff and resource costs for all-optical quantum repeaters. ArXiv e-prints 2016. arXiv:1603.01353. Google Scholar

[109]

Kieling K, Rudolph T, Eisert J. Percolation, renormalization, and quantum computing with nondeterministic gates. Phys Rev Lett 2007;99:130501. Google Scholar

[110]

Zaidi HA, Dawson C, van Loock P, Rudolph T. Near-deterministic creation of universal cluster states with probabilistic bell measurements and three-qubit resource states. Phys Rev A 2015;91:042301. Google Scholar

[111]

Almeida VR, Barrios CA, Panepucci RR, Lipson M. All-optical control of light on a silicon chip. Nature 2004;431:1081–4.Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.