[1]

Munk BA. *Frequency selective surfaces: theory and design*. John Wiley and Sons, 2000. Google Scholar

[2]

Huang J. *Reflectarray antenna*. John Wiley and Sons, 2005.Google Scholar

[3]

Kuester EF, Mohamed M, Piket-May M, Holloway CL. Averaged transition conditions for electromagnetic fields at a metafilm. IEEE Trans Antennas Propag 2003; 51: 2641-51. CrossrefGoogle Scholar

[4]

Holloway CL, Dienstfrey A, Kuester EF, O’Hara JF, Azad AK, Taylor AJ. A discussion on the interpretation and characterization of metafilms/metasurfaces: The two-dimensional equivalent of metamaterials. Metamaterials 2009; 3: 100-12. CrossrefGoogle Scholar

[5]

Holloway CL, Kuester EF, Dienstfrey A. Characterizing metasurfaces/metafilms: The connection between surface susceptibilities and effective material properties. IEEE Antenn Wireless Propag Lett 2011;10:1507-11.CrossrefGoogle Scholar

[6]

Holloway CL, Love DC, Kuester EF, Gordon J, Hill D. Use of generalized sheet transition conditions to model guided waves on metasurfaces/metafilms. IEEE Trans Antennas Propag 2012; 60: 5173-86. CrossrefGoogle Scholar

[7]

Smith DR, Padilla WJ, Vier DC, Nemat-Nasser SC, Schultz S. Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett 2000; 84: 4184. PubMedCrossrefGoogle Scholar

[8]

Fang N, Lee H, Sun C, Zhang X. Sub–diffraction-limited optical imaging with a silver superlens. Science 2005; 308: 534-7. CrossrefPubMedGoogle Scholar

[9]

Engheta N, Salandrino A. Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations. Phys Rev B 2006; 74: 075103.CrossrefGoogle Scholar

[10]

Jacob Z, Alekseyev LV, Narimanov E. Optical hyperlens: far-field imaging beyond the diffraction limit. Opt Express 2006; 14: 8247-56. CrossrefPubMedGoogle Scholar

[11]

Leonhardt U. Optical conformal mapping. Science 2006; 312: 1777-80. PubMedCrossrefGoogle Scholar

[12]

Pendry JB, Schurig D, Smith DR. Controlling electromagnetic fields. Science 2006; 312: 1780-2. PubMedCrossrefGoogle Scholar

[13]

Schurig D, Mock J, Justice B, Cummer SA, Pendry JB, Starr A, Smith D. Metamaterial electromagnetic cloak at microwave frequencies. Science 2006; 314: 977-80. CrossrefPubMedGoogle Scholar

[14]

Chen H, Chan C, Sheng P. Transformation optics and metamaterials. Nat Mater 2010; 9: 387-96.CrossrefPubMedGoogle Scholar

[15]

Datta S, Chan CT, Ho KM, Soukoulis CM. Effective dielectric constant of periodic composite structures. Phys Rev B 1993; 48: 14936. CrossrefGoogle Scholar

[16]

Smith D, Schultz S, Markoš P, Soukoulis C. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys Rev B 2002; 65: 195104.CrossrefGoogle Scholar

[17]

Sjöberg D. Dispersive effective material parameters. Microw Opt Technol Lett 2006; 48: 2629-32.CrossrefGoogle Scholar

[18]

Simovski C. Material parameters of metamaterials (a review). Opt Spectrosc 2009; 107: 726-53.CrossrefGoogle Scholar

[19]

Alů A. First-principles homogenization theory for periodic metamaterials. Phys Rev B 2011; 84: 075153. CrossrefGoogle Scholar

[20]

Bomzon Ze, Kleiner V, Hasman E. Computer-generated space-variant polarization elements with subwavelength metal stripes. Opt Lett 2001; 26: 33-5. CrossrefPubMedGoogle Scholar

[21]

Bomzon Ze, Kleiner V, Hasman E. Pancharatnam-Berry phase in space-variant polarization state manipulations with subwavelength gratings. Opt Lett 2001; 26: 1424-26.CrossrefPubMedGoogle Scholar

[22]

Biener G, Niv A, Kleiner V, Hasman E. Formation of helical beams by use of Pancharatnam-Berry phase optical elements. Opt Lett 2002; 27: 1875-77.CrossrefPubMedGoogle Scholar

[23]

Hasman E, Kleiner V, Biener G, Niv A. Polarization dependent focusing lens by use of quantized Pancharatnam-Berry phase diffractive optics. Appl Phys Lett 2003; 82: 328-30.CrossrefGoogle Scholar

[24]

Yu N, Genevet P, Kats MA, Aieta F, Tetienne J-P, Capasso F, Gaburro Z. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 2011; 334: 333-7. CrossrefPubMedGoogle Scholar

[25]

Zhao Y, Alu A. Manipulating light polarization with ultrathin plasmonic metasurfaces. Phys Rev B 2011; 84: 205428.CrossrefGoogle Scholar

[26]

Ni X, Emani NK, Kildishev AV, Boltasseva A, Shalaev VM. Broadband light bending with plasmonic nanoantennas. Science 2012; 335: 427.CrossrefPubMedGoogle Scholar

[27]

Kildishev AV, Boltasseva A, Shalaev VM. Planar photonics with metasurfaces. Science 2013; 339: 1232009.CrossrefPubMedGoogle Scholar

[28]

Lin D, Fan P, Hasman E, Brongersma ML. Dielectric gradient metasurface optical elements. Science 2014; 345: 298-302. PubMedCrossrefGoogle Scholar

[29]

Yu N, Capasso F. Flat optics with designer metasurfaces. Nat Mater 2014; 13: 139-50. PubMedCrossrefGoogle Scholar

[30]

Achouri K, Salem M, Caloz C. General metasurface synthesis based on susceptibility tensors. IEEE Trans Antennas Propag 2014; 63: 2977-91. Google Scholar

[31]

Genevet P, Yu N, Aieta F, Lin J, Kats MA, Blanchard R, Scully MO, Gaburro Z, Capasso F. Ultra-thin plasmonic optical vortex plate based on phase discontinuities. Appl Phys Lett 2012; 100: 013101. CrossrefGoogle Scholar

[32]

Tetienne J, Blanchard R, Yu N, Genevet P, Kats M, Fan J, Edamura T, Furuta S, Yamanishi M, Capasso F. Dipolar modeling and experimental demonstration of multi-beam plasmonic collimators. New J Phys 2011; 13: 053057. CrossrefGoogle Scholar

[33]

Yu N, Aieta F, Genevet P, Kats MA, Gaburro Z, Capasso F. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett 2012; 12: 6328-33. PubMedCrossrefGoogle Scholar

[34]

Aieta F, Genevet P, Kats MA, Yu N, Blanchard R, Gaburro Z, Capasso F. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett 2012; 12: 4932-6. CrossrefPubMedGoogle Scholar

[35]

Ni X, Ishii S, Kildishev AV, Shalaev VM. Ultra-thin, planar, Babinet-inverted plasmonic metalenses. Light Sci Appl 2013;2:e72. CrossrefGoogle Scholar

[36]

Genevet P, Capasso F. Holographic optical metasurfaces: a review of current progress. Reports on Rep Prog Phys 2015; 78: 024401. CrossrefGoogle Scholar

[37]

Huang K, Liu H, Garcia-Vidal FJ, Hong M, Luk’yanchuk B, Teng J, Qiu CW. Ultrahigh-capacity non-periodic photon sieves operating in visible light. Nat Commun 2015; 6: 7059.PubMedCrossrefGoogle Scholar

[38]

Scheuer J, Yifat Y. Holography: Metasurfaces make it practical. Nat Nanotechnol 2015; 10: 296-8. CrossrefGoogle Scholar

[39]

Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L. Gradient-index metasurfaces as a bridge linking propagating waves and surface waves. Nat Mater 2012; 11: 426-31. CrossrefGoogle Scholar

[40]

Huang L, Chen X, Mühlenbernd H, Zhang H, Chen S, Bai B, Tan Q, Jin G, Cheah K-W, Qiu CW. Three-dimensional optical holography using a plasmonic metasurface. Nat Commun 2013; 4: 2808.Google Scholar

[41]

Genevet P, Wintz D, Ambrosio A, She A, Blanchard R, Capasso F. Controlled steering of Cherenkov surface plasmon wakes with a one-dimensional metamaterial. Nat Nanotechnol 2015; 10: 804-9. CrossrefPubMedGoogle Scholar

[42]

Engheta N. Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science 2007; 317: 1698-1702. PubMedCrossrefGoogle Scholar

[43]

Alů A, Engheta N. All optical metamaterial circuit board at the nanoscale. Phys Rev Lett 2009; 103: 143902.CrossrefPubMedGoogle Scholar

[44]

Sun Y, Edwards B, Alů A, Engheta N. Experimental realization of optical lumped nanocircuits at infrared wavelengths. Nat Mater 2012; 11: 208-12. CrossrefPubMedGoogle Scholar

[45]

Cai W, Chettiar UK, Kildishev AV, Shalaev VM. Optical cloaking with metamaterials. Nat Photon 2007; 1: 224-7. CrossrefGoogle Scholar

[46]

Alu A, Engheta N. Plasmonic and metamaterial cloaking: physical mechanisms and potentials. J Opt 2008; 10: 093002.Google Scholar

[47]

Chen PY, Alů A. Mantle cloaking using thin patterned metasurfaces. Phys Rev B 2011; 84: 205110.CrossrefGoogle Scholar

[48]

Zhao Y, Liu X-X, Alů A. Recent advances on optical metasurfaces. J Opt 2014; 16: 123001. Google Scholar

[49]

Vahala KJ. Optical microcavities. Nature 2003; 424: 839-46. Google Scholar

[50]

Lipson A, Lipson SG, Lipson H. *Optical physics (4*^{th} ed.). Cambridge University Press 2010. Google Scholar

[51]

Yamamoto Y, Slusher RE. Optical processes in microcavities, in *Confined Electrons and Photons*, New York: Springer 1995:871-8. Google Scholar

[52]

Armani AM, Kulkarni RP, Fraser SE, Flagan RC, Vahala KJ. Label-free, single-molecule detection with optical microcavities. Science 2007; 317: 783-7.CrossrefPubMedGoogle Scholar

[53]

Del’Haye P, Schliesser A, Arcizet O, Wilken T, Holzwarth R, Kippenberg T. Optical frequency comb generation from a monolithic microresonator. Nature 2007; 450: 1214-7.CrossrefPubMedGoogle Scholar

[54]

Skivesen N, Trtu A, Kristensen M, Kjems J, Frandsen LH, Borel PI. Photonic-crystal waveguide biosensor. Opt Express 2007; 15: 3169-76.PubMedCrossrefGoogle Scholar

[55]

Vollmer F, Arnold S. Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nat Methods 2008; 5: 591-6.PubMedCrossrefGoogle Scholar

[56]

Kippenberg TJ, Holzwarth R, Diddams S. Microresonator-based optical frequency combs. Science 2011; 332: 555-9. PubMedCrossrefGoogle Scholar

[57]

Maier SA, Atwater HA. Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures. J Appl Phys 2005; 98: 011101. CrossrefGoogle Scholar

[58]

Maier SA. *Plasmonics: fundamentals and applications*. Springer 2007. Google Scholar

[59]

Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML. Plasmonics for extreme light concentration and manipulation. Nat Mater 2010; 9: 193-204. PubMedCrossrefGoogle Scholar

[60]

Novotny L, Hecht B. *Principles of nano-optics*. Cambridge University Press 2012. Google Scholar

[61]

Tassin P, Koschny T, Kafesaki M, Soukoulis CM. A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics. Nat Photon 2012; 6: 259-64. CrossrefGoogle Scholar

[62]

Blaber MG, Arnold MD, Ford MJ. Designing materials for plasmonic systems: the alkali-noble intermetallics. J Phys Condens Matter 2010; 22: 095501. PubMedCrossrefGoogle Scholar

[63]

Blaber MG, Arnold MD, Ford MJ. A review of the optical properties of alloys and intermetallics for plasmonics. J Phys Condens Matter 2010; 22: 143201. CrossrefPubMedGoogle Scholar

[64]

Palik ED. *Handbook of optical constants of solids*. Academic press 1998. Google Scholar

[65]

High AA, Devlin RC, Dibos A, Polking M, Wild DS, Perczel J, de Leon NP, Lukin MD, Park H. Visible-frequency hyperbolic metasurface. Nature 2015; 522: 192-6. PubMedCrossrefGoogle Scholar

[66]

Feigenbaum E, Diest K, Atwater HA. Unity-order index change in transparent conducting oxides at visible frequencies. Nano Lett 2010; 10: 2111-6. PubMedCrossrefGoogle Scholar

[67]

Adachi S. *The Handbook on Optical Constants of Metals: In Tables and Figures*. Singapore: World Scientific, 2012. Google Scholar

[68]

Falkovsky L. Optical properties of graphene. J Phys Conf Ser 2008; 129: 012004. CrossrefGoogle Scholar

[69]

Jablan M, Buljan H, Soljačić M. Plasmonics in graphene at infrared frequencies. Phys Rev B 2009; 80: 245435. CrossrefGoogle Scholar

[70]

Naik GV, Schroeder JL, Ni X, Kildishev AV, Sands TD, Boltasseva A. Titanium nitride as a plasmonic material for visible and nearinfrared wavelengths. Opt Mater Express 2012; 2: 478-89. CrossrefGoogle Scholar

[71]

Guler U, Boltasseva A, Shalaev VM. Refractory plasmonics. Science 2014; 344: 263-4. CrossrefPubMedGoogle Scholar

[72]

Armani D, Kippenberg T, Spillane S, Vahala K. Ultra-high-Q toroid microcavity on a chip. Nature 2003; 421: 925-8. CrossrefPubMedGoogle Scholar

[73]

Grudinin IS, Matsko AB, Savchenkov AA, Strekalov D, Ilchenko VS, Maleki L. Ultra high Q crystalline microcavities. Opt Commun 2006; 265: 33-8. CrossrefGoogle Scholar

[74]

Zhao Y, Belkin M, Alů A. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers. Nat Commun 2012; 3: 870. CrossrefPubMedGoogle Scholar

[75]

West PR, Ishii S, Naik GV, Emani NK, Shalaev VM, Boltasseva A. Searching for better plasmonic materials. Laser Photon Rev 2014; 4: 795:808. Google Scholar

[76]

Boltasseva A, Atwater HA. Low-loss plasmonic metamaterials. Science 2011; 331: 290-1.CrossrefPubMedGoogle Scholar

[77]

Naik GV, Shalaev VM, Boltasseva A. Alternative plasmonic materials: beyond gold and silver. Adv Mater 2013; 25: 3264-94. CrossrefPubMedGoogle Scholar

[78]

Zheng G, Muhlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S. Metasurface holograms reaching 80% efficiency. Nat Nanotechnol 2015; 10: 308-12. CrossrefPubMedGoogle Scholar

[79]

Pancharatnam S. Generalized theory of interference, and its applications. Proc Ind Acad Sci A 1956; 44: 247-62. Google Scholar

[80]

Bomzon Ze, Biener G, Kleiner V, Hasman E. Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings. Opt Lett 2002; 27: 1141-3. CrossrefPubMedGoogle Scholar

[81]

Li G, Kang M, Chen S, Zhang S, Pun EY-B, Cheah KW, Li J. Spinenabled plasmonic metasurfaces for manipulating orbital angular momentum of light. Nano Lett 2013; 13: 4148-51.PubMedCrossrefGoogle Scholar

[82]

Yin X, Ye Z, Rho J, Wang Y, Zhang X. Photonic spin Hall effect at metasurfaces. Science 2013; 339: 1405-7. PubMedCrossrefGoogle Scholar

[83]

Yang Y, Wang W, Moitra P, Kravchenko II, Briggs DP, Valentine J. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett 2014; 14: 1394-9. CrossrefPubMedGoogle Scholar

[84]

Lee S-Y, Kim K, Kim S-J, Park H, Kim K-Y, Lee B. Plasmonic metaslit: shaping and controlling near-field focus. Optica 2015; 2: 6-13. CrossrefGoogle Scholar

[85]

Zhang S, Wei H, Hakanson U, Halas NJ, Nordlander P, Xu H. Chiral surface plasmon polaritons on metallic nanowires. Phys Rev Lett 2011; 107: 096801. PubMedCrossrefGoogle Scholar

[86]

Wu C, Burton Neuner I, Shvets G, John J, Milder A, Zollars B, Savoy S. Large-area wide-angle spectrally selective plasmonic absorber. Phys Rev B 2011; 84: 075102. CrossrefGoogle Scholar

[87]

Pors A, Nielsen MG, Eriksen RL, Bozhevolnyi SI. Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. Nano Lett 2013; 13: 829-34.PubMedCrossrefGoogle Scholar

[88]

Pors A, Nielsen MG, Bozhevolnyi SI. Broadband plasmonic half-wave plates in reflection. Opt Lett 2013; 38: 513-5. PubMedCrossrefGoogle Scholar

[89]

Pors A, Albrektsen O, Radko IP, Bozhevolnyi SI. Gap plasmon-based metasurfaces for total control of reflected light. Sci Rep 2013; 3: 02155. CrossrefGoogle Scholar

[90]

Engheta N, Saladrino A, Alů A. Circuit elements at optical frequencies: nano-inductor, nano-capacitor, and nano-resistor. Phys Rev Lett 2005; 95: 095504. CrossrefGoogle Scholar

[91]

Monticone F, Estakhri NM, Alů A. Full control of nanoscale optical transmission with a composite metascreen. Phys Rev Lett 2013; 110: 203903. Google Scholar

[92]

Pfeiffer C, Grbic A. Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets. Phys Rev Lett 2013; 110: 197401. CrossrefPubMedGoogle Scholar

[93]

Pfeiffer C, Zhang C, Ray V, Guo LJ, Grbic A. High performance bianisotropic metasurfaces: asymmetric transmission of light. Phys Rev Lett 2014; 113: 023902. PubMedCrossrefGoogle Scholar

[94]

Pfeiffer C, Emani NK, Shaltout AM, Boltasseva A, Shalaev VM, Grbic A. Efficient light bending with isotropic metamaterial huygens’ surfaces. Nano Lett 2014; 14: 2491-7. PubMedCrossrefGoogle Scholar

[95]

Evlyukhin AB, Reinhardt C, Seidel A, Luk’yanchuk BS, Chichkov BN. Optical response features of Si-nanoparticle arrays. Phys Rev B 2010; 82: 045404. CrossrefGoogle Scholar

[96]

García-Etxarri A, Gόmez-Medina R, Froufe-Pérez LS, Lόpez C, Chantada L, Scheffold F, Aizpurua J, Nieto-Vesperinas M, Sáenz JJ. Strong magnetic response of submicron silicon particles in the infrared. Opt Express 2011; 19: 4815-26.CrossrefPubMedGoogle Scholar

[97]

Evlyukhin AB, Novikov SM, Zywietz U, Eriksen RL, Reinhardt C, Bozhevolnyi SI, Chichkov BN. Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region. Nano Lett 2012; 12: 3749-55. PubMedCrossrefGoogle Scholar

[98]

Kuznetsov AI, Miroshnichenko AE, Fu YH, Zhang J, Luk’yanchuk B. Magnetic light. Sci Rep 2012; 2: 492. CrossrefPubMedGoogle Scholar

[99]

Swanson GJ. Binary optics technology: the theory and design of multi-level diffractive optical elements. MIT Lincoln Lab Technical Report 854, NTIS Publ. AD-A213-404, 1989. Google Scholar

[100]

Lalanne P, Astilean S, Chavel P, Cambril E, Launois H. Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff. J Opt Soc Am A 1999; 16: 1143-56. CrossrefGoogle Scholar

[101]

Fattal D, Li J, Peng Z, Fiorentino M, Beausoleil RG. Flat dielectric grating reflectors with focusing abilities. Nat Photon 2010; 4: 466-70. CrossrefGoogle Scholar

[102]

West PR, Stewart JL, Kildishev AV, Shalaev VM, Shkunov VV, Strohkendl F, Zakharenkov YA, Dodds RK, Byren R. All-dielectric subwavelength metasurface focusing lens. Opt Express 2014; 22: 26212-21. PubMedCrossrefGoogle Scholar

[103]

Levy U, Kim HC, Tsai C-H, Fainman Y. Near-infrared demonstration of computer-generated holograms implemented by using subwavelength gratings with space-variant orientation. Opt Lett 2005; 30: 2089-91. CrossrefPubMedGoogle Scholar

[104]

Mie G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. (Berlin) 1908; 330: 377-445. CrossrefGoogle Scholar

[105]

Lewin L. The electrical constants of a material loaded with spherical particles. J. Inst. Electr. Eng. 3 1947; 94: 65-8. Google Scholar

[106]

Kerker M, Wang DS, Giles C. Electromagnetic scattering by magnetic spheres. J Opt Soc Am 1983; 73: 765-7. CrossrefGoogle Scholar

[107]

Videen G, Bickel WS. Light-scattering resonances in small spheres. Phys Rev A 1992; 45: 6008. PubMedCrossrefGoogle Scholar

[108]

Cao L, White JS, Park JS, Schuller JA, Clemens BM, Brongersma ML. Engineering light absorption in semiconductor nanowire devices. Nat Mater 2009; 8: 643-7. CrossrefPubMedGoogle Scholar

[109]

Cao L, Fan P, Barnard ES, Brown AM, Brongersma ML. Tuning the color of silicon nanostructures. Nano Lett 2010; 10: 2649-54. PubMedCrossrefGoogle Scholar

[110]

Person S, Jain M, Lapin Z, Sáenz JJ, Wicks G, Novotny L. Demonstration of zero optical backscattering from single nanoparticles. Nano Lett 2013; 13: 1806-9. CrossrefPubMedGoogle Scholar

[111]

Ginn JC, Brener I, Peters DW, Wendt JR, Stevens JO, Hines PF, Basilio LI, Warne LK, Ihlefeld JF, Clem PG, Sinclair MB. Realizing optical magnetism from dielectric metamaterials. Phys Rev Lett 2012; 108: 097402. CrossrefPubMedGoogle Scholar

[112]

Geffrin JM, García-Cámara B, Gόmez-Medina R, Albella P, Froufe-Pérez L, Eyraud C, Litman A, Vaillon R, González F, Nieto-Vesperinas M. Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere. Nat Commun 2012; 3: 1171. CrossrefPubMedGoogle Scholar

[113]

Fu YH, Kuznetsov AI, Miroshnichenko AE, Yu YF, Luk’yanchuk B. Directional visible light scattering by silicon nanoparticles. Nature Commun 2013; 4: 1527. CrossrefGoogle Scholar

[114]

Evlyukhin AB, Reinhardt C, Chichkov BN. Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation. Phys Rev B 2011; 84: 235429. CrossrefGoogle Scholar

[115]

Staude I, Miroshnichenko AE, Decker M, Fofang NT, Liu S, Gonzales E, Dominguez J, Luk TS, Neshev DN, Brener I. Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. ACS Nano 2013; 7: 7824-32. CrossrefPubMedGoogle Scholar

[116]

Luk’yanchuk BS, Voshchinnikov NV, Paniagua-Domínguez R, Kuznetsov AI. Optimum forward light scattering by spherical and spheroidal dielectric nanoparticles with high refractive index. ACS Photon 2015; 2: 993-999. CrossrefGoogle Scholar

[117]

Decker M, Staude I, Falkner M, Dominguez J, Neshev DN, Brener I, Pertsch T, Kivshar YS. High-Efficiency Dielectric Huygens’ Surfaces. Adv Opt Mater 2015; 3: 813-20. CrossrefGoogle Scholar

[118]

Yu YF, Zhu AY, Paniagua-Domínguez R, Fu YH, Luk’yanchuk B, Kuznetsov AI. High-transmission dielectric metasurface with 2*π* phase control at visible wavelengths. Laser Photon Rev 2015; 9:412-418. CrossrefGoogle Scholar

[119]

Chong KE, Stuade I, James A, Dominguez J, Liu S, Campione S, Subramania GS, Luk TS, Decker M, Neshev DN, Brener I, Kivshar YS. Polarization-independent silicon metadevices for efficient optical wavefront control. Nano Lett 2015; 15: 5369-74. PubMedCrossrefGoogle Scholar

[120]

Shalaev MI, Sun J, Tsukernik A, Pandey A, Nikolskiy K, Litchinitser NM. High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode. Nano Lett 2015; 15: 6261-6. CrossrefPubMedGoogle Scholar

[121]

Arbabi A, Horie Y, Bagheri M, Faraon A. Dielectric metasurfaces for complete control of phase and polarization with sub-wavelength spatial resolution and high transmission. Nat Nanotechnol 2015; 10: 937-43. CrossrefGoogle Scholar

[122]

Arbabi A, Horie Y, Ball AJ, Bagheri M, Faraon A. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat Commun 2015; 6: 7069. PubMedCrossrefGoogle Scholar

[123]

Moitra P, Slovick BA, Yu ZG, Krishnamurthy S, Valentine J. Experimental demonstration of a broadband all-dielectric meta-material perfect reflector. Appl Phys Lett 2014; 104: 171102. CrossrefGoogle Scholar

[124]

Yang Y, Kravchenko II, Briggs DP, Valentine J. All-dielectric metasurface analogue of electromagnetically induced transparency. Nat Commun 2014; 5: 5753. CrossrefPubMedGoogle Scholar

[125]

Liu S, Sinclair MB, Mahony TS, Jun YC, Campione S, Ginn J, Bender DA, Wendt JR, Ihlefeld JF, Clem PG. Optical magnetic mirrors without metals. Optica 2014; 1: 250-6. CrossrefGoogle Scholar

[126]

Paniagua-Domínguez R, Yu YF, Miroshnichenko AE, Krivitsky LA, Fu YH, Valuckas V, Gonzaga L, Toh YT, Kay YSA, Luk’yanchuk B, Kuznetsov AI. Generalized Brewster effect in dielectric metasurfaces. Nat Commun 2015; 6: 10362. Google Scholar

[127]

Schuller JA, Zia R, Taubner T, Brongersma M. Dielectric meta-materials based on electric and magnetic resonances of silicon carbide particles. Phys Rev Lett 2008; 99: 107401. Google Scholar

[128]

Zheludev NI, Kivshar YS. From metamaterials to metadevices. Nat Mater 2012; 11: 917-24.PubMedCrossrefGoogle Scholar

[129]

Tao H, Strikwerda A, Fan K, Padilla W, Zhang X, Averitt R. Reconfigurable terahertz metamaterials. Phys Rev Lett 2009; 103: 147401. PubMedCrossrefGoogle Scholar

[130]

Zhu WM, Liu AQ, Zhang XM, Tsai DP, Bourouina T, Teng JH, Zhang XH, Guo HC, Tanoto H, Mei T. Switchable magnetic metamaterials using micromachining processes. Adv Mater 2011; 23: 1792-6.CrossrefPubMedGoogle Scholar

[131]

Ou JY, Plum E, Zhang J, Zheludev NI. An electromechanically reconfigurable plasmonic metamaterial operating in the nearinfrared. Nat Nanotechnol 2013; 8: 252-5. CrossrefGoogle Scholar

[132]

Chen HT, Padilla WJ, Zide JM, Gossard AC, Taylor AJ, Averitt RD. Active terahertz metamaterial devices. Nature 2006; 444: 597-600. PubMedCrossrefGoogle Scholar

[133]

Padilla WJ, Taylor AJ, Highstrete C, Lee M, Averitt RD. Dynamical electric and magnetic metamaterial response at terahertz frequencies. Phys Rev Lett 2006; 96: 107401.PubMedCrossrefGoogle Scholar

[134]

Yi F, Shim E, Zhu AY, Zhu H, Reed JC, Cubukcu E. Voltage tuning of plasmonic absorbers by indium tin oxide. Appl Phys Lett 2013; 102: 221102.CrossrefGoogle Scholar

[135]

Watts CM, Shrekenhamer D, Montoya J, Lipworth G, Hunt J, Sleasman T, Krishna S, Smith DR, Padilla WJ. Terahertz compressive imaging with metamaterial spatial light modulators. Nat Photon 2014.Google Scholar

[136]

Lee HW, Papadakis G, Burgos SP, Chander K, Kriesch A, Pala R, Peschel U, Atwater HA. Nanoscale Conducting Oxide Plas-MOStor. Nano Lett 2014; 14: 6463-8. CrossrefPubMedGoogle Scholar

[137]

Krasavin AV, Zheludev N. Active plasmonics: Controlling signals in Au/Ga waveguide using nanoscale structural transformations. Appl Phys Lett 2004; 84: 1416-8. CrossrefGoogle Scholar

[138]

Driscoll T, Kim HT, Chae B-G, Kim B-J, Lee Y-W, Jokerst NM, Palit S, Smith DR, Di Ventra M, Basov DN. Memory metamaterials. Science 2009; 325: 1518-21.PubMedCrossrefGoogle Scholar

[139]

Dicken MJ, Aydin K, Pryce IM, Sweatlock LA, Boyd EM, Walavalkar S, Ma J, Atwater HA. Frequency tunable nearinfrared metamaterials based on VO 2 phase transition. Opt Express 2009; 17: 18330-9.CrossrefGoogle Scholar

[140]

Samson Z, MacDonald K, De Angelis F, Gholipour B, Knight K, Huang C, Di Fabrizio E, Hewak D, Zheludev N. Metamaterial electro-optic switch of nanoscale thickness. Appl Phys Lett 2010; 96: 143105.CrossrefGoogle Scholar

[141]

Liu N, Tang ML, Hentschel M, Giessen H, Alivisatos AP. Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat Mater 2011; 10: 631-6.CrossrefGoogle Scholar

[142]

Kats MA, Sharma D, Lin J, Genevet P, Blanchard R, Yang Z, Qazilbash MM, Basov D, Ramanathan S, Capasso F. Ultra-thin perfect absorber employing a tunable phase change material. Appl Phys Lett 2012; 101: 221101.CrossrefGoogle Scholar

[143]

Kats MA, Blanchard R, Zhang S, Genevet P, Ko C, Ramanathan S, Capasso F. Vanadium dioxide as a natural disordered meta-material: perfect thermal emission and large broadband negative differential thermal emittance. Phys Rev X 2013; 3: 041004.Google Scholar

[144]

Strohfeldt N, Tittl A, Scha “ferling M, Neubrech F, Kreibig U, Griessen R, Giessen H. Yttrium hydride nanoantennas for active plasmonics. Nano Lett 2014; 14: 1140-7.PubMedCrossrefGoogle Scholar

[145]

Wang Q, Rogers ETF, Gholipour B, Wang CM, Yuan G, Teng JH, Zheludev NI. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat Photon 2016; 10: 60-6. Google Scholar

[146]

Zhao Q, Kang L, Du B, Li B, Zhou J, Tang H, Liang X, Zhang B. Electrically tunable negative permeability metamaterials based on nematic liquid crystals. Appl Phys Lett 2007; 90: 011112. CrossrefGoogle Scholar

[147]

Shrekenhamer D, Chen W-C, Padilla WJ. Liquid crystal tunable metamaterial absorber. Phys Rev Lett 2013; 110: 177403.PubMedCrossrefGoogle Scholar

[148]

Buchnev O, Podoliak N, Kaczmarek M, Zheludev NI, Fedotov VA. Electrically controlled nanostructured metasurface loaded with liquid crystal: toward multifunctional photonic switch. Adv Opt Mater 2015; 3: 674-9. CrossrefGoogle Scholar

[149]

Ziegler K. Robust transport properties in graphene. Phys Rev Lett 2006; 97: 266802. CrossrefPubMedGoogle Scholar

[150]

Geim AK, Novoselov KS. The rise of graphene. Nat Mater 2007; 6: 183-91.CrossrefPubMedGoogle Scholar

[151]

Neto AC, Guinea F, Peres N, Novoselov KS, Geim AK. The electronic properties of graphene. Rev Mod Phys 2009; 81: 109. CrossrefGoogle Scholar

[152]

Novoselov KS, Geim AK, Morozov S, Jiang D, Zhang Y, Dubonos Sa, Grigorieva I, Firsov A. Electric field effect in atomically thin carbon films. Science 2004; 306: 666-9. CrossrefPubMedGoogle Scholar

[153]

Yu YJ, Zhao Y, Ryu S, Brus LE, Kim KS, Kim P. Tuning the graphene work function by electric field effect. Nano Lett 2009; 9: 3430-4.CrossrefPubMedGoogle Scholar

[154]

Lin YM, Dimitrakopoulos C, Jenkins KA, Farmer DB, Chiu H-Y, Grill A, Avouris P. 100-GHz transistors from wafer-scale epitaxial graphene. Science 2010; 327: 662-. CrossrefPubMedGoogle Scholar

[155]

Luk’yanchuk IA, Kopelevich Y. Phase analysis of quantum oscillations in graphite. Phys Rev Lett 2004; 93: 166402. CrossrefPubMedGoogle Scholar

[156]

Wang F, Zhang Y, Tian C, Girit C, Zettl A, Crommie M, Shen YR. Gate-variable optical transitions in graphene. Science 2008; 320: 206-9.CrossrefPubMedGoogle Scholar

[157]

Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel HA, Liang X, Zettl A, Shen YR. Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotechnol 2011; 6: 630-4. PubMedCrossrefGoogle Scholar

[158]

Vakil A, Engheta N.Transformation optics using graphene. Science 2011; 332: 1291-4.CrossrefGoogle Scholar

[159]

Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M, Zhu W, Avouris P, Xia F. Tunable infrared plasmonic devices using graphene/insulator stacks. Nat Nanotechnol 2012; 7: 330-4.CrossrefPubMedGoogle Scholar

[160]

Fei Z, Rodin AS, Andreev GO, Bao W, McLeod AS, Wagner M, Zhang LM, Zhao Z, Thiemens M, Dominguez G, Fogler MM, Castro Neto AH, Lau CN, Keilmann F, Basov DN. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 2012; 487: 82-5.PubMedGoogle Scholar

[161]

Chen J, Badioli M, Alonso-Gonzalez P, Thongrattanasiri S, Huth F, Osmond J, Spasenovic M, Centeno A, Pesquera A, Godignon P, Elorza AZ, Camara N, Garcia de Abajo FJ, Hillenbrand R, Kop-pens FH. Optical nano-imaging of gate-tunable graphene plasmons. Nature 2012; 487: 77-81.PubMedGoogle Scholar

[162]

Yan H, Low T, Zhu W, Wu Y, Freitag M, Li X, Guinea F, Avouris P, Xia F. Damping pathways of mid-infrared plasmons in graphene nanostructures. Nat Photon 2013; 7: 394-9. CrossrefGoogle Scholar

[163]

Emani NK, Chung T-F, Ni X, Kildishev AV, Chen YP, Boltasseva A. Electrically tunable damping of plasmonic resonances with graphene. Nano Lett 2012; 12: 5202-6. CrossrefPubMedGoogle Scholar

[164]

Yao Y, Kats MA, Shankar R, Song Y, Kong J, Loncar M, Capasso F. Wide wavelength tuning of optical antennas on graphene with nanosecond response time. Nano Lett 2014; 14: 214-9. CrossrefPubMedGoogle Scholar

[165]

Mousavi SH, Kholmanov I, Alici KB, Purtseladze D, Arju N, Tatar K, Fozdar DY, Suk JW, Hao Y, Khanikaev AB. Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared. Nano Lett 2013; 13: 1111-7. CrossrefPubMedGoogle Scholar

[166]

Zhu AY, Yi F, Reed JC, Zhu H, Cubukcu E. Optoelectromechanical multimodal biosensor with graphene active region. Nano Lett 2014; 14: 5641-9. PubMedCrossrefGoogle Scholar

[167]

Fei Z, Rodin A, Andreev G, Bao W, McLeod A, Wagner M, Zhang L, Zhao Z, Thiemens M, Dominguez G. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 2012; 487: 82-5. PubMedGoogle Scholar

[168]

Grigorenko A, Polini M, Novoselov K. Graphene plasmonics. Nat Photon 2012; 6: 749-58. CrossrefGoogle Scholar

[169]

Koppens FH, Chang DE, Garcia de Abajo FJ. Graphene plasmonics: a platform for strong light–matter interactions. Nano Lett 2011; 11: 3370-7.PubMedCrossrefGoogle Scholar

[170]

Brar VW, Jang MS, Sherrott M, Lopez JJ, Atwater HA. Highly confined tunable mid-infrared plasmonics in graphene nanoresonators. Nano Lett 2013; 13: 2541-7. CrossrefPubMedGoogle Scholar

[171]

Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A. Two-dimensional material nanophotonics. Nat Photon 2014; 8: 899-907.CrossrefGoogle Scholar

[172]

Jang MS, Brar VW, Sherrott MC, Lopez JJ, Kim L, Kim S, Choi M, Atwater HA. Tunable large resonant absorption in a midinfrared graphene Salisbury screen. Phys Rev B 2014; 90: 165409.CrossrefGoogle Scholar

[173]

Stauber T. Plasmonics in Dirac systems: from graphene to topological insulators. J Phys Condens Matter 2014; 26: 123201. PubMedCrossrefGoogle Scholar

[174]

Thongrattanasiri S, Koppens FH, Garcia de Abajo FJ. Complete optical absorption in periodically patterned graphene. Phys Rev Lett 2012; 108: 047401. CrossrefPubMedGoogle Scholar

[175]

Yoon H, Yeung KY, Umansky V, Ham D. A Newtonian approach to extraordinarily strong negative refraction. Nature 2012; 488: 65-9. PubMedCrossrefGoogle Scholar

[176]

Andress WF, Yoon H, Yeung KY, Qin L, West K, Pfeiffer L, Ham D. Ultra-subwavelength two-dimensional plasmonic circuits. Nano Lett 2012; 12: 2272-7. CrossrefPubMedGoogle Scholar

[177]

Zhang L, Hao J, Qiu M, Zouhdi S, Yang JKW, Qiu CW. Anomalous behavior of nearly-entire visible band manipulated with degenerated image dipole array. Nanoscale 2014; 6: 12303. PubMedCrossrefGoogle Scholar

[178]

Fang Z, Wang Y, Schlather AE, Liu Z, Ajayan PM, García de Abajo FJ, Nordlander P, Zhu X, Halas NJ. Active tunable absorption enhancement with graphene nanodisk arrays. Nano Lett 2013; 14: 299-304. PubMedGoogle Scholar

[179]

Kumar K, Duan H, Hegde RS, Koh SCW, Wei JN, Yang JKW. Printing colour at the optical diffraction limit. Nat Nanotechnol 2012; 7: 557-61. PubMedCrossrefGoogle Scholar

[180]

Gu Y, Zhang L, Yang JKW, Yeo SP, Qiu CW. Color generation via subwavelength plasmonic nanostructures. Nanoscale 2015; 7: 6409.PubMedCrossrefGoogle Scholar

[181]

Tan SJ, Zhang L, Zhu D, Goh XM, Wang YM, Kumar K, Qiu CW, Yang JKW. Plasmonic color palettes for photorealistic printing with aluminum nanostructures. Nano Lett 2014; 14: 4023-9. CrossrefPubMedGoogle Scholar

[182]

Aieta F, Kats MA, Genevet P, Capasso F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 2015; 347: 1342-5. PubMedCrossrefGoogle Scholar

[183]

Khorasaninejad M, Aieta F, Kanhaiya P, Kats MA, Genevet P, Rousso D, Capasso F. Achromatic metasurface lens at telecommunication wavelengths. Nano Lett 2015; 15: 5358-62. PubMedCrossrefGoogle Scholar

[184]

Bakker RM, Permyakov D, Yu YF, Markovich D, Paniagua-Domínguez R, Gonzaga L, Samusev A, Kivshar YS, Luk’yanchuk B, Kuznetsov AI. Magnetic and electric hotspots with silicon nanodimers. Nano Lett 2015; 15: 2137-42. CrossrefPubMedGoogle Scholar

[185]

Hasan MZ, Kane CL. Colloquium: topological insulators. Rev Mod Phys 2010; 82: 3045. CrossrefGoogle Scholar

[186]

Kane CL, Mele EJ. Z 2 topological order and the quantum spin Hall effect. Phys Rev Lett 2005; 95: 146802. CrossrefGoogle Scholar

[187]

Hsieh D, Xia Y, Qian D, Wray L, Dil J, Meier F, Osterwalder J, Patthey L, Checkelsky J, Ong N. A tunable topological insulator in the spin helical Dirac transport regime. Nature 2009; 460: 1101-5. PubMedCrossrefGoogle Scholar

[188]

Zhang T, Cheng P, Chen X, Jia J-F, Ma X, He K, Wang L, Zhang H, Dai X, Fang Z. Experimental demonstration of topological surface states protected by time-reversal symmetry. Phys Rev Lett 2009; 103: 266803. PubMedCrossrefGoogle Scholar

[189]

Efimkin DK, Lozovik YE, Sokolik AA. Collective excitations on a surface of topological insulator. Nanoscale Res Lett 2012; 7: 1-10. Google Scholar

[190]

Raghu S, Chung SB, Qi X-L, Zhang S-C. Collective modes of a helical liquid. Phys Rev Lett 2010; 104: 116401. PubMedCrossrefGoogle Scholar

[191]

Shitrit N, Yulevich I, Maguid E, Ozeri D, Veksler D, Kleiner V, Hasman E. Spin-optical metamaterial route to spin-controlled photonics. Science 2013; 340: 724-6.CrossrefPubMedGoogle Scholar

[192]

Bliokh KY, Smirnova D, Nori F. Quantum spin Hall effect of light. Science 2015; 348: 1448-51. CrossrefPubMedGoogle Scholar

[193]

Wolf S, Awschalom D, Buhrman R, Daughton J, Von Molnar S, Roukes M, Chtchelkanova AY, Treger D. Spintronics: a spin-based electronics vision for the future. Science 2001; 294: 1488-95. CrossrefPubMedGoogle Scholar

[194]

žutić I, Fabian J, Sarma SD. Spintronics: Fundamentals and applications. Rev Mod Phys 2004; 76: 323. CrossrefGoogle Scholar

[195]

Liao ZM, Han B-H, Wu HC, Yashina L, Yan Y, Zhou YB, Bie YQ, Bozhko S, Fleischer K, Shvets I. Surface plasmon on topological insulator/dielectric interface enhanced ZnO ultraviolet photoluminescence. AIP Adv 2012; 2: 022105. CrossrefGoogle Scholar

[196]

Ou JY, So JK, Adamo G, Sulaev A, Wang L, Zheludev NI. Ultraviolet and visible range plasmonics in the topological insulator Bi_{1.5}Sb_{0.5}Te_{1.8}Se_{1.2}. Nat Commun 2014; 5: 5139. CrossrefPubMedGoogle Scholar

[197]

Di Pietro P, Ortolani M, Limaj O, Di Gaspare A, Giliberti V, Giorgianni F, Brahlek M, Bansal N, Koirala N, Oh S. Observation of Dirac plasmons in a topological insulator. Nat Nanotechnol 2013; 8: 556-60. CrossrefGoogle Scholar

[198]

Della Giovampaola C, Engheta N. Digital metamaterials. Nat Mater 2014; 13: 1115-21. CrossrefPubMedGoogle Scholar

[199]

Cui TJ, Qi MQ, Wan X, Zhao J, Cheng Q. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci Appl 2014;3:e218. CrossrefGoogle Scholar

[200]

Gao LH et al. Broadband diffusion of terahertz waves by multibit coding metasurfaces. Light Sci Appl 2015;4:e324. CrossrefGoogle Scholar

## Comments (0)