[1]

Huygens C. Traité de la Lumière (Pieter van der Aa, Leyden, 1690). Google Scholar

[2]

Born M, Wolf E. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, 7^{th} ed. New York, USA: Cambridge University Press, 1999. Google Scholar

[3]

Gerchberg RW, Saxton WO. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 1972;35:237. Google Scholar

[4]

Fienup JR. Phase retrieval algorithms: a comparison. Appl Opt 1982;21:2758–69. CrossrefPubMedGoogle Scholar

[5]

Yu N, Genevet P, Kats MA, Francesco A, Tetienne JP, Capasso F, Gaburro Z. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 2011;334:333–7. PubMedCrossrefGoogle Scholar

[6]

Holloway CL, Kuester EF, Gordon JA, O’Hara J, Booth J, Smith DR. An overview of the theory and applications of metasurfaces: the two dimensional equivalents of metamaterials. IEEE Antennas Prop Mag 2012;54:10–35. CrossrefGoogle Scholar

[7]

Kats MA, Blanchard R, Patrice G, Capasso F. Nanometre optical coatings based on strong interference effects in highly absorbing media. Nat Mater 2013;12:20–4. PubMedGoogle Scholar

[8]

Kildishev AV, Boltasseva A, Shalaev VM. Planar photonics with metasurfaces. Science 2013;339:1232009. CrossrefPubMedGoogle Scholar

[9]

Giovampaola CD, Engheta, N. Digital metamaterials. Nat Mater 2014;13:1115–21. CrossrefPubMedGoogle Scholar

[10]

Yu N, Genevet P, Aieta F, Kats MA, Blanchard R, Aoust G, Tetienne JP, Gaburro Z, Capasso, F. Flat optics: controlling wavefronts with optical antenna metasurfaces. IEEE J Sel Top Quant Electron 2013;19:4700423. CrossrefGoogle Scholar

[11]

Biener G, Niv A, Kleiner V, Hasman E. Formation of helical beams by use of Pancharatnam–Berry phase optical elements. Opt Lett 2002;21:1875–7. Google Scholar

[12]

Bomzon Z, Niv A, Kleiner V, Hasman E. Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings. Opt Lett 2002;5:285–7. Google Scholar

[13]

Ni X, Emani NK, Kildishev AV, Boltasseva A, Shalaev VM. Broadband light bending with plasmonic nanoantennas. Science 2012;335:427. CrossrefPubMedGoogle Scholar

[14]

Genevet P, Yu N, Aieta F, Lin J, Kats MA, Blanchard R, Scully MO, Gaburro Z, Capasso, F. Ultra-thin plasmonic optical vortex plate based on phase discontinuities. Appl Phys Lett 2012;100:013101. CrossrefGoogle Scholar

[15]

Liu L, Zhang X, Kenney M, Su X, Xu N, Ouyang C, Shi Y, Han J, Zhang W, Zhang S. Broadband metasurfaces with simultaneous control of phase and amplitude. Adv Mater 2014;26:5031–6. CrossrefPubMedGoogle Scholar

[16]

Walther B, Helgert C, Rockstuhl C, Setzpfandt F, Eilenberger F, Kley EB, Lederer F, Tünnermann A, Pertsch T. Spatial and spectral light shaping with metamaterials. Adv Mater 2012;24:6300–4. CrossrefPubMedGoogle Scholar

[17]

Butt H, Montelongo Y, Butler T, Rajesekharan R, Dai Q, Shiva-Reddy SG, Wilkinson TD, Amaratunga AJ. Carbon nanotube based high resolution holograms. Adv Mater 2012;24:331–6. Google Scholar

[18]

Huang L, Chen X, Mühlenbernd H, Zhang H, Chen S, Bai B, Tan Q, Jin G, Cheah KW, Qiu CW, Li J, Zentgraf T, Zhang S. Three-dimensional optical holography using a plasmonic metasurface. Nat Commun 2013;4:2808. Google Scholar

[19]

Larouche S, Tsai YJ, Tyler T, Jokerst NM, Smith DR. Infrared metamaterial phase holograms. Nat Mater 2011;11:450–4. Google Scholar

[20]

Ni X, KildishevAV, Shalaev VM. Metasurface holograms for visible light. Nat Commun 2013;4:2807 Google Scholar

[21]

Zhou F, Liu Y, Cai W. Plasmonic holographic imaging with V-shaped nanoantenna array. Opt Express 2013;21:4348–54 CrossrefPubMedGoogle Scholar

[22]

Lin J, Genevet P, Kats MA, Antoniou N, Capasso F. Nanostructured holograms for broadband manipulation of vector beams. Nano Lett 2013;13:4269–74. PubMedCrossrefGoogle Scholar

[23]

Yifat Y, Eitan M, Iluz Z, Hanein Y, Boag A, Scheuer J. Highly efficient and broadband wide-angle holography using patch-dipole nanoantenna reflect arrays. Nano Lett 2014;14: 2485–90. CrossrefGoogle Scholar

[24]

Chen WT, Yang KY, Wang CM, Huang YW, Sun G, Chiang ID, Liao CY, Hsu WL, Lin HT, Sun S, Zhou L, Liu AQ, Tsai DP. High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Lett 2014;14:225–30. CrossrefPubMedGoogle Scholar

[25]

Zheng G, Mühlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S. Metasurface holograms reaching 80% efficiency. Nat Nano 2014;10:308–12. Google Scholar

[26]

Scheuer J, Yifat Y. Holography: metasurfaces make it practical. Nat Nano 2015;10:296–8. CrossrefGoogle Scholar

[27]

Wen D, Yue F, Li G, Zheng G, Chan K, Chen S, Chen M, Li KF, Wong PWH, Cheah KW, Pun EYB, Zhang S, Chen X. Helicity multiplexed broadband metasurface holograms. Nat Commun 2015;6:8241. PubMedCrossrefGoogle Scholar

[28]

Wen D, Chen S, Yue F, Chan K, Chen M, Ardron M, Li KF, Wong PWH, Cheah KW, Pun EYB, Li G, Zhang S, Chen X. Metasurface device with helicity-dependent functionality. Adv Opt Mater 2016;2:321–7. Google Scholar

[29]

Kim J, Li Y, Miskiewicz MN, Oh C, Kudenov MW, Escuti MJ. Fabrication of ideal geometric-phase holograms with arbitrary wavefronts. Optica 2015;2:958–64. CrossrefGoogle Scholar

[30]

Zhao W, Liu B, Jiang H, Song J, Pei Y, Jiang Y. Full-color hologram using spatial multiplexing of dielectric metasurface. Opt Lett 2016;41:147–50. PubMedCrossrefGoogle Scholar

[31]

Bomzon Z, Biener G, Kleiner V, Hasman E. Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings. Opt Lett 2002;27:1141–3. CrossrefPubMedGoogle Scholar

[32]

Goodman JW. Introduction to fourier optics, 2^{nd} ed. New York, USA: McGraw-Hill, 1998. Google Scholar

[33]

Sun S, Yang KY, Wang CM, Juan TK, Chen WT, Liao CY, He Q, Xiao S, Kung WT, Guo GY, Zhou L, Tsai DP. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett 2012;12:6223–9. CrossrefPubMedGoogle Scholar

[34]

Egorov V, Eitan M, Scheuer J. High resolution efficient dielectric metasurface. Lasers and Electro-Optics (CLEO), 2016 Conference on 5–10 June 2016, 2016. pp. 1–2. Google Scholar

[35]

Svirko Y, Zheludev N, Osipov M. Layered chiral metallic microstructures with inductive coupling. Appl Phys Lett 2001;78:498–500. CrossrefGoogle Scholar

[36]

Blanchard R, Aoust G, Genevet P, Yu N, Kats MA, Gaburro Z, Capasso F. Modeling nanoscale V-shaped antennas for the design of optical phased arrays. Phys Rev B 2012;85:155457. CrossrefGoogle Scholar

[37]

Kats MA, Genevet P, Aoust G, Yu N, Blanchard R, Aieta F, Gaburro Z, Capasso F. Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy. Proc Natl Acad Sci USA 2012;109:12364–8. CrossrefGoogle Scholar

[38]

Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat Mater 2011;11:426–31. Google Scholar

[39]

Monticone F, Estakhri NM, Alù A. Full control of nanoscale optical transmission with a composite metascreen. Phys Rev Lett 2013;110:203903. PubMedCrossrefGoogle Scholar

[40]

Pfeiffer C, Grbic A. Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets. Phys Rev Lett 2013;110:197401. PubMedCrossrefGoogle Scholar

[41]

Aieta F, Genevet P, Kats MA, Yu N, Blanchard R, Gaburro Z, Capasso F. Aberration-free ultra-thin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett 2012;12:4932–6. CrossrefGoogle Scholar

[42]

Aieta F, Genevet P, Kats M, Capasso F. Aberrations of flat lenses and aplanatic metasurfaces. Opt Express 2013;21:31530. PubMedCrossrefGoogle Scholar

[43]

Memarzadeh B, Mosallaei H. Array of planar plasmonic scatterers functioning as light concentrator. Opt Lett 2011;36:2569–71. PubMedCrossrefGoogle Scholar

[44]

Yu N, Blanchard R, Fan J, Edamura T, Yamanishi M, Kan H, Capasso F. Small divergence semiconductor lasers with two-dimensional plasmonic collimators. Appl Phys Lett 2008;93:181101. CrossrefGoogle Scholar

[45]

Yu N , Blanchard R, Fan J, Wang QJ, Pflügl C, Diehl L, Edamura T, Yamanishi M, Kan H, Capasso F. Quantum cascade lasers with integrated plasmonic antenna-array collimators. Opt Express 2008;16:19447–61. PubMedCrossrefGoogle Scholar

[46]

Yu N, Aieta F, Genevet P, Kats MA, Gaburro, Capasso F. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett 2012;12:6328–33. PubMedCrossrefGoogle Scholar

[47]

Huang L, Chen X, Mühlenbernd H, Li G, Bai B, Tan Q, Jin G, Zentgraf T, Zhang S. Dispersionless phase discontinuities for controlling light propagation. Nano Lett 2012;12:5750–5. CrossrefPubMedGoogle Scholar

[48]

Zhan Q. Cylindrical vector beams: from mathematical concepts to applications. Adv Opt Photon 2009;1:1–57. CrossrefGoogle Scholar

[49]

Ghadyani Z, Vartiainen I, Harder I, Iff W, Berger A, Lindlein N, Kuittinen M. Concentric ring metal grating for generating radially polarized light. Appl Opt 2011;50:2451–7. PubMedCrossrefGoogle Scholar

[50]

Pfeiffer C, Emani NK, Shaltout AM, Boltasseva A, Shalaev VM, Grbic A. Efficient light bending with isotropic metamaterial Huygens’ surfaces. Nano Lett 2014;14:2491–7. CrossrefPubMedGoogle Scholar

[51]

Eitan M, Iluz Z, Yifat Y, Boag A, Hanein Y, Scheuer J. Degeneracy breaking of Wood’s anomaly for enhanced refractive index sensing. ACS Photon 2015;2:615–21. CrossrefGoogle Scholar

[52]

Montelongo Y, Tenorio-Pear JO, Milne WI, Wilkinson TD. Polarization switchable diffraction based on subwavelength plasmonic nanoantennas. Nano Lett 2014;14:294–8. CrossrefPubMedGoogle Scholar

[53]

Farmahini-Farahani M, Mosallaei H. Birefringent reflectarray metasurface for beam engineering in infrared. Opt Lett 2013;38:462–4. CrossrefPubMedGoogle Scholar

[54]

Pors A, Nielsen MG, Eriksen RL, Bozhevolnyi SI. Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. Nano Lett 2013;13:829–34. CrossrefPubMedGoogle Scholar

[55]

Pancharatnam S. Generalized theory of interference and its applications. Proc Indian Acad Sci A 1956;44:398–417. Google Scholar

[56]

Berry MV. Quantal phase-factors accompanying adiabatic changes. Proc R Soc Lond A 1984;392:45–57. CrossrefGoogle Scholar

[57]

Zhan Q, Leger JR. Interferometric measurement of the geometric phase in space-variant polarization manipulations. Opt Comm 2002;213:241–5. CrossrefGoogle Scholar

[58]

Kang M, Chen J, Wang XL, Wang HT. Twisted vector field from an inhomogeneous and anisotropic metamaterial. J Opt Soc Am B 2012;29:572–6. CrossrefGoogle Scholar

[59]

Kang M, Feng T, Wang HT, Li J. Wave front engineering from an array of thin aperture antennas. Opt Exp 2012;20:15882–90. CrossrefGoogle Scholar

[60]

Shitrit N, Bretner I, Gorodetski Y, Kleiner V, Hasman E. Optical spin Hall effects in plasmonic chains. Nano Lett 2011;11:2038–42. PubMedCrossrefGoogle Scholar

[61]

Yifat Y, Iluz Z, Eitan M, Friedler I, Hanein Y, Boag A, Scheuer J. Quantifying the radiation efficiency of nano antennas. Appl Phys Lett 2012;100:111113. CrossrefGoogle Scholar

[62]

Yifat Y, Iluz Z, Bar-Lev D, Eitan M, Hanein Y, Boag A, Scheuer J. High load sensitivity in wideband infrared dual-Vivaldi nanoantennas. Opt Lett 2013;38:205–7. CrossrefPubMedGoogle Scholar

[63]

Bomzon Z, Kleiner V, Hasman E. Pancharatnam–Berry phase in space-variant polarization-state manipulations with subwavelength gratings. Opt Lett 2001;18:1424–6. Google Scholar

[64]

Yirmiyahu Y, Niv A, Biener G, Kleiner V, Hasman E. Vectorial vortex mode transformation for a hollow waveguide using Pancharatnam–Berry phase optical elements. Opt Lett 2006;22:3252–4. Google Scholar

[65]

Lin D, Fan P, Hasman E, Brongersma ML. Dielectric gradient metasurface optical elements. Science 2014;345:298–302. PubMedCrossrefGoogle Scholar

[66]

Novotny L, Hecht N. Principles of nano-optics. New York, USA: Cambridge University Press, 2006. Google Scholar

[67]

Love AEH. The integration of the equations of propagation of electric waves. Philos Trans R Soc A 1901;68:19–21. Google Scholar

[68]

Schelkunoff SA. Some equivalence theorems of electromagnetics and their application to radiation problems. Bell Syst Tech J 1936;15:92–112. CrossrefGoogle Scholar

[69]

Evlyukhin AB, Reinhardt C, Seidel A, Luk’yanchuk BS, Chichkov BN. Optical response features of Si-nanoparticle arrays. Phys Rev B 2010;82:045404. CrossrefGoogle Scholar

[70]

Popa BI, Cummer SA. Compact dielectric particles as a building block for low-loss magnetic metamaterials. Phys Rev Lett 2008;100:207401. PubMedCrossrefGoogle Scholar

[71]

Garcia-Extarri A, Gómez-Medina R, Froufe-Pérez LS, López C, Chantada L, Scheffold F, Aizpurua J, Nieto-Vesperinas M, Sáenz JJ. Strong magnetic response of submicron silicon particles in the infrared. Opt Express 2011;19:4815–26. PubMedCrossrefGoogle Scholar

[72]

Kuznetsov AI, Miroshnichenko AE, Fu YH, Zhang J, Luk’yanchuk B. Magnetic light. Sci Rep 2012;2:492. PubMedCrossrefGoogle Scholar

[73]

Evlyukhin AB. Novikov SM, Zywietz U, Eriksen RL, Reinhardt C, Bozhevolnyi SI, Chichkov BN. Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region. Nano Lett 2012;12:3749–55. CrossrefPubMedGoogle Scholar

[74]

Shi L, Tuzer TU, Fenollosa R, Meseguer F. A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: silicon colloid nanocavities. Adv Mater 2012;24:5934–8. CrossrefPubMedGoogle Scholar

[75]

Ginn JC, Brener I, Peters DW, Wendt JR, Stevens JO, Hines PF. Basilio LI. Warne LK. Ihlefeld JF. Clem PG, Sinclair MB. Realizing optical magnetism from dielectric metamaterials. Phys Rev Lett 2012;108:097402. CrossrefPubMedGoogle Scholar

[76]

Kerker M, Wang DS, Giles CL. Electromagnetic scattering by magnetic spheres. J Opt Soc Am 1983;73:765–7. CrossrefGoogle Scholar

[77]

Bohren CF, Huffman DR. Absorption and scattering of light by small particles. New York: John Wiley & Sons Inc, 1983. Google Scholar

[78]

Fu YH, Kuznetsov AI, Miroshnichenko AE, Yu YF, Luk’yanchuk B. Directional visible light scattering by silicon nanoparticles. Nat Commun 2013;4:1527. PubMedCrossrefGoogle Scholar

[79]

Shi L, Harris JT, Fenollosa R, Rodriguez I, Lu X, Korgel BA, Meseguer F. Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region. Nat Commun 2013;4:1904. CrossrefPubMedGoogle Scholar

[80]

Cheng J, Ansari-Oghol-Beig D, Mosallaei H. Wave manipulation with designer dielectric metasurfaces. Opt Lett 2014;39:6285–8. PubMedCrossrefGoogle Scholar

[81]

Staude I, Miroshnichenko AE, Decker M, Fofang NT, Liu S, Gonzales E, Dominguez J, Luk TS, Neshev DN, Brener I, Kivshar Y. Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. ACS Nano 2013;7:7824–32. PubMedCrossrefGoogle Scholar

[82]

Decker M, Staude I, Falkner M, Dominguez J, Neshev DN, Brener I, Pertsch T, Kivshar Y. High-efficiency dielectric Huygens’ surfaces. Adv Opt Mater 2015;3:813–20. CrossrefGoogle Scholar

[83]

Shalaev MI, Sun J, Tsukernik A, Pandey A, Nikolskiy K, Litchinitser NM. High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode. Nano Lett 2015;15:6261–6. PubMedCrossrefGoogle Scholar

[84]

Yu YF, Zhu AY, Paniagua-Domínguez R, Fu YH, Luk’yanchuk B, Kuznetsov AI. High-transmission dielectric metasurface with 2 phase control at visible wavelengths. Laser Photon Rev 2015;9:412–8. CrossrefGoogle Scholar

[85]

Arbabi A, Briggs RM, Horie Y, Bagheri M, Faraon A. Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers. Opt Express 2015;23:33310–7. CrossrefPubMedGoogle Scholar

[86]

Lawrence N, Trevino J, Dal Negro L. Aperiodic arrays of active nanopillars for radiation engineering. J Appl Phys 2012;111:113101. CrossrefGoogle Scholar

[87]

Chong KE, Staude I, James A, Dominguez J, Liu S, Campione S, Subramania GS, Luk TS, Decker M, Neshev DN, Brener I, Kivshar YS. Polarization independent silicon metadevices for efficient optical wavefront control. Nano Lett 2015;15:5369–74. CrossrefPubMedGoogle Scholar

[88]

Yang Y, Wang W, Moitra P, Kravchenko II, Briggs DP, Valentine J. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett 2014;14:1394–9. CrossrefPubMedGoogle Scholar

[89]

Arbabi A, Horie Y, Bagheri M, Faraon A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat Nano 2015;10:937–43. CrossrefGoogle Scholar

[90]

Prodan E, Radloff C, Halas BJ, Nordlander P. A hybridization model for the plasmon response of complex nanostructures. Science 2003;302:419–22. CrossrefPubMedGoogle Scholar

[91]

Stutzman WL, Thiele GA. Antenna Theory and Design, 2^{nd} ed. New Jersey, USA: Wiley, 1998. Google Scholar

[92]

Hesseling C, Woerdemann M, Hermerschmidt A, Denz C. Controlling ghost traps in holographic optical tweezers. Opt Lett 2011;36:3657–9. PubMedCrossrefGoogle Scholar

[93]

Aieta F, Kats MA, Genevet P, Capasso F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 2015;347:1342–5. PubMedCrossrefGoogle Scholar

[94]

Kalvach A, Szabó Z. Aberration-free flat lens design for a wide range of incident angles. J Opt Soc Am B 2016;33:A66–71. CrossrefGoogle Scholar

[95]

Shiloh R, Remez R, Arie A. Prospects for electron beam aberration correction using sculpted phase masks. Ultramicroscopy 2016;163:69–74. CrossrefPubMedGoogle Scholar

[96]

Kang S, Joe HE, Kim J, Jeong Y, Min BK, Oh K. Subwavelength plasmonic lens patterned on a composite optical fiber facet for quasi-one-dimensional Bessel beam generation. Appl Phys Lett 2011;98:241103. CrossrefGoogle Scholar

[97]

Smythe EJ, Dickey MD, Whitesides GM, Capasso F. A technique to transfer metallic nanoscale patterns to small and non-planar surfaces. ACS Nano 2009;3:59–65. CrossrefPubMedGoogle Scholar

[98]

Yua X, Yong D, Zhang H, Li H, Zhang Y, Chan CC, Ho HP, Liu H, Liu D. Plasmonic enhanced fluorescence spectroscopy using side-polished microstructured optical fiber. Sens Act B 2011;160:196–201. CrossrefGoogle Scholar

[99]

Smythe EJ, Dickey MD, Bao J, Whitesides GM, Capasso F. Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection. Nano Lett 2009;9:1132–8. CrossrefPubMedGoogle Scholar

[100]

Lipomi DJ, Martinez RV, Kats MA, Kang SH, Kim P, Aizenberg J, Capasso F, Whitesides GM. Patterning the tips of optical fibers with metallic nanostructures using nanoskiving. Nano Lett 2011;11:632–6. CrossrefPubMedGoogle Scholar

[101]

Lee N, Roh S, Park J. Current status of micro- and nano-structured optical fiber sensors. Opt Fiber Technol 2009;15:209–21. CrossrefGoogle Scholar

[102]

Yu N, Wang QJ, Kats MA, Fan JA, Khanna SP, Li L, Davies AG, Linfield EH, Capasso F. Designer spoof-surface-plasmon structures collimate terahertz laser beams. Nat Mater 2010;9:730–5. CrossrefPubMedGoogle Scholar

[103]

Yu N, Wang QJ, Kats M, Fan JA, Capasso F, Khanna SP, Li L, Davies AG, Linfield EH. Terahertz plasmonics. Electron Lett 2010;46:s52–7. CrossrefGoogle Scholar

[104]

Streyer W, Law S, Rooney G, Jacobs T, Wasserman D. Strong absorption and selective emission from engineered metals with dielectric coatings. Opt Express 2013;21:9113–22. CrossrefPubMedGoogle Scholar

[105]

Mason JA, Smith S, Wasserman D. Strong absorption and selective thermal emission from a midinfrared metamaterial. Appl Phys Lett 2011;98:241105. CrossrefGoogle Scholar

[106]

Falcone F, Lopetegi T, Laso MAG, Baena JD, Bonache J, Beruete M, Marqués R, Martín F, Sorolla M. Babinet principle applied to the design of metasurfaces and metamaterials. Phys Rev Lett 2004;93:197401. CrossrefPubMedGoogle Scholar

[107]

Born N, Reuter M, Koch M, Scheller M. High-Q terahertz bandpass filters based on coherently interfering metasurface reflections. Opt Lett 2013;38:908–10. PubMedCrossrefGoogle Scholar

[108]

Jansen C, Al-Naib IAI, Born N, Koch M. Terahertz metasurfaces with high Q-factors. Appl Phys Lett 2011;98:051109. CrossrefGoogle Scholar

[109]

Jiang NH, Yun S, Lin L, Bossard JA, Werner DH, Mayer TS. Tailoring dispersion for broadband low-loss optical metamaterials using deep-subwavelength inclusions. Sci Rep 2013;3:1571. CrossrefPubMedGoogle Scholar

[110]

Shitrit N, Yulevich I, Maguid E, Ozeri D, Veksler D, Kleiner V, Hasman E. Spin-optical metamaterial route to spin-controlled photonics. Science 2013;340:724–6. PubMedCrossrefGoogle Scholar

[111]

Gorodetski Y, Shitrit N, Bretner I, Kleiner V, Hasman E. Observation of optical spin symmetry breaking in nanoapertures. Nano Lett 2009;9:3016–9. CrossrefPubMedGoogle Scholar

[112]

Segal N, Keren-Zur S, Hendler N, Ellenbogen T. Controlling light with metamaterial-based nonlinear photonic crystals. Nat Photon 2015;9:180–4. CrossrefGoogle Scholar

[113]

Klein MW, Enkrich C, Wegener M, Linden S. Second-harmonic generation from magnetic metamaterials. Science 2006;313:502–4. PubMedCrossrefGoogle Scholar

[114]

Shadrivov IV, Zharov AA, Kivshar YS. Second-harmonic generation in nonlinear left-handed metamaterials. J Opt Soc Am B 2006;23:529–34. CrossrefGoogle Scholar

[115]

Husu H, Siikanen R, Mäkitalo J, Lehtolahti J, Laukkanen J, Kuittinen M, Kauranen M. Metamaterials with tailored nonlinear optical response. Nano Lett 2012;12:673–7. CrossrefPubMedGoogle Scholar

[116]

Ciracì C, Poutrina W, Scalora M, Smith DR. Origin of second-harmonic generation enhancement in optical split-ring resonators. Phys Rev B 2012;85:201403. CrossrefGoogle Scholar

[117]

Kauranen M, Zayats AV. Nonlinear plasmonics. Nat Photon 2012;6:737–48. CrossrefGoogle Scholar

[118]

Salomon A, Zielinski M, Kolkowski R, Zyss J, Prior Y. Size and shape resonances in second harmonic generation from silver nanocavities. J Phys Chem C 2013;117:22377–82. CrossrefGoogle Scholar

[119]

Bar-Lev D, Scheuer J. Efficient second harmonic generation using nonlinear substrates patterned by nano-antenna arrays. Opt Express 2013;21:29165–78. PubMedCrossrefGoogle Scholar

[120]

Smith SJ, Purcell EM. Visible light from localized surface charges moving across a grating. Phys Rev 1953;92:1069. CrossrefGoogle Scholar

[121]

Andriyash IA, Lehe R, Lifschitz A, Thaury C, Rax JM, Krushelnick K, Malka V. An ultracompact X-ray source based on a laser-plasma undulator. Nat Commun 2014;5:4736. CrossrefPubMedGoogle Scholar

[122]

Corde S, Ta Phuoc K, Lambert G, Fitour R, Malka V, Rousse A, Beck A, Lefebvre E. Femtosecond x rays from laser-plasma accelerators. Rev Mod Phys 2013;85:1–48. CrossrefGoogle Scholar

[123]

Saldin E, Schneidmiller EV, Yurkov MV. The physics of free electron lasers (advanced texts in physics). Berlin Heidelberg New-York: Springer, 2000. Google Scholar

[124]

Plettner T, Lu PP, Byer RL. Proposed few-optical cycle laser-driven particle accelerator structure. Phys Rev ST Accel Beams 2006;9:111301. CrossrefGoogle Scholar

[125]

Peralta EA, Soong K, England RJ, Colby ER, Wu Z, Montazeri B, McGuinness C, McNeur J, Leedle KJ, Walz D, Sozer EB, Cowan B, Schwartz B, Travish G, Byer RL. Demonstration of electron acceleration in a laser-driven dielectric microstructure. Nature 2013;503:91–4. CrossrefGoogle Scholar

[126]

Bar-Lev D, Scheuer J. Plasmonic metasurface for efficient ultrashort pulse laser-driven particle acceleration. Phys Rev ST Accel Beams 2014;17:121302. CrossrefGoogle Scholar

[127]

Sun J, Timurdogan E, Yaacobi A, Hosseini ES, Watts MR. Large-scale nanophotonic phased array. Nature 2013;493:195–9. CrossrefPubMedGoogle Scholar

[128]

Zheludev NI. Obtaining optical properties on demand. Science 2015;348:973–4. CrossrefPubMedGoogle Scholar

[129]

Murray WA, Auguié B, Barnes BL. Sensitivity of localized surface plasmon resonances to bulk and local changes in the optical environment. J Phys Chem C 2009;113:5120–5. CrossrefGoogle Scholar

[130]

Kats MA, Blanchard R, Genevet P, Yang Z, Qazilbash MM, Basov DN, Ramanathan S, Capasso F. Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material. Opt Lett 2013;38:368–70. PubMedCrossrefGoogle Scholar

[131]

Ou JY, Plum E, Jiang L, Zheludev NI. Reconfigurable photonic metamaterials. Nano Lett 2011;11:2142–4. PubMedCrossrefGoogle Scholar

[132]

Ou JY, Plum E, Zhang L, Zheludev NI. An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared. Nature Nanotech 2013;8:252–5. CrossrefGoogle Scholar

[133]

Wang X, Belyanin AA, Crooker SA, Mittleman DM, Kono J. Interference-induced terahertz transparency in a magneto-plasma in a semiconductor. Nat Phys 2010;6:126–30. Google Scholar

[134]

Valente J, Ou JY, Plum E, Youngs IJ, Zheludev NI. A magneto-electrooptical effect in plasmonic nanowire material. Nat Commun 2015;6:7021. CrossrefPubMedGoogle Scholar

[135]

Chen HT, Padilla WJ, Zide JMO, Gossard AC, Taylor AJ, Averitt RD. Active terahertz metamaterial devices. Nature 2006;444:597–600. CrossrefPubMedGoogle Scholar

[136]

Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel HA, Liang X, Zettl A, Shen YR, Wang F. Graphene plasmonics for tunable terahertz metamaterials. Nat Nano 2011;6:630–4. CrossrefGoogle Scholar

[137]

Vakil A, Engheta N. Transformation optics using graphene. Science 2011;332:1291–4. PubMedCrossrefGoogle Scholar

[138]

Fallahi A., Perruisseau-Carrier J. Design of tunable biperiodic graphene metasurfaces. Phys Rev B 2012;86:195408. CrossrefGoogle Scholar

[139]

Carrasco E, Tamagnone M, Perruisseau-Carrier J. Tunable graphene reflective cells for THz reflectarrays and generalized law of reflection. Appl Phys Lett 2013;102:104103. CrossrefGoogle Scholar

[140]

Yao Y, Kats MA, Genevet P, Yu N, Song Y, Kong J, Capasso F. Broad electrical tuning of graphene-loaded plasmonic antennas. Nano Lett 2013;13:1257–64. CrossrefPubMedGoogle Scholar

[141]

Li Z, Yu N. Modulation of mid-infrared light using graphene-metal plasmonic antennas. Appl Phys Lett 2013;102:131108. CrossrefGoogle Scholar

[142]

Fang Z, Thongrattanasiri S, Schlather A, Liu Z, Ma L, Wang Y, Ajayan PM, Nordlander P, Halas NJ, García de Abajo FJ. Gated tunability and hybridization of localized plasmons in nanostructured graphene. ACS Nano 2013;7:2388–95. CrossrefPubMedGoogle Scholar

[143]

Ren X, Wei EI, Choy WCH. Tuning optical responses of metallic dipole nanoantenna using graphene. Opt Express 2013;21:31824–9. CrossrefPubMedGoogle Scholar

[144]

Huang C, Bouhelier A, Berthelot J, des-Francs GC, Finot E, Weeber JC, Dereux A, Kostcheev S, Baudrion AL, Plain J, Bachelot R, Royer P, Wiederrecht GP. External control of the scattering properties of a single optical nanoantenna. Appl Phys Lett 2010;96:143116. CrossrefGoogle Scholar

[145]

Gu J, Singh R, Liu X, Zhang X, Ma Y, Zhang S, Maier SA, Tian Z, Azad AK, Chen HT, Taylor AJ, Han J, Zhang W. Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat Commun 2012;3:1151. PubMedCrossrefGoogle Scholar

[146]

Shadrivov IV, Kapitanova PV, Maslovski SI, Kivshar YS. Metamaterials controlled with light. Phys Rev Lett 2012;109:083902. PubMedCrossrefGoogle Scholar

[147]

Pryce IM, Aydin K, Kelaita YA, Briggs RM, Atwater HA. Highly strained compliant optical metamaterials with large frequency tunability. Nano Lett 2010;10:4222–7. PubMedCrossrefGoogle Scholar

[148]

Lapine M, Shadrivov IV, Powell DA, Kivshar YS. Magnetoelastic metamaterials. Nat Mater 2012;11:30–3. Google Scholar

[149]

Tao H, Strikwerda AC, Fan K, Padilla WJ, Zhang X, Averitt RD. Reconfigurable terahertz metamaterials. Phys Rev Lett 2009;103:147401. PubMedCrossrefGoogle Scholar

[150]

Abb M, Albella P, Aizpurua J, Muskens OL. All-optical control of a single plasmonic nanoantenna-ITO hybrid. Nano Lett 2011;11:2457–63. CrossrefPubMedGoogle Scholar

[151]

Kats MA, Sharma D, Lin J, Genevet P, Blanchard R, Yang Z, Qazilbash MM, Basov DN, Ramanathan S, Capasso F. Ultra-thin perfect absorber employing a tunable phase change material. Appl Phys Lett 2012;101:221101. CrossrefGoogle Scholar

[152]

Kaplan G, Aydin K, Scheuer J. Dynamically controlled plasmonic nano-antenna phased array utilizing vanadium dioxide. Opt Mater Express 2014;5:2513–24. Google Scholar

[153]

Qazilbash M, Brehm M, Chae BG, Ho PC, Andreev GO, Kim BJ, Yun SJ, Balatsky AV, Maple MB, Keilmann F, Kim HT, Basov DN. Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging. Science 2007;318:1750–3. PubMedCrossrefGoogle Scholar

[154]

Gholipour B, Zhang J, Macdonald KF, Hewak DW, Zheludev NI. An all-optical, non-volatile, bidirectional, phase-change meta-switch. Adv Mater 2013;25:3050–4. PubMedCrossrefGoogle Scholar

[155]

Driscoll T, Kim HT, Chae BG, Kim BJ, Lee YW, Marie Jokerst N, Palit S, Smith DR, Di Ventra M, Basov DN. Memory metamaterials. Science 2009;325:1518–21. CrossrefPubMedGoogle Scholar

[156]

Michel AKU, Chigrin DN, Maß TWW, Schönauer K, Salinga M, Wuttig M, Taubner T. Using low-loss phase-change materials for mid-infrared antenna resonance tuning. Nano Lett 2013;13:3470–5. CrossrefPubMedGoogle Scholar

[157]

Dicken MJ, Aydin K, Pryce IM, Sweatlock LA, Boyd EM, Walavalkar S, Ma J, Atwater HA. Frequency tunable near-infrared metamaterials based on VO_{2} phase transition. Opt Express 2009;17:18330–9. CrossrefPubMedGoogle Scholar

[158]

Papaioannou M, Plum E, Valente J, Rogers E, Zheludev NI. Two-dimensional control of light with light on metasurfaces. Light Sci Appl 2016;5:e16070. CrossrefGoogle Scholar

[159]

Wang Q, Rogers ETF, Gholipour B, Wang CM, Yuan G, Teng J, Zheludev NI. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat Photon 2016;10:60–5. Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.