[1]

Chen L, Lipson M Ultra-low capacitance and high speed germanium photodetectors on silicon. Optics Express 2009, 17, 7901–7906. CrossrefPubMedGoogle Scholar

[2]

Reed G, Mashanovich G, Gardes FY, Thomson DJ Silicon optical modulators Nature photonics 2010, 4, 518–526. CrossrefGoogle Scholar

[3]

Gunn C, CMOS photonics for high-speed interconnects IEEE Proc Comput Sci 2006, 26, 58–66 Google Scholar

[4]

Hsieh I-W, Xiaogang C, Xiaoping L, Dadap J, Panoiu N, Chou C, Xia F, Green WM, Vlasov YA, Osgood RM, Supercontinuum generation in silicon photonic wires Optics express 2007, 15, 15242–15249. Google Scholar

[5]

Foster MA, Turner AC, Salem R, Lipson M, Gaeta AL Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides Optics Express 2007, 15, 12949–12958. Google Scholar

[6]

Li F, Pelusi M, Xu DX, Densmore A, Ma R, Janz S, Moss DJ Error-free all-optical demultiplexing at 160Gb/s via FWM in a silicon nanowire Optics Express 2010, 18, 3905–3910. Google Scholar

[7]

Dinu M, Quochi F, Garcia H Third-order nonlinearities in silicon at telecom wavelengths Applied Physics Letters 2003, 82, 2954–2956. Google Scholar

[8]

Bristow AD, Rotenberg N, Van Driel HM Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm Appl. phys. Let 2007, 90, 191104. Google Scholar

[9]

Boyd RW Nonlinear optics, Academic press, 2003. Google Scholar

[10]

Agrawal GP Nonlinear Fiber Optics, Academic press, 1995. Google Scholar

[11]

Gai X, Madden S, Choi DY, Bulla D, Luther-Davies B Dispersion engineered Ge _{11.5}As 24 Se 64.5 nanowires with a nonlinear parameter of 136 W^{−1} m^{−1} at 1550 nm Optics express 2010,18, 18866–18874. Google Scholar

[12]

Osgood RM Jr., Panoiu NC, Dadap J, Liu X, Chen X, Hsieh IW, Dulkeith E, Green WM, Vlasov YA Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion engineered silicon nanophotonic wires Adv. Opt. Photon. 2009, 1, 162–235. Google Scholar

[13]

Tan DTH, Ikeda K, Sun PC, Fainman Y Group velocity dispersion and self phase modulation in silicon nitride waveguides Appl. Phys. Lett. 2010, 96, 061101–061103. Google Scholar

[14]

Moss DJ, Morandotti R, Gaeta AL, Lipson M New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics Nat. Photonics 2013,7, 597–607. CrossrefGoogle Scholar

[15]

Liu X, Green WMJ, Chen X, Hsieh IW, Dadap JI, Vlasov YA, Osgood RM Jr. Conformal dielectric overlayers for engineering dispersion and effective nonlinearity of silicon nanophotonic wires Optics letters 2008, 33, 2889–2891. Google Scholar

[16]

Foster MA, Salem R, Geraghty DF, Turner-Foster AC, Lipson M, Gaeta AL Silicon-chip-based ultrafast optical oscilloscope Nature 2008, 456, 81–84.Google Scholar

[17]

Lau RKW, Ménard M, Okawachi Y, Foster MA, Turner-Foster AC, Salem R, Lipson M, Gaeta AL Continuous-wave mid-infrared frequency conversion in silicon nanowaveguides Optics letters 2011, 36, 1263–1265. Google Scholar

[18]

Peterka P, Kaňka J, Honzátko P, Káčik D Measurement of chromatic dispersion of microstructure optical fibers using interferometric method Opt. Appl 2008, 38, 295–303. Google Scholar

[19]

Leo F, Dave U, Keyvaninia S, Kuyken B, Roelkens G Measurement and tuning of the chromatic dispersion of a silicon photonic wire around the half band gap spectral region Optics Letters 2014, 39, 711–714. Google Scholar

[20]

Dudley JM, Genty G, Coen S Supercontinuum generation in photonic crystal fiber Reviews of Modern Physics 2006, 78, 1135. Google Scholar

[21]

Husakou, A. V., and J. Herrmann. "Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers." Physical Review Letters 87, no. 20 (2001):203901. PubMedCrossrefGoogle Scholar

[22]

Kano H, Hamaguchi H Dispersion-compensated supercontinuum generation for ultrabroadband multiplex coherent anti-Stokes Raman scattering spectroscopy Journal of Raman Spectroscopy 2006, 37, 411–415. Google Scholar

[23]

Humbert G, Wadsworth W., Leon-Saval S, Knight J, BirkT, Russell P, Lederer L, Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre Optics Express 2006, 14, 1596-1603. Google Scholar

[24]

Halir R, Okawachi Y, Levy JS, Foster MA, Lipson M, Gaeta AL Ultrabroadband supercontinuum generation in a CMOS-compatible platform Optics Letters 2012, 37, 1685–1687. Google Scholar

[25]

Yu Y, Gai X, Wang T, Ma P, Wang R, Yang Z, Choi DY, Madden S, Luther-Davies B Mid-infrared supercontinuum generation in chalcogenides Optical Materials Express 2013, 3, 1075–1086. Google Scholar

[26]

Leo F, Gorza SP, Coen S, Kuyken B, Roelkens G Coherent supercontinuum generation in a silicon photonic wire in the telecommunication wavelength range Optics Letters 2015, 40, 123-126. Google Scholar

[27]

Gu X, Kimmel M, Shreenath A, Trebino R, Dudley J, Coen S, Windeler R Experimental studies of the coherence of microstructure-fiber supercontinuum Optics Express 2003, 11, 2697–2703. Google Scholar

[28]

Levy J, Gondarenko A, Foster MA, Turner-Foster AC, Gaeta AL, Lipson M CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects Nature Photonics 2010, 4, 37–40.Google Scholar

[29]

Okawachi Y, Saha K, Levy JS, Wen H, Lipson M, Gaeta AL Octave-spanning frequency comb generation in a silicon nitride chip Optics Letters 2011, 36, 3398–3400. Google Scholar

[30]

Razzari L, Duchesne D, Ferrera M, Morandotti R, Chu S, Little BE, Moss DJ CMOS-compatible integrated optical hyper-parametric oscillator Nature Photonics 2010, 4, 41–45.Google Scholar

[31]

Herr T, Hartinger K, Riemensberger J, Wang CY, Gavartin E, Holzwarth R, Gorodetsky ML, Kippenberg TJ Universal formation dynamics and noise of Kerr-frequency combs in microresonators Nature Photonics 2012, 6, 480–487. Google Scholar

[32]

Street R, Hydrogenated amorphous silicon, Cambridge University Press, 2005. Google Scholar

[33]

Kuyken B, Ji H, Clemmen S, Selvaraja SK, Hu H, Pu M, Galili M Nonlinear properties of and nonlinear processingin hydro-genated amorphous silicon waveguides Optics Express 2011, 19, B146–B153. CrossrefGoogle Scholar

[34]

Narayanan K, Preble SF Optical nonlinearities in hydrogenated-amorphous silicon waveguides Optics Express 2010, 18, 8998-9005. Google Scholar

[35]

Shoji Y, Ogasawara T, Kamei T, Sakakibara Y, Suda S, Kintaka K, Kawashima K, Okano, Hasama T, Google Scholar

[36]

Wang KY, Foster AC Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides Optics Letters 2012, 37, 1331–1333. Google Scholar

[37]

Grillet C, Carletti L, Monat C, Grosse P, Bakir B, Menezo S, Fedeli JM, Moss DJ Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability Optics Express 2012, 20, 22609–22615. Google Scholar

[38]

Kuyken B, Clemmen S, Kumar S, Bogaerts W, Van Thourhout D, Emplit P, Massar S, Roelkens G, Baets R On-chip parametric amplification with 26.5 dB gain at telecommunication wave-lengths using CMOS-compatible hydrogenated amorphous silicon waveguides Optics Letters 2011, 36, 552–554. Google Scholar

[39]

Foster M, Turner AC, Sharping J, Schmidt B, Lipson M, Gaeta AL Broad-band optical parametric gain on a silicon photonic chip Nature 2006, 441, 960–963. Google Scholar

[40]

Ji H, Pu M, Hu H, Galili M, Oxenlrwe LK, Yvind K, Hvam JM, Jeppesen P Optical Waveform Sampling and Error-free Demultiplexing of 1.28 Tbit/s Serial Data in a Nano-engineered Silicon Waveguide J. Lightwave Technol. 2011, 29, 426–431. Google Scholar

[41]

Crandall RS Defect relaxation in amorphous silicon: Stretched exponentials, the Meyer-Neldel rule, and the Staebler-Wronski effect Physical Review B 1991, 43, 4057. Google Scholar

[42]

Fritzsche H, Development in understanding and controlling the Staebler-Wronski effect in a-Si: H Annual Review of Materials Research 2001, 31, 47–79.Google Scholar

[43]

Staebler DL, Wronski CR Reversible conductivity changes in discharge-produced amorphous Si Applied Physics Letters 1977, 31, 292-294. Google Scholar

[44]

Dave UD, Uvin S, Kuyken B, Selvaraja S, Leo F, Roelkens G Telecom to mid-infrared spanning supercontinuum generation in hydrogenated amorphous silicon waveguides using a Thulium doped fiber laser pump source Optics Express 2013, 21, 32032–32039. Google Scholar

[45]

Safioui J, Leo F, Kuyken B, Gorza SP, Selvaraja S, Baets R, Emplit P, Roelkens G, Massar S Supercontinuum generation in hydrogenated amorphous silicon waveguides at telecommunication wavelengths Optics Express 2014, 22, 3089–3097. Google Scholar

[46]

Wang KY, Velev VG, Fook K, Kowligy AS, Kumar P, Foster MA, Foster AC, Ping Y Multichannel photon-pair generation using hydrogenated amorphous silicon waveguides Optics letters 2014, 39, 914–917. Google Scholar

[47]

S. Clemmen, A. Perret, S. K. Selvaraja, W. Bogaerts, D. van Thourhout, R. Baets, Ph. Emplit, and S. Massar, Generation of correlated photons in hydrogenated amorphous-silicon waveguide, Optics Letters 2010, 35, 3483–3485. CrossrefGoogle Scholar

[48]

Wathen J, Vincent RP, Suess R, Wang KY, Foster AC, Murphy TE Non-instantaneous optical nonlinearity of an a-Si: H nanowire waveguide Optics Express 2014, 22, 22730–22742. Google Scholar

[49]

Yokoyama H, Tsubokawa H, Guo H, Shikata J, Sato K, Takashima K, Kashiwagi K, Saito N, Taniguchi H, Ito H Twophoton bioimaging utilizing supercontinuum light generated by a high-peak-power picosecond semiconductor laser source J. Biomed. 2007,12, 054015–054019. Google Scholar

[50]

Ishida S, Nishizawa N, Ohta T, Itoh K Ultrahigh-Resolution Optical Coherence Tomography in 1.7 µm Region with Fiber Laser Supercontinuum in Low-Water-Absorption Samples Appl. Phys. Exp. 2011, 4, 052501. Google Scholar

[51]

Mikami H, Shiozawa M, Shirai M, Watanabe K Compact light source for ultrabroadband coherent anti-Stoke Raman scattering (CARS) microscopy Opt. Exp. 2015, 23, 2872–2878. Google Scholar

[52]

Haolan Z, Kuyken B, Clemmen S, Leo F, Subramanian A, Dhakal A, Helin P Visible-to-near-infrared octave spanning supercontinuum generation in a silicon nitride waveguide Optics Letters 2015, 40, 2177–2180. Google Scholar

[53]

Lorenzo P, Lockwood DJ Silicon photonics 2004, Springer Science & Business Media. Google Scholar

[54]

De Vos K, Bartolozzi I, Schacht E, Bienstman P, Baets R Silicon-on-Insulator microring resonator for sensitive and label-free biosensing Optics Express 2007, 15, 7610–7615. Google Scholar

[55]

Robinson J, Chen L, Lipson M On-chip gas detection in silicon optical microcavities.” Optics Express 2008, 16, 4296-4301. PubMedCrossrefGoogle Scholar

[56]

Raghunathan V, Borlaug D, Rice RR, Jalali B Demonstration of a mid-infrared silicon Raman amplifier Optics Express 2007, 15, 14355–14362. Google Scholar

[57]

Kuyken B, Liu X, Osgood RM Jr, Baets R, Roelkens G, Green WMJ Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides Optics Express 2011, 19, 20172-20181. Google Scholar

[58]

Kuyken B, Liu X, Roelkens G, Baets R, Osgood RM Jr, Green WMJ 50 dB parametric on-chip gain in silicon photonic wires Optics letters 2011, 36, 4401-4403. Google Scholar

[59]

Kovacevi M, Acampora A Benefits of wavelength translation in all-optical clear-channel networks IEEE Journal of Selected Areas in Communications 1996, 14, 868-880. Google Scholar

[60]

Midwinter JE, Warner J Up-Conversion of Near Infrared to Visible Radiation in Lithium-meta-Niobate Journal of Applied Physics 1967, 38, 519–523.Google Scholar

[61]

Buchter KDF, Herrmann H, Langrock C, Fejer M, Sohler W Alloptical Ti:PPLN wavelength conversion modules for free-space optical transmission links in the mid-infrared. Optics Letters 2009, 34,470–472.Google Scholar

[62]

Dam JS, Pedersen C, Tidemand-Lichtenberg P High-resolution two-dimensional image upconversion of incoherent light Optics Letters 2010, 35, 3796–3798. Google Scholar

[63]

Liu, Xiaoping, Bart Kuyken, Gunther Roelkens, Roel Baets, Richard M. Osgood Jr, and William MJ Green. “Bridging the mid-infrared-to-telecom gap with silicon nanophotonic spectral translation.” Nature Photonics 6, no.10 (2012): 667–671. CrossrefGoogle Scholar

[64]

Gholami F, Kuo B, Zlatanovic S, Alic N, Radic S Phase-preserving parametric wavelength conversion to SWIR band in highly nonlinear dispersion stabilized fiber Optics Express 2013, 21, 11415–11424. Google Scholar

[65]

Kuyken B, Verheyen P, Tannouri P, Liu X, Van Campenhout J, Baets R, Green WMJ, Roelkens G Generation of 3.6 µm radiation and telecom-band amplification by four-wave mixing in a silicon waveguide with normal group velocity dispersion Optics Letters 2014, 39, 1349–1352. Google Scholar

[66]

Kuyken B, Ideguchi T, Holzner S, Yan M, Hansch TW, Van Campenhout J, Verheyen P, Coen S, Leo F, Baets R, Roelkens G, N. Picque An octave spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide Nat. Commun. 2015, 6, 6310. Google Scholar

[67]

Wang KY, Foster MA, Foster AC Wavelength-agile near-IR optical parametric oscillator using a deposited silicon waveguide Optics Express 2015, 23, 15431–15439. Google Scholar

[68]

Kuyken, Bart, Xiaoping Liu, Richard M. Osgood, Roel Baets, Günther Roelkens, and William MJ Green. “A silicon-based widely tunable short-wave infrared optical parametric oscillator.” Optics express 21, no. 5 (2013): 5931–5940. CrossrefGoogle Scholar

[69]

Jacobsen R, Andersen KN, Borel P, Fage-Pedersen J, Frandsen L, Hansen O, Kristensen M Strained silicon as a new electrooptic material Nature 2006, 441, 199–202. Google Scholar

[70]

Cazzanelli M, Bianco F, Borga E, Pucker G, Ghulinyan M, Degoli E, Luppi E Second-harmonic generation in silicon waveguides strained by silicon nitride Nature materials 2012, 11, 148–154. Google Scholar

[71]

Shin H, Qiu W, Jarecki R, Cox JA, Olsson RH, Starbuck A, Wang Z, Rakich PT Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides Nature communications 2013, 4. Google Scholar

[72]

Van Laer R, Kuyken B, Van Thourhout D, Baets R Interaction between light and highly confined hypersound in a silicon photonic nanowire Nature Photonics 2015, 9, 199–203. Google Scholar

[73]

Van Laer et al. Net gain in a silicon photonic waveguide, to be published Google Scholar

[74]

Casas-Bedoya A, Morrison B, Pagani M, Marpaung D, Eggleton BJ Tunable narrowband microwave photonic filter created by stimulated Brillouin scattering from a Silicon nanowire arXiv preprint arXiv:1506.07637 (2015). Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.