[1]

Peres, M.R. (Ed.), The Focal Encyclopedia of Photography: Digital Imaging, Theory and Applications, History, and Science, Fourth Edi, Abingdon, Oxon, UK, Focal Press, 2007. Google Scholar

[2]

Ray, S.F. (Ed.), High Speed Photography and Photonics, Bellingham, WA, USA, SPIE Press, 2002. Google Scholar

[3]

Fuller, P.W.W., An introduction to high speed photography and photonics. Imaging Sci. J. 2009, 57, 293–302. Google Scholar

[4]

Clegg, B., The man who stopped time: the illuminating story of Eadweard Muybridge?: pioneer photographer, father of the motion picture, murderer, Washington, D.C., USA, Joseph Henry Press, 2007. Google Scholar

[5]

Goda, K., Tsia, K.K., Jalali, B., Serial time-encoded amplified imagingfor real-time observation of fast dynamic phenomena. Nature 2009, 458, 1145–1149. Google Scholar

[6]

Nakagawa, K., Iwasaki, A., Oishi, Y., et al., Sequentially timed all-optical mapping photography (STAMP). Nat. Photonics 2014, 8, 695–700. Google Scholar

[7]

Matlis, N.H., Axley, A., Leemans, W.P., Single-shot ultrafast tomographic imaging by spectral multiplexing. Nat. Commun. 2012, 3, 1111. Google Scholar

[8]

Li, Z., Zgadzaj, R., Wang, X., Chang, Y.-Y., Downer, M.C., Single-shot tomographic movies of evolving light-velocity objects. Nat. Commun. 2014, 5, 3085. Google Scholar

[9]

Diebold, E.D., Buckley, B.W., Gossett, D.R., Jalali, B., Digitally synthesized beat frequency multiplexing for sub-millisecond fluorescence microscopy. Nat. Photonics 2013, 7, 806–810. Google Scholar

[10]

Gao, L., Liang, J., Li, C., Wang, L. V, Single-shot compressed ultrafast photography at one hundred billion frames per second. Nature 2014, 516, 74–77. Google Scholar

[11]

Goda, K., Tsia, K.K., Jalali, B., Amplified dispersive Fourier-transform imaging for ultrafast displacement sensing and barcode reading. Appl. Phys. Lett. 2008, 93, 131109. Google Scholar

[12]

Tamamitsu, M., Nakagawa, K., Horisaki, R., et al., Design for sequentially timed all-optical mapping photography with optimum temporal performance. Opt. Lett. 2015, 40, 633–6. Google Scholar

[13]

Davis, W.C., A High-Speed Rotating-Mirror Framing Camera. Appl. Opt. 1962, 1, 407. Google Scholar

[14]

Waddell, J.H., Rotating prism design for continuous image compensation cameras. Appl. Opt. 1966, 5, 1211–23. Google Scholar

[15]

Boyle, W.S., Smith, G.E., Charge Coupled Semiconductor Devices. Bell Syst. Tech. J. 1970, 49, 587–593. Google Scholar

[16]

Joubert, J., Sharma, D., Light microscopy digital imaging. Curr. Protoc. Cytom. 2011, 58, 2.3.1–2.3.11.. Google Scholar

[17]

Solli, D.R., Ropers, C., Koonath, P., Jalali, B., Optical rogue waves. Nature 2007, 450, 1054–7. Google Scholar

[18]

Stein, R.B., Gossen, E.R., Jones, K.E., Neuronal variability: noise or part of the signal? Nat. Rev. Neurosci. 2005, 6, 38997. Google Scholar

[19]

Cristofanilli, M., Budd, G.T., Ellis, M.J., et al., Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N. Engl. J. Med. 2004, 351, 781–91. Google Scholar

[20]

Zmuidzinas, J., Thermal Noise and Correlations in Photon Detection. Appl. Opt. 2003, 42, 4989. Google Scholar

[21]

Ihee, H., Lobastov, V.A., Gomez, U.M., et al., Direct imaging of transient molecular structures with ultrafast diffraction. Science 2001, 291, 458–62. Google Scholar

[22]

Yazaki, A., Kim, C., Chan, J., et al., Ultrafast dark-field surface inspection with hybrid-dispersion laser scanning. Appl. Phys. Lett. 2014, 104, 251106. Google Scholar

[23]

Chen, H., Wang, C., Yazaki, A., Kim, C., Goda, K., Jalali, B., Ultrafast web inspection with hybrid dispersion laser scanner. Appl. Opt. 2013, 52, 4072–6. Google Scholar

[24]

Goda, K., Mahjoubfar, A., Wang, C., et al., Hybrid dispersion laser scanner. Sci. Rep. 2012, 2, 445. Google Scholar

[25]

Mahjoubfar, A., Goda, K., Ayazi, A., Fard, A., Kim, S.H., Jalali, B., High-speed nanometer-resolved imaging vibrometer and velocimeter. Appl. Phys. Lett. 2011, 98, 101107. Google Scholar

[26]

Goda, K., Ayazi, A., Gossett, D.R., et al., High-throughput single-microparticle imaging flow analyzer. Proc. Natl. Acad. Sci. 2012, 109, 11630–11635. Google Scholar

[27]

Goda, K., Jalali, B., Dispersive Fourier transformation for fast continuous single-shot measurements. Nat. Photonics 2013, 7, 102–112. Google Scholar

[28]

Li, Z., Zgadzaj, R., Wang, X., Reed, S., Dong, P., Downer, M.C., Frequency-domain streak camera for ultrafast imaging of evolving light-velocity objects. Opt. Lett. 2010, 35, 40874089. Google Scholar

[29]

Tokunaga, E., Terasaki, A., Kobayashi, T., Frequency-domain interferometer for femtosecond time-resolved phase spectroscopy. Opt. Lett. 1992, 17, 1131–1133. Google Scholar

[30]

Tsien, R.Y., Fluorescent indicators of ion concentrations. Methods Cell Biol. 1989, 30, 127–56. Google Scholar

[31]

Petty, H.R., Spatiotemporal chemical dynamics in living cells: from information trafficking to cell physiology. Biosystems. 2006, 83, 217–24. Google Scholar

[32]

Grinvald, A., Anglister, L., Freeman, J.A., Hildesheim, R., Manker, A., Real-time optical imaging of naturally evoked electrical activity in intact frog brain. Nature 1984, 308, 848850. Google Scholar

[33]

Cheng, A., Goncalves, J.T., Golshani, P., Arisaka, K., Portera-Cailliau, C., Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing. Nat. Methods 2011, 8, 139–42.Google Scholar

[34]

Yuste, R., Denk, W., Dendritic spines as basic functional units of neuronal integration. Nature 1995, 375, 682–4. Google Scholar

[35]

Shiferaw, Y., Aistrup, G.L., Wasserstrom, J.A., Intracellular Ca2+ waves, afterdepolarizations, and triggered arrhythmias. Cardiovasc. Res. 2012, 95, 265–8. Google Scholar

[36]

Howard, S.S., Straub, A., Horton, N., Kobat, D., Xu, C., Frequency Multiplexed In Vivo Multiphoton Phosphorescence Lifetime Microscopy. Nat. Photonics 2013, 7, 33–37. Google Scholar

[37]

Wu, F., Zhang, X., Cheung, J.Y., et al., Frequency division multiplexed multichannel high-speed fluorescence confocal microscope. Biophys. J. 2006, 91, 2290–6.Google Scholar

[38]

Sanders, J.S., Imaging with frequency-modulated reticles. Opt. Eng. 1991, 30, 1720.Google Scholar

[39]

Futia, G., Schlup, P., Winters, D.G., Bartels, R.A., Spatially-chirped modulation imaging of absorbtion and fluorescent objects on single-element optical detector. Opt. Express 2011, 19, 1626–40. Google Scholar

[40]

Sheppard, C.J.R., Mao, X.Q., Confocal Microscopes with Slit Apertures. J. Mod. Opt. 1988, 35, 1169–1185. Google Scholar

[41]

Hamamatsu Photonics K. K., Guide to Streak Cameras. 2008. (Accessed November 8, 2015, at http://www.hamamatsu.com/ resources/pdf/sys/SHSS0006E_STREAK.pdf)

[42]

Rietdorf, J. (Ed.), Microscopy Techniques, Springer Berlin Heidelberg, Berlin, Heidelberg 2005. Google Scholar

[43]

Borst, J.W., Visser, A.J.W.G., Fluorescence lifetime imaging microscopy in life sciences. Meas. Sci. Technol. 2010, 21, 102002. Google Scholar

[44]

Velten, A., Lawson, E., Bardagjy, A., Bawendi, M., Raskar, R., Slow art with a trillion frames per second camera, in: ACM SIGGRAPH 2011 Talks on - SIGGRAPH ‘11, ACM Press, New York, New York, USA 2011, p. 1. Google Scholar

[45]

Velten, A., Willwacher, T., Gupta, O., Veeraraghavan, A., Bawendi, M.G., Raskar, R., Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging. Nat. Commun. 2012, 3, 745. Google Scholar

[46]

Stolow, A., Bragg, A.E., Neumark, D.M., Femtosecond time-resolved photoelectron spectroscopy. Chem. Rev. 2004, 104, 1719–57. Google Scholar

[47]

Anabitarte, F., Cobo, A., Lopez-Higuera, J.M., Laser-Induced Breakdown Spectroscopy: Fundamentals, Applications, and Challenges. ISRN Spectrosc. 2012, 2012, 1–12. Google Scholar

[48]

Bioucas-dias, J.M., Figueiredo, M. A. T., Member, S., Iterative, A., A New TwIST?: Two-Step Iterative Shrinkage / Thresholding Algorithms for Image Restoration. IEEE Trans. Image Process. 2007, 16, 2992–3004. Google Scholar

[49]

Selanger, K.A., Falnes, J., Sikkeland, T., Fluorescence lifetime studies of Rhodamine 6G in methanol. J. Phys. Chem. 1977, 81, 1960–1963. Google Scholar

[50]

Zuba-Surma, E.K., Kucia, M., Abdel-Latif, A., Lillard, J.W., Rata-jczak, M.Z., The ImageStream System: a key step to a new era in imaging. Folia Histochem. Cytobiol. 2007, 45, 279–290. Google Scholar

[51]

Mao, X., Mao, S.S., Russo, R.E., Imaging femtosecond laser-induced electronic excitation in glass. Appl. Phys. Lett. 2003, 82, 697. Google Scholar

[52]

Sun, Q., Jiang, H., Liu, Y., Wu, Z., Yang, H., Gong, Q., Measurement of the collision time of dense electronic plasma induced by a femtosecond laser in fused silica. Opt. Lett. 2005, 30, 320-322 Google Scholar

[53]

Liang, J., Gao, L., Hai, P., Li, C., Wang, L. V, Encrypted Three-dimensional Dynamic Imaging using Snapshot Time-of-flight Compressed Ultrafast Photography. Sci. Rep. 2015, 5, 15504. Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.