[1]

Onoda M, Murakami S, Nagaosa N. Hall effect of light. Phys Rev Lett 2004;93:083901. CrossrefPubMedGoogle Scholar

[2]

Bliokh KY, Bliokh YP. Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet. Phys Rev Lett 2006;96:073903. CrossrefPubMedGoogle Scholar

[3]

Wolf SA, Awschalom DD, Buhrman RA, Daughton JM, von Molnár S, Roukes ML, Chtchelkanova AY, Treger DM. Spintronics: a spin-based electronics vision for the future. Science 2001;294:1488–95. CrossrefPubMedGoogle Scholar

[4]

Awschalom DD, Flatté ME. Challenges for semiconductor spintronics. Nat Phys 2007;3:153–9. CrossrefGoogle Scholar

[5]

Chappert C, Fert A, Van Dau FN. The emergence of spin electronics in data storage. Nat Mater 2007;6:813–23. CrossrefPubMedGoogle Scholar

[6]

Wunderlich J, Park BG, Irvine AC, Zârbo LP, Rozkotová E, Nemec P, Novák V, Sinova J, Jungwirth T. Spin Hall effect transistor. Science 2010;330:1801–4. PubMedCrossrefGoogle Scholar

[7]

Aharonov Y, Albert DZ, Vaidman L. How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys Rev Lett 1988;60:1351–4. CrossrefPubMedGoogle Scholar

[8]

Hosten O, Kwiat P. Observation of the spin hall effect of light via weak measurements. Science 2008;319:787–90. PubMedCrossrefGoogle Scholar

[9]

Qin Y, Li Y, He H, Gong Q. Measurement of spin Hall effect of reflected light. Opt Lett 2009;34:2551–3. CrossrefPubMedGoogle Scholar

[10]

Zhou X, Xiao Z, Luo H, Wen S. Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements. Phys Rev A 2012;85:043809. CrossrefGoogle Scholar

[11]

Zhou X, Ling X, Luo H, Wen S. Identifying graphene layers via spin Hall effect of light. Appl Phys Lett 2012;101:251602. CrossrefGoogle Scholar

[12]

Zhou X, Zhang J, Ling X, Chen S, Luo H, Wen S. Photonic spin Hall effect in topological insulators. Phys Rev A 2013;88:053840. CrossrefGoogle Scholar

[13]

Ringel Z. Using weak measurements to extract the Z_{2}index of a topological insulator. Phys Rev B 2015;91:241109. CrossrefGoogle Scholar

[14]

Li D, Shen Z, He Y, Zhang Y, Chen Z, Ma H. Application of quantum weak measurement for glucose concentration detection. Appl Opt 2016;55:1697–702. PubMedCrossrefGoogle Scholar

[15]

Bliokh KY, Niv A, Kleiner V, Hasman E. Geometrodynamics of spinning light. Nat Photon 2008;2:748–53. CrossrefGoogle Scholar

[16]

Luo H, Zhou X, Shu W, Wen S, Fan D. Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection. Phys Rev A 2011;84:043806. CrossrefGoogle Scholar

[17]

Kong LJ, Wang XL, Li SM, Li YN, Chen J, Gu B, Wang HT. Spin Hall effect of reflected light from an air-glass interface around the Brewster’s angle. Appl Phys Lett 2012;100:071109. CrossrefGoogle Scholar

[18]

Ling XH, Luo HL, Tang M, Wen SC. Enhanced and tunable spin Hall effect of light upon reflection of one-dimensional photonic crystal with a defect layer. Chin Phys Lett 2012;29:074209. CrossrefGoogle Scholar

[19]

Roy B, Ghosh N, Banerjee A, Gupta SD, Roy S. Manifestations of geometric phase and enhanced spin Hall shifts in an optical trap. New J Phys 2014;16:083037. CrossrefGoogle Scholar

[20]

Wang B, Li Y, Pan MM, Ren JL, Xiao YF, Yang H, Gong Q. Measuring spin Hall effect of light by cross-polarization intensity ratio. Opt Lett 2014;39:3425–8. CrossrefPubMedGoogle Scholar

[21]

Kildishev AV, Boltasseva A, Shalaev VM. Planar photonics with metasurfaces. Science 2013;339:1232009. CrossrefPubMedGoogle Scholar

[22]

Yin X, Ye Z, Rho J, Wang Y, Zhang X. Photonic spin Hall effect at metasurfaces. Science 2013;339:1405–7. CrossrefPubMedGoogle Scholar

[23]

Yu N, Genevet P, Kats MA, Aieta F, Tetienne JP, Capasso F, Gaburro Z. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 2011;334:333–7. PubMedCrossrefGoogle Scholar

[24]

Huang L, Chen X, Bai B, Tan Q, Jin G, Zentgraf T, Zhang S. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity. Light Sci Appl 2013;2:e70. CrossrefGoogle Scholar

[25]

Lin J, Mueller JP, Wang Q, Yuan G, Antoniou N, Yuan XC, Capasso F. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science 2013;340: 331–4. CrossrefPubMedGoogle Scholar

[26]

Shitrit N, Yulevich I, Maguid E, Ozeri D, Veksler D, Kleiner V, Hasman E. Spin-optical metamaterial route to spin-controlled photonics. Science 2013;340:724–6. PubMedCrossrefGoogle Scholar

[27]

Yu N, Capasso F. Flat optics with designer metasurfaces. Nat Mater 2014;13:139–50. CrossrefPubMedGoogle Scholar

[28]

Zhao Y, Liu XX, Alù A. Recent advances on optical metasurfaces. J Opt 2014;16:123001. CrossrefGoogle Scholar

[29]

Meinzer N, Barnes WL, Hooper IR. Plasmonic meta-atoms and metasurfaces. Nat Photon 2014;8:889–98. CrossrefGoogle Scholar

[30]

Aieta F, Genevet P, Yu N, Kats MA, Gaburro Z, Capasso F. Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities. Nano Lett 2012;12:1702–6. PubMedCrossrefGoogle Scholar

[31]

Genevet P, Yu N, Aieta F, Lin J, Kats MA, Blanchard R, Scully MO, Gaburro Z, Capasso F. Ultra-thin plasmonic optical vortex plate based on phase discontinuities. Appl Phys Lett 2012;100:013101. CrossrefGoogle Scholar

[32]

Blanchard R, Aoust G, Genevet P, Yu N, Kats MA, Gaburro Z, Capasso F. Modeling nanoscale V-shaped antennas for the design of optical phased arrays. Phys Rev B 2012;85:155457. CrossrefGoogle Scholar

[33]

Larouche S, Smith DR. Reconciliation of generalized refraction with diffraction theory. Opt Lett 2012;37:2391–3. PubMedCrossrefGoogle Scholar

[34]

Zhao Y, Alù A. Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates. Nano Lett 2013;13:1086–91. CrossrefPubMedGoogle Scholar

[35]

Shaltout A, Liu J, Shalaev VM, Kildishev AV. Optically active metasurface with non-chiral plasmonic nanoantennas. Nano Lett 2014;14:4426–31. PubMedCrossrefGoogle Scholar

[36]

Wang S, Abeysinghe DC, Zhan Q. Generation of vectorial optical fields with slot-antenna-based metasurface. Opt Lett 2015;40:4711–4. CrossrefPubMedGoogle Scholar

[37]

Pu M, Chen P, Wang Y, Zhao Z, Huang C, Wang C, Ma X, Luo X. Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation. Appl Phys Lett 2013;102:131906. CrossrefGoogle Scholar

[38]

Shitrit N, Bretner I, Gorodetski Y, Kleiner V, Hasman E. Optical spin Hall effects in plasmonic chains. Nano Lett 2011;11: 2038–42. PubMedCrossrefGoogle Scholar

[39]

Ling X, Zhou X, Yi X, Shu W, Liu Y, Chen S, Luo H, Wen S, Fan D. Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence. Light Sci Appl 2015;4:e290. CrossrefGoogle Scholar

[40]

Luo W, Xiao S, He Q, Sun S, Zhou L. Photonic spin Hall effect with nearly 100% efficiency. Adv Opt Mater 2015;3:1102–8. CrossrefGoogle Scholar

[41]

Bliokh KY, Nori F. Transverse and longitudinal angular momenta of light. Phys Rep 2015;592:1–38. CrossrefGoogle Scholar

[42]

Beth RA. Mechanical detection and measurement of the angular momentum of light. Phys Rev 1936;50:115–25. CrossrefGoogle Scholar

[43]

Humblet J. Sur le moment d’impulsion d’une onde électromagnétique. Physica 1943;10:585–603. CrossrefGoogle Scholar

[44]

Allen L, Beijersbergen MW, Spreeuw RJ, Woerdman JP. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A 1992;45:8185–9. PubMedCrossrefGoogle Scholar

[45]

Mathur H. Thomas precession, spin-orbit interaction, and Berry’s phase. Phys Rev Lett 1991;67:3325–7. CrossrefPubMedGoogle Scholar

[46]

Liberman VS, Zel’dovich BY. Spin-orbit interaction of a photon in an inhomogeneous medium. Phys Rev A 1992;46:5199–207. CrossrefGoogle Scholar

[47]

Niv A, Gorodetski Y, Kleiner V, Hasman E. Topological spin-orbit interaction of light in anisotropic inhomogeneous subwavelength structures. Opt Lett 2008;33:2910–2. PubMedCrossrefGoogle Scholar

[48]

O’Connor D, Ginzburg P, Rodríguez-Fortuño FJ, Wurtz GA, Zayats AV. Spin-orbit coupling in surface plasmon scattering by nanostructures. Nat Commun 2014;5:5327. PubMedCrossrefGoogle Scholar

[49]

Bliokh KY, Rodríguez-Fortuño FJ, Nori F, Zayats AV. Spin–orbit interactions of light. Nat Photon 2015;9:796–808. CrossrefGoogle Scholar

[50]

O’Neil AT, MacVicar I, Allen L, Padgett MJ. Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. Phys Rev Lett 2002;88:053601. PubMedCrossrefGoogle Scholar

[51]

Allen L, Padgett MJ, Babiker M. The orbital angular momentum of light. Prog Opt 1999;39:291–372. CrossrefGoogle Scholar

[52]

Vinitskiĭ S, Derbov V, Dubovik V, Markovski B, Stepanovskiĭ Y. Topological phases in quantum mechanics and polarization optics. Soviet Physics Uspekhi 1990;33:403–28. CrossrefGoogle Scholar

[53]

Bhandari R. Polarization of light and topological phases. Phys Rep 1997;281:1–64. CrossrefGoogle Scholar

[54]

Bomzon Z, Kleiner V, Hasman E. Computer-generated space-variant polarization elements with subwavelength metal stripes. Opt Lett 2001;26:33–5. CrossrefPubMedGoogle Scholar

[55]

Bomzon Z, Biener G, Kleiner V, Hasman E. Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings. Opt Lett 2002;27:1141–3. CrossrefPubMedGoogle Scholar

[56]

Papakostas A, Potts A, Bagnall DM, Prosvirnin SL, Coles HJ, Zheludev NI. Optical manifestations of planar chirality. Phys Rev Lett 2003;90:107404. PubMedCrossrefGoogle Scholar

[57]

Huang L, Chen X, Mühlenbernd H, Li G, Bai B, Tan Q, Jin G, Zentgraf T, Zhang S. Dispersionless phase discontinuities for controlling light propagation. Nano Lett 2012;12:5750–5. CrossrefPubMedGoogle Scholar

[58]

Lin D, Fan P, Hasman E, Brongersma ML. Dielectric gradient metasurface optical elements. Science 2014;345:298–302. PubMedCrossrefGoogle Scholar

[59]

Bliokh KY, Gorodetski Y, Kleiner V, Hasman E. Coriolis effect in optics: unified geometric phase and spin-Hall effect. Phys Rev Lett 2008;101:030404. PubMedCrossrefGoogle Scholar

[60]

Bliokh KY. Geometrodynamics of polarized light: Berry phase and spin Hall effect in a gradient-index medium. J Opt A: Pure Appl Opt 2009;11:094009. CrossrefGoogle Scholar

[61]

Rytov S. On the transition from wave to geometrical optics. Dokl Akad Nauk SSSR 1938;18:263–7. Google Scholar

[62]

Vladimirskii V. The rotation of a polarization plane for curved light ray. Dokl Akad Nauk SSSR 1941;21:222–5. Google Scholar

[63]

Berry MV. Quantal phase factors accompanying adiabatic changes. Proc R Soc London Ser A 1984;392:45–57. CrossrefGoogle Scholar

[64]

Pancharatnam S. Generalized theory of interference, and its applications. Part I. Coherent pencils. Proc Indian Acad Sci A 1956;44:398–417. Google Scholar

[65]

Berry MV. The adiabatic phase and Pancharatnam’s phase for polarized light. J Mod Opt 1987;34:1401–7. CrossrefGoogle Scholar

[66]

Simon R, Kimble HJ, Sudarshan EC. Evolving geometric phase and its dynamical manifestation as a frequency shift: An optical experiment. Phys Rev Lett 1988;61:19–22. CrossrefPubMedGoogle Scholar

[67]

Bhandari R, Samuel J. Observation of topological phase by use of a laser interferometer. Phys Rev Lett 1988;60:1211–3. CrossrefPubMedGoogle Scholar

[68]

Poincaré H. Leçons sur la théorie mathématique de la lumière., Théorie mathématique de la lumière. II, Nouvelles études sur la diffraction, théorie de la dispersion de Helmholtz: leçons professées pendant le premier semestre 1891-1892/par H. Poincaré,...; rédigées par M. Lamotte et D. Hurmuzescu 1892. Google Scholar

[69]

Milione G, Sztul HI, Nolan DA, Alfano RR. Higher-order Poincare sphere, stokes parameters, and the angular momentum of light. Phys Rev Lett 2011;107:053601. CrossrefPubMedGoogle Scholar

[70]

Milione G, Evans S, Nolan DA, Alfano RR. Higher order Pancharatnam-Berry phase and the angular momentum of light. Phys Rev Lett 2012;108:190401. CrossrefPubMedGoogle Scholar

[71]

Holleczek A, Aiello A, Gabriel C, Marquardt C, Leuchs G. Classical and quantum properties of cylindrically polarized states of light. Opt Express 2011;19:9714–36. CrossrefPubMedGoogle Scholar

[72]

Yi X, Liu Y, Ling X, Zhou X, Ke Y, Luo H, Wen S, Fan D. Hybrid-order Poincaré sphere. Phys Rev A 2015;91:023801. CrossrefGoogle Scholar

[73]

Pendry JB, Schurig D, Smith DR. Controlling electromagnetic fields. Science 2006;312:1780–2. CrossrefPubMedGoogle Scholar

[74]

Leonhardt U. Optical conformal mapping. Science 2006;312:1777–80. PubMedCrossrefGoogle Scholar

[75]

Brorson SD, Haus HA. Diffraction gratings and geometrical optics. J Opt Soc Am B 1988;5:247–8. CrossrefGoogle Scholar

[76]

Feynman R, Hibbs A. Quantum Mechanics and Path Integrals. New York: McGraw-Hill, 1965. Google Scholar

[77]

Hecht E. Optics. 3rd edn. Boston: Addison Wesley, 1997. Google Scholar

[78]

Sun S, Yang KY, Wang CM, Juan TK, Chen WT, Liao CY, He Q, Xiao S, Kung WT, Guo GY, Zhou L, Tsai DP. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett 2012;12:6223–9. CrossrefPubMedGoogle Scholar

[79]

Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat Mater 2012;11:426–31. CrossrefPubMedGoogle Scholar

[80]

Huang L, Chen X, Mühlenbernd H, Zhang H, Chen S, Bai B, Tan Q, Jin G, Cheah KW, Qiu CW, Li J, Zentgraf T, Zhang S. Three-dimensional optical holography using a plasmonic metasurface. Nat Commun 2013;4:2808. Google Scholar

[81]

Yang Y, Wang W, Moitra P, Kravchenko, II, Briggs DP, Valentine J. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett 2014;14:1394–9. CrossrefPubMedGoogle Scholar

[82]

Li Z, Palacios E, Butun S, Aydin K. Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting. Nano Lett 2015;15:1615–21. CrossrefPubMedGoogle Scholar

[83]

Yu N, Aieta F, Genevet P, Kats MA, Gaburro Z, Capasso F. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett 2012;12:6328–33. PubMedCrossrefGoogle Scholar

[84]

Kats MA, Genevet P, Aoust G, Yu N, Blanchard R, Aieta F, Gaburro Z, Capasso F. Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy. Proc Natl Acad Sci USA 2012;109:12364–8. CrossrefGoogle Scholar

[85]

Ni X, Emani NK, Kildishev AV, Boltasseva A, Shalaev VM. Broadband light bending with plasmonic nanoantennas. Science 2012;335:427. CrossrefPubMedGoogle Scholar

[86]

Aieta F, Genevet P, Kats MA, Yu N, Blanchard R, Gaburro Z, Capasso F. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett 2012;12:4932–6. PubMedCrossrefGoogle Scholar

[87]

Ni X, Kildishev AV, Shalaev VM. Metasurface holograms for visible light. Nat Commun 2013;4:2807. Google Scholar

[88]

Ni X, Ishii S, Kildishev AV, Shalaev VM. Ultra-thin, planar, Babinet-inverted plasmonic metalenses. Light Sci Appl 2013;2:e72. CrossrefGoogle Scholar

[89]

Biener G, Niv A, Kleiner V, Hasman E. Formation of helical beams by use of Pancharatnam-Berry phase optical elements. Opt Lett 2002;27:1875–7. PubMedCrossrefGoogle Scholar

[90]

Hasman E, Kleiner V, Biener G, Niv A. Polarization dependent focusing lens by use of quantized Pancharatnam-Berry phase diffractive optics. Appl Phys Lett 2003;82:328–30. CrossrefGoogle Scholar

[91]

Hasman E, Biener G, Niv A, Kleiner V. Space-variant polarization manipulation. Prog Opt 2005;47:215–89. CrossrefGoogle Scholar

[92]

Marrucci L, Karimi E, Slussarenko S, Piccirillo B, Santamato E, Nagali E, Sciarrino F. Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications. J Opt 2011;13:064001. CrossrefGoogle Scholar

[93]

Kang M, Chen J, Wang XL, Wang HT. Twisted vector field from an inhomogeneous and anisotropic metamaterial. J Opt Soc Am B 2012;29:572–6. CrossrefGoogle Scholar

[94]

Chen X, Huang L, Muhlenbernd H, Li G, Bai B, Tan Q, Jin G, Qiu CW, Zhang S, Zentgraf T. Dual-polarity plasmonic metalens for visible light. Nat Commun 2012;3:1198. CrossrefPubMedGoogle Scholar

[95]

Li G, Kang M, Chen S, Zhang S, Pun EY, Cheah KW, Li J. Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light. Nano Lett 2013;13:4148–51. PubMedCrossrefGoogle Scholar

[96]

Liu Y, Ling X, Yi X, Zhou X, Luo H, Wen S. Realization of polarization evolution on higher-order Poincaré sphere with metasurface. Appl Phys Lett 2014;104:191110. CrossrefGoogle Scholar

[97]

Pu M, Li X, Ma X, Wang Y, Zhao Z, Wang C, Hu C, Gao P, Huang C, Ren H, Li X, Qin F, Yang J, Gu M, Hong M, Luo X. Catenary optics for achromatic generation of perfect optical angular momentum. Sci Adv 2015;1:e1500396. CrossrefPubMedGoogle Scholar

[98]

Zhang X, Jin J, Wang Y, Pu M, Li X, Zhao Z, Gao P, Wang C, Luo X. Metasurface-based broadband hologram with high tolerance to fabrication errors. Sci Rep 2016;6:19856. CrossrefPubMedGoogle Scholar

[99]

Hall EH. On a new action of the magnet on electric currents. Am J Math 1879;2:287–92. CrossrefGoogle Scholar

[100]

Hirsch JE. Spin Hall effect. Phys Rev Lett 1999;83:1834–7. CrossrefGoogle Scholar

[101]

Kato YK, Myers RC, Gossard AC, Awschalom DD. Observation of the spin Hall effect in semiconductors. Science 2004;306:1910–3. PubMedCrossrefGoogle Scholar

[102]

Sinova J, Culcer D, Niu Q, Sinitsyn NA, Jungwirth T, MacDonald AH. Universal intrinsic spin Hall effect. Phys Rev Lett 2004;92:126603. PubMedCrossrefGoogle Scholar

[103]

Wunderlich J, Kaestner B, Sinova J, Jungwirth T. Experimental observation of the spin-Hall effect in a two-dimensional spin-orbit coupled semiconductor system. Phys Rev Lett 2005;94:047204. CrossrefGoogle Scholar

[104]

Bliokh KY, Bliokh YP. Polarization, transverse shifts, and angular momentum conservation laws in partial reflection and refraction of an electromagnetic wave packet. Phys Rev E 2007;75:066609. CrossrefGoogle Scholar

[105]

Zhang Y, Li P, Liu S, Zhao J. Unveiling the photonic spin Hall effect of freely propagating fan-shaped cylindrical vector vortex beams. Opt Lett 2015;40:4444–7. CrossrefPubMedGoogle Scholar

[106]

Ling X, Yi X, Zhou X, Liu Y, Shu W, Luo H, Wen S. Realization of tunable spin-dependent splitting in intrinsic photonic spin Hall effect. Appl Phys Lett 2014;105:151101. CrossrefGoogle Scholar

[107]

Korger J, Aiello A, Chille V, Banzer P, Wittmann C, Lindlein N, Marquardt C, Leuchs G. Observation of the geometric spin Hall effect of light. Phys Rev Lett 2014;112:113902. CrossrefPubMedGoogle Scholar

[108]

Luo H, Ling X, Zhou X, Shu W, Wen S, Fan D. Enhancing or suppressing the spin Hall effect of light in layered nanostructures. Phys Rev A 2011;84:033801. CrossrefGoogle Scholar

[109]

Li Y, Liu Y, Ling X, Yi X, Zhou X, Ke Y, Luo H, Wen S, Fan D. Observation of photonic spin Hall effect with phase singularity at dielectric metasurfaces. Opt Express 2015;23: 1767–74. PubMedCrossrefGoogle Scholar

[110]

Shu W, Ke Y, Liu Y, Ling X, Luo H, Yin X. Radial spin Hall effect of light. Phys Rev A 2016;93:013839. CrossrefGoogle Scholar

[111]

Liu S, Li P, Zhang Y, Gan X, Wang M, Zhao J. Longitudinal spin separation of light and its performance in three-dimensionally controllable spin-dependent focal shift. Sci Rep 2016;6:20774. CrossrefPubMedGoogle Scholar

[112]

Gorodetski Y, Shitrit N, Bretner I, Kleiner V, Hasman E. Observation of optical spin symmetry breaking in nanoapertures. Nano Lett 2009;9:3016–9. CrossrefPubMedGoogle Scholar

[113]

Liu Y, Zhang X. Metasurfaces for manipulating surface plasmons. Appl Phys Lett 2013;103:141101. CrossrefGoogle Scholar

[114]

Pors A, Nielsen MG, Bernardin T, Weeber JC, Bozhevolnyi SI. Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons. Light Sci Appl 2014; 3:e197. CrossrefGoogle Scholar

[115]

Kapitanova PV, Ginzburg P, Rodríguez-Fortuño FJ, Filonov DS, Voroshilov PM, Belov PA, Poddubny AN, Kivshar YS, Wurtz GA, Zayats AV. Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes. Nat Commun 2014;5:3226. PubMedGoogle Scholar

[116]

Xiao S, Zhong F, Liu H, Zhu S, Li J. Flexible coherent control of plasmonic spin-Hall effect. Nat Commun 2015;6:8360. CrossrefPubMedGoogle Scholar

[117]

Kavokin A, Malpuech G, Glazov M. Optical spin hall effect. Phys Rev Lett 2005;95:136601. PubMedCrossrefGoogle Scholar

[118]

Leyder C, Romanelli M, Karr JP, Giacobino E, Liew TCH, Glazov MM, Kavokin AV, Malpuech G, Bramati A. Observation of the optical spin Hall effect. Nat Phys 2007;3:628–31. CrossrefGoogle Scholar

[119]

Ling X, Zhou X, Shu W, Luo H, Wen S. Realization of tunable photonic spin Hall effect by tailoring the Pancharatnam-berry phase. Sci Rep 2014;4:5557. PubMedGoogle Scholar

[120]

Liu Y, Ling X, Yi X, Zhou X, Chen S, Ke Y, Luo H, Wen S. Photonic spin Hall effect in dielectric metasurfaces with rotational symmetry breaking. Opt Lett 2015;40:756–9. CrossrefPubMedGoogle Scholar

[121]

Liu Y, Ke Y, Zhou J, Luo H, Wen S. Manipulating the spin-dependent splitting by geometric Doppler effect. Opt Express 2015;23:16682–92. CrossrefPubMedGoogle Scholar

[122]

Liu YC, Chen SZ, Ke YG, Zhou XX, Luo HL, Wen SC. Spin photonics and spin-photonic devices with dielectric metasurfaces. Proc of SPIE 2015;9551:95511Z. CrossrefGoogle Scholar

[123]

Hasman E, Bomzon Z, Niv A, Biener G, Kleiner V. Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures. Opt Commun 2002;209:45–54. CrossrefGoogle Scholar

[124]

Khorasaninejad M, Crozier KB. Silicon nanofin grating as a miniature chirality-distinguishing beam-splitter. Nat Commun 2014;5:5386. CrossrefPubMedGoogle Scholar

[125]

Ke Y, Liu Y, He Y, Zhou J, Luo H, Wen S. Realization of spin-dependent splitting with arbitrary intensity patterns based on all-dielectric metasurfaces. Appl Phys Lett 2015;107:041107. CrossrefGoogle Scholar

[126]

Aieta F, Genevet P, Kats M, Capasso F. Aberrations of flat lenses and aplanatic metasurfaces. Opt Express 2013;21:31530–9. PubMedCrossrefGoogle Scholar

[127]

Tang D, Wang C, Zhao Z, Wang Y, Pu M, Li X, Gao P, Luo X. Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing. Laser Photonics Rev 2015;9:713–9. CrossrefGoogle Scholar

[128]

Gao K, Cheng HH, Bhowmik AK, Bos PJ. Thin-film Pancharatnam lens with low f-number and high quality. Opt Express 2015;23:26086–94. CrossrefPubMedGoogle Scholar

[129]

Ding X, Monticone F, Zhang K, Zhang L, Gao D, Burokur SN, de Lustrac A, Wu Q, Qiu CW, Alù A. Ultrathin pancharatnam-berry metasurface with maximal cross-polarization efficiency. Adv Mater 2015;27:1195–200. PubMedCrossrefGoogle Scholar

[130]

Pors A, Albrektsen O, Radko IP, Bozhevolnyi SI. Gap plasmon-based metasurfaces for total control of reflected light. Sci Rep 2013;3:2155. PubMedCrossrefGoogle Scholar

[131]

Zheng G, Mühlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S. Metasurface holograms reaching 80% efficiency. Nat Nanotechnol 2015;10:308–12. CrossrefPubMedGoogle Scholar

[132]

Shaltout A, Liu J, Kildishev A, Shalaev V. Photonic spin Hall effect in gap–plasmon metasurfaces for on-chip chiroptical spectroscopy. Optica 2015;2:860–3. CrossrefGoogle Scholar

[133]

Chen X, Chen M, Mehmood MQ, Wen D, Yue F, Qiu CW, Zhang S. Longitudinal multifoci metalens for circularly polarized light. Adv Opt Mater 2015;3:1201–6. CrossrefGoogle Scholar

[134]

Wang S, Wang X, Kan Q, Ye J, Feng S, Sun W, Han P, Qu S, Zhang Y. Spin-selected focusing and imaging based on metasurface lens. Opt Express 2015;23:26434–41. PubMedCrossrefGoogle Scholar

[135]

He Y, Liu Z, Liu Y, Zhou J, Ke Y, Luo H, Wen S. Higher-order laser mode converters with dielectric metasurfaces. Opt Lett 2015;40:5506–9. PubMedCrossrefGoogle Scholar

[136]

Pors A, Nielsen MG, Bozhevolnyi SI. Plasmonic metagratings for simultaneous determination of Stokes parameters. Optica 2015;2:716–23. CrossrefGoogle Scholar

[137]

Veksler D, Maguid E, Shitrit N, Ozeri D, Kleiner V, Hasman E. Multiple wavefront shaping by metasurface based on mixed random antenna groups. ACS Photonics 2015;2:661–7. CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.