[1]

Ambs P. Optical computing: a 60-year adventure. Adv Opt Technol 2010;2010:1–15. Google Scholar

[2]

Athale R, Psaltis D. Optical computing: past and future. Optics Photonics News June 2016;27:32–9. CrossrefGoogle Scholar

[3]

Touch J, Willner AE. Native digital processing for optical networking. In: Third International Conference on Future Generation Communication Technologies (FGCT 2014), Luton, 2014, pp. 14–18. doi: 10.1109/FGCT.2014.6933232. CrossrefGoogle Scholar

[4]

Kirkpatrick K. Software-defined networking. Commun ACM 2013;56:16–9. CrossrefGoogle Scholar

[5]

Kreutz D, Ramos FMV, VerÃssimo PE, Rothenberg CE, Azodolmolky S, Uhlig S. Software-defined networking: a comprehensive survey. Proc IEEE 2015;103:14–76. CrossrefGoogle Scholar

[6]

Davis TJ. Plasmonics: the convergence between optics and electronics. In: Proc. SPIE 8923, Micro/Nano Materials, Devices, and Systems, 89232R, December 7, 2013. doi: 10.1117/12.2044696. CrossrefGoogle Scholar

[7]

Tucker RS. The role of optics in computing. Nat Photon 2010;4:405. CrossrefGoogle Scholar

[8]

Maier SA. Plasmonics: Fundamentals and Applications. USA, Springer, 2007. Google Scholar

[9]

Raether H. Surface plasma oscillations and their applications. In: Hass G, Francombe MH, Hoffman RW, editors, Physics of Thin Films. New York, USA, Academic Press, 1977;9:145–261. Google Scholar

[10]

Oulton R, Sorger V, Genov D, Pile D, Zhang X. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat Photon 2008;2:496–500. CrossrefGoogle Scholar

[11]

Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 2006;311:189–93. CrossrefGoogle Scholar

[12]

Sohler W, De La Rue R. Integrated optics – from single photon sources to complex photonic circuits. Laser Photonics Rev 2012;6:A5–6. CrossrefGoogle Scholar

[13]

Barnes W, Dereux A, Ebbesen T. Surface plasmon subwavelength optics. Nature 2003;424:824–30. CrossrefGoogle Scholar

[14]

Han Z, Bozhevolnyi SI. Radiation guiding with surface plasmon polaritons. Rep Prog Phys 2013;76:016402. CrossrefGoogle Scholar

[15]

Maier S, Atwater H. Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J Appl Phys 2005;98:011101. CrossrefGoogle Scholar

[16]

Polman A, Atwater H. Plasmonics: optics at the nanoscale. Mater Today 2005;8:56. CrossrefGoogle Scholar

[17]

Smith CLC, Stenger N, Kristensen A, Mortensen NA, Bozhevolnyi SI. Gap and channeled plasmons in tapered grooves: a review. Nanoscale 2015;7:9355–86. CrossrefGoogle Scholar

[18]

Sorger VJ, Oulton RF, Ma R, Zhang X. Toward integrated plasmonic circuits. MRS Bull 2012;37:728–38. CrossrefGoogle Scholar

[19]

Stockman M. Nanoplasmonics: past, present, and glimpse into future. Opt Express 2011;19:22029–106. CrossrefGoogle Scholar

[20]

Zayats A, Smolyaninov I, Maradudin A. Nano-optics of surface plasmon polaritons. Phys Rep 2005;408:131–314. CrossrefGoogle Scholar

[21]

Bouhelier A, Huser T, Tamaru H, et al. Plasmon optics of structured silver films. Phys Rev B 2001;63:155404. CrossrefGoogle Scholar

[22]

Davis T. Surface plasmon modes in multi-layer thin-films. Opt Commun 2009;282:135–40. CrossrefGoogle Scholar

[23]

Willets KA, Duyne RPV. Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 2007;58:267–7. CrossrefGoogle Scholar

[24]

Davis T, Gómez D, Vernon K. Simple model for the hybridization of surface plasmon resonances in metallic nanoparticles. Nano Lett 2010;10:2618–25. CrossrefGoogle Scholar

[25]

Kou SS, Yuan G, Wang Q, et al. On-chip photonic fourier transform with surface plasmon polaritons. Light Sci Appl 2016;5:e16034. CrossrefGoogle Scholar

[26]

Lu C, Hu X, Yang H, Gong Q. All-optical logic binary encoder based on asymmetric plasmonic nanogrooves. Appl Phys Lett 2013;103:121107. CrossrefGoogle Scholar

[27]

Lu C, Hu X, Yang H, Gong Q. Integrated all-optical logic discriminators based on plasmonic bandgap engineering. Sci Rep 2013;3:2778. CrossrefGoogle Scholar

[28]

Lu C, Liu Y, Hu X, Yang H, Gong Q. Integrated ultracompact and broadband wavelength demultiplexer based on multi-component nano-cavities. Sci Rep 2016;6:27428. CrossrefGoogle Scholar

[29]

Devaux E, Ebbesen T, Weeber J, Dereux A. Launching and decoupling surface plasmons via micro-gratings. Appl Phys Lett 2003;83:4936–8. CrossrefGoogle Scholar

[30]

Bozhevolnyi SI, Volkov VS, Devaux E, Laluet J, Ebbesen TW. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 2006;440:508–11. CrossrefGoogle Scholar

[31]

Brongersma M, Zia R, Schuller J. Plasmonics – the missing link between nanoelectronics and microphotonics. Appl Phys A 2007;89:221–3. CrossrefGoogle Scholar

[32]

Gramotnev D, Bozhevolnyi S. Plasmonics beyond the diffraction limit. Nat Photon 2010;4:83–91. CrossrefGoogle Scholar

[33]

Berini P. Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures. Phys Rev B 2000;61:10484–503. CrossrefGoogle Scholar

[34]

Berini P. Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures. Phys Rev B 2001;63:1254171–15. CrossrefGoogle Scholar

[35]

Berini P, Charbonneau R, Lahoud N, Mattiussi G. Characterization of long-range surface-plasmon-polariton waveguides. J Appl Phys 2005:98:043109. CrossrefGoogle Scholar

[36]

Park S, Kim M, Kim J, Park S, Ju J, Lee M. Long range surface plasmon polariton waveguides at 1.31 and 1.55 um wavelengths. Opt Commun 2008;281:2057–61. CrossrefGoogle Scholar

[37]

Guasoni M, Conforti M, De Angelis C. Light propagation in nonuniform plasmonic subwavelength waveguide arrays. Opt Commun 2010;283:1161–8. CrossrefGoogle Scholar

[38]

Barrow SJ, Funston AM, Gómez DE, Davis TJ, Mulvaney P. Surface plasmon resonances in strongly coupled gold nanosphere chains from monomer to hexamer. Nano Lett 2011;11:4180–7. CrossrefGoogle Scholar

[39]

Maier SA, Kik P, Atwater H, et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat Mater 2003;2:229. CrossrefGoogle Scholar

[40]

Markel V, Sarychev A. Propagation of surface plasmons in ordered and disordered chains of metal nanospheres. Phys Rev B 2007;75:085426. CrossrefGoogle Scholar

[41]

Sukharev M, Seideman T. Phase and polarization control as a route to plasmonic nanodevices. Nano Lett 2006;6:715–9. CrossrefGoogle Scholar

[42]

Boltasseva A, Volkov VS, Nielsen RB, Moreno E, Rodrigo SG, Bozhevolnyi SI. Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths. Opt Express 2008;16:5252–60. CrossrefGoogle Scholar

[43]

Bergman DJ, Stockman MI. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Phys Rev Lett Jan 2003;90:027402. CrossrefGoogle Scholar

[44]

Bolger PM. Amplified spontaneous emission of surface plasmon polaritons and limitations on the increase of their propagation length. Opt Lett 2010;35:1197–9. CrossrefGoogle Scholar

[45]

Khurgin JB, Sun G. Practicality of compensating the loss in the plasmonic waveguides using semiconductor gain medium. Appl Phys Lett 2012;100:011105. CrossrefGoogle Scholar

[46]

Noginov MA, Podolskiy VA, Zhu G, et al. Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium. Opt Express 2008;16:1385–92. CrossrefGoogle Scholar

[47]

Stockman MI. Spaser action, loss compensation, and stability in plasmonic systems with gain. Phys Rev Lett 2011;106:156802. CrossrefGoogle Scholar

[48]

Pile D, Ogawa T, Gramotnev D, et al. Two-dimensionally localized modes of a nanoscale gap plasmon waveguide. Appl Phys Lett 2005;87:1–4. CrossrefGoogle Scholar

[49]

Moreno E, Garcia-Vidal FJ, Rodrigo SG, Martin-Moreno L, Bozhevolnyi SI. Channel plasmon-polaritons: modal shape, dispersion, and losses. Opt Lett Dec 2006;31:3447–9. CrossrefGoogle Scholar

[50]

Moreno E, Rodrigo SG, Bozhevolnyi SI, Martn-Moreno L, Garca-Vidal FJ. Guiding and focusing of electromagnetic fields with wedge plasmon polaritons. Phys Rev Lett 2008;100:023901. CrossrefGoogle Scholar

[51]

Huang K, Seo M, Sarmiento T, Huo Y, Harris J, Brongersma M. Electrically driven subwavelength optical nanocircuits. Nat Photon 2014;8:244–9. CrossrefGoogle Scholar

[52]

Stockman M. Spasers explained. Nat Photon 2008;2:327–9. CrossrefGoogle Scholar

[53]

Noginov M, Zhu G, Belgrave A, et al. Demonstration of a spaser-based nanolaser. Nature 2009;460:1110–2. CrossrefGoogle Scholar

[54]

Akimov AV, Mukherjee A, Yu CL, et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 2007;450:402–6. CrossrefGoogle Scholar

[55]

Fedutik Y, Temnov VV, Schops O, Woggon U, Artemyev MV. Exciton-plasmon-photon conversion in plasmonic nanostructures. Phys Rev Lett 2007;99:136802. CrossrefGoogle Scholar

[56]

Fedutik Y, Temnov VV, Woggon U, Ustinovich E, Artemyev MV. Exciton-plasmon interaction in a composite metal-insulator-semiconductor nanowire system. J Am Chem Soc 2007;129:14939–45. CrossrefGoogle Scholar

[57]

Kolesov R, Grotz B, Balasubramanian G, et al. Wave-particle duality of single surface plasmon polaritons. Nat Phys 2009;5:470–4. CrossrefGoogle Scholar

[58]

Tame MS, Lee C, Lee J, et al. Single-photon excitation of surface plasmon polaritons. Phys Rev Lett 2008;101:190504. CrossrefGoogle Scholar

[59]

de Leon NP, Lukin MD, Park H. Quantum plasmonic circuits. IEEE J Sel Top Quant 2012;18:1781–91. CrossrefGoogle Scholar

[60]

Popov O, Lirtsman V, Davidov D. Surface plasmon excitation of amplified spontaneous emission from laser dye molecules embedded in polymer matrix. Appl Phys Lett 2009;95:191108–3. CrossrefGoogle Scholar

[61]

Gather M, Meerholz K, Danz N, Leosson K. Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer. Nat Photon 2010;4:457–61. CrossrefGoogle Scholar

[62]

Shen J. Dispersion-sensitive surface plasmon wave assisted by incoherent gain. Opt Commun 2014;329:15–22. CrossrefGoogle Scholar

[63]

Sauvan C, Hugonin J, Maksymov I, Lalanne P. Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators. Phys Rev Lett 2013;110:237401. CrossrefGoogle Scholar

[64]

Akbari A, Berini P. Schottky contact surface-plasmon detector integrated with an asymmetric metal stripe waveguide. Appl Phys Lett 2009;95:021104. CrossrefGoogle Scholar

[65]

Heeres R, Kouwenhoven L, Zwiller V. Quantum interference in plasmonic circuits. Nat Nanotechnol 2013;8:719–22. CrossrefGoogle Scholar

[66]

Rosenberg J, Shenoi R, Vandervelde T, Krishna S, Painter O. A multispectral and polarization-selective surface-plasmon resonant midinfrared detector. Appl Phys Lett 2009;95:161101–3. CrossrefGoogle Scholar

[67]

Knight M, Sobhani H, Nordlander P, Halas N. Photodetection with active optical antennas. Science 2011;332:702–4. CrossrefGoogle Scholar

[68]

Bian Y, Gong Q. Compact all-optical interferometric logic gates based on one-dimensional metal–insulator–metal structures. Opt Commun 2014;313:27–35. CrossrefGoogle Scholar

[69]

Bozhevolnyi S, Volkov V, Devaux E, Laluet J, Ebbesen T. Channelling surface plasmons. Appl Phys A 2007;89:225–31. CrossrefGoogle Scholar

[70]

Cai W, Shin W, Fan S, Brongersma M. Elements for plasmonic nanocircuits with three-dimensional slot waveguides. Adv Mater 2010;22:5120–4. CrossrefGoogle Scholar

[71]

Li Z, Zhang S, Halas N, Nordlander P, Xu H. Coherent modulation of propagating plasmons in silver-nanowire-based structures. Small 2011;7:593–6. CrossrefGoogle Scholar

[72]

Pourali E, Baboli MA. Design and analysis of an all optical or gate using surface plasmon hopping along metallic nanorods. Physica Scripta 2015;90:045501. CrossrefGoogle Scholar

[73]

Han Z, Liu L, Forsberg E. Ultra-compact directional couplers and mach-zehnder interferometers employing surface plasmon polaritons. Opt Commun 2006;259:690–5. CrossrefGoogle Scholar

[74]

Zenin V, Volkov V, Han Z, Bozhevolnyi S, Devaux E, Ebbesen T. Directional coupling in channel plasmon-polariton waveguides. Opt Express 2012;20:6124–34. CrossrefGoogle Scholar

[75]

Charbonneau R, Lahoud N, Mattiussi G, Berini P. Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons. Opt Express 2005;13:977–84. CrossrefGoogle Scholar

[76]

Charbonneau R, Tencer M, Lahoud N, Berini P. Demonstration of surface sensing using long-range surface plasmon waveguides on silica. Sensor Actuat B Chem 2008;134:455–61. CrossrefGoogle Scholar

[77]

Perera C, Vernon K, Cheng E, Sathian J, Jaatinen E, Davis T. Highly compact refractive index sensor based on stripe waveguides for lab-on-a-chip sensing applications. Beilstein J Nanotechnol 2016;7:751–7. CrossrefGoogle Scholar

[78]

Vernon K, Gómez D, Davis T. A compact interferometric sensor design using three waveguide coupling. J Appl Phys 2009;106:104306. CrossrefGoogle Scholar

[79]

Volkov V, Bozhevolnyi S, Devaux E, Laluet J, Ebbesen T. Wavelength selective nanophotonic components utilizing channel plasmon polaritons. Nano Lett 2007;7:880–4. CrossrefGoogle Scholar

[80]

Bozhevolnyi S, Boltasseva A, SÃndergaard T, Nikolajsen T, Leosson K. Photonic bandgap structures for long-range surface plasmon polaritons. Opt Commun 2005;250:328–33. CrossrefGoogle Scholar

[81]

Wu W, Yang J, Zhang J, Huang J, Chen D, Wang H. Ultra-high resolution filter and optical field modulator based on a surface plasmon polariton. Opt Lett 2016;41:2310–3. CrossrefGoogle Scholar

[82]

Liu Y, Kim J. Plasmonic modulation and switching via combined utilization of young interference and metal-insulator-metal waveguide coupling. J Opt Soc Am B 2011;28:2712–7. CrossrefGoogle Scholar

[83]

Dickson R, Lyon L. Unidirectional plasmon propagation in metallic nanowires. J Phys Chem B 2000;104:6095–8. CrossrefGoogle Scholar

[84]

Chen Z, Chen J, Li Y, et al. Simulation of nanoscale multifunctional interferometric logic gates based on coupled metal gap waveguides. IEEE Photonic Tech L 2012;24:1366–8. CrossrefGoogle Scholar

[85]

Dolatabady A, Granpayeh N. All optical logic gates based on two dimensional plasmonic waveguides with nanodisk resonators. J Opt Soc Korea 2012;16:432–42. CrossrefGoogle Scholar

[86]

Tuccio S, Centini M, Benedetti A, Sibilia C. Subwavelength coherent control and coupling of light in plasmonic nanoresonators on dielectric waveguides. J Opt Soc Am B 2013;30:450–5. CrossrefGoogle Scholar

[87]

Wang F, Gong Z, Hu X, Yang X, Yang H, Gong Q. Nanoscale on-chip all-optical logic parity checker in integrated plasmonic circuits in optical communication range. Sci Rep 2016;6:24433. CrossrefGoogle Scholar

[88]

Wen J, Chen J, Wang K, Dai B, Huang Y, Zhang D. Broadband plasmonic logic input sources constructed with dual square ring resonators and dual waveguides. IEEE Photonics J 2016;8:1–9. Google Scholar

[89]

Zhao H, Guang X, Huang J. Novel optical directional coupler based on surface plasmon polaritons. Physica E 2008;40:3025–9. CrossrefGoogle Scholar

[90]

Zhou X, Fu Y, Li K, Wang S, Cai Z. Coupling mode-based nanophotonic circuit device. Appl Phys B 2008;91:373–6. CrossrefGoogle Scholar

[91]

Wei H, Wang Z, Tian X, Kall M, Xu H. Cascaded logic gates in nanophotonic plasmon networks. Nat Commun 2011;2:387. CrossrefGoogle Scholar

[92]

Fu Y, Hu X, Lu C, Yue S, Yang H, Gong Q. All-optical logic gates based on nanoscale plasmonic slot waveguides. Nano Lett 2012;12:5784–90. CrossrefGoogle Scholar

[93]

Cohen M, Zalevsky Z, Shavit R. Towards integrated nanoplasmonic logic circuitry. Nanoscale 2013;5:5442–9. CrossrefGoogle Scholar

[94]

Lu C, Hu X, Yue S, Fu Y, Yang H, Gong Q. Ferroelectric hybrid plasmonic waveguide for all-optical logic gate applications. Plasmonics 2013;8:749–54. CrossrefGoogle Scholar

[95]

Lu C, Hu X, Yang H, Gong Q. Chip-integrated ultrawide-band all-optical logic comparator in plasmonic circuits. Sci Rep 2014;4:3869. CrossrefGoogle Scholar

[96]

Birr T, Zywietz U, Chhantyal P, Chichkov B, Reinhardt C. Ultrafast surface plasmon-polariton logic gates and half-adder. Opt Express 2015;23:31755–65. CrossrefGoogle Scholar

[97]

Ota M, Sumimura A, Fukuhara M, Ishii Y, Fukuda M. Plasmonic-multimode-interference-based logic circuit with simple phase adjustment. Sci Rep 2016;6:24546. CrossrefGoogle Scholar

[98]

Yan Y, Zhang C, Zheng J, Yao J, Zhao Y. Optical modulation based on direct photon-plasmon coupling in organic/metal nanowire heterojunctions. Adv Mater 2012;24:5681–6. CrossrefGoogle Scholar

[99]

Perera CS, Vernon KC, Funston AM, Cheng H, Eftekhari F, Davis TJ. Excitation of bound plasmons along nanoscale stripe waveguides: a comparison of end and grating coupling techniques. Opt Express 2015;23:10188–97. CrossrefGoogle Scholar

[100]

Kauranen M, Zayats A. Nonlinear plasmonics. Nat Photon 2012;6:737–48. CrossrefGoogle Scholar

[101]

MacDonald K, Zheludev N. Active plasmonics: current status. Laser Photonics Rev 2010;4:562–7. CrossrefGoogle Scholar

[102]

Ooi K, Chu H, Bai P, Ang L. Electro-optical graphene plasmonic logic gates. Opt Lett 2014;39:1629–32. CrossrefGoogle Scholar

[103]

Margheri G, Rosso TD, Sottini S, Trigari S, Giorgetti E. All optical switches based on the coupling of surface plasmon polaritons. Opt Express 2008;16:9869–83. CrossrefGoogle Scholar

[104]

Nozhat N, Granpayeh N. All-optical logic gates based on nonlinear plasmonic ring resonators. Appl Opt 2015;54:7944–8. CrossrefGoogle Scholar

[105]

Shiu R, Lan Y, Guo G. Optical multiple bistability in metal-insulator-metal plasmonic waveguides side-coupled with twin racetrack resonators. J Opt Soc Am B 2014;31:2581–6. CrossrefGoogle Scholar

[106]

Zhang W, Jiang Y, Zhu Y, Wang F, Rao Y. All-optical bistable logic control based on coupled tamm plasmons. Opt Lett 2013;38:4092–5. CrossrefGoogle Scholar

[107]

Zhao W, Ju D, Jiang Y. Pulse controlled all-optical logic gate based on nonlinear ring resonator realizing all fundamental logic operations. Plasmonics 2015;10:311–7. CrossrefGoogle Scholar

[108]

Gogoi N, Sahu P. All-optical compact surface plasmonic two-mode interference device for optical logic gate operation. Appl Opt 2015;54:1051–7. CrossrefGoogle Scholar

[109]

Dai J, Zhang M, Zhou F, Wang Y, Lu L, Liu D. All-optical logic operation of polarized light signals in highly nonlinear silicon hybrid plasmonic microring resonators. Appl Opt 2015;54:4471–7. CrossrefGoogle Scholar

[110]

Wang L, Yan L, Guo Y, Wen K, Pan W, Luo B. Optical quasi logic gates based on polarization-dependent four-wave mixing in subwavelength metallic waveguides. Opt Express 2013;21:14442–51. CrossrefGoogle Scholar

[111]

Shen Y, Wang GP. Optical bistability in metal gap waveguide nanocavities. Opt Express 2008;16:8421–6. CrossrefGoogle Scholar

[112]

Cai W, White J, Brongersma M. Compact, high-speed and power-efficient electrooptic plasmonic modulators. Nano Lett 2009;9:4403–11. CrossrefGoogle Scholar

[113]

Battal E, Okyay AK. Metal-dielectric-metal plasmonic resonators for active beam steering in the infrared. Opt Lett 2013;38:983–5. CrossrefGoogle Scholar

[114]

Kim H, Park J, Lee B. Tunable directional beaming from subwavelength metal slits with metal-dielectric composite surface gratings. Opt Lett 2009;34:2569–71. CrossrefGoogle Scholar

[115]

Krasavin A, Zayats A. Photonic signal processing on electronic scales: electro-optical field-effect nanoplasmonic modulator. Phys Rev Lett 2012;109:053901. CrossrefGoogle Scholar

[116]

Piao X, Yu S, Park N. Control of fano asymmetry in plasmon induced transparency and its application to plasmonic waveguide modulator. Opt Express 2012;20:18994–9. CrossrefGoogle Scholar

[117]

Ding C, Hu X, Jiang P, Gong Q. Tunable surface plasmon polariton microcavity. Phys Lett A 2008;372:4536–8. CrossrefGoogle Scholar

[118]

Chang D, Sorensen A, Demler E, Lukin M. A single-photon transistor using nanoscale surface plasmons. Nat Phys 2007;3:807–12. CrossrefGoogle Scholar

[119]

Tao J, Huang X, Chen J, Zhu J. All-optical broadband variable optical attenuators and switches in plasmonic teeth waveguides. Opt Commun 2010;283:3536–9. CrossrefGoogle Scholar

[120]

Lee Y, Hoshino K, Alù A, Zhang X. Tunable directive radiation of surface-plasmon diffraction gratings. Opt Express 2013;21:2748–56. CrossrefGoogle Scholar

[121]

Eggleton BJ, Luther-Davies B, Richardson K. Chalcogenide photonics. Nat Photon 2011;5:141–8. Google Scholar

[122]

Krasavin A, Vo T, Dickson W, Bolger P, Zayats A. All-plasmonic modulation via stimulated emission of copropagating surface plasmon polaritons on a substrate with gain. Nano Lett 2011;11:2231–5. CrossrefGoogle Scholar

[123]

Pacifici D, Lezec H, Atwater H. All-optical modulation by plasmonic excitation of cdse quantum dots. Nat Photon 2007;1:402–6. CrossrefGoogle Scholar

[124]

Ming T, Zhao L, Xiao M, Wang J. Resonance-coupling-based plasmonic switches. Small 2010;6:2514–9. CrossrefGoogle Scholar

[125]

Caspers J, Rotenberg N, van Driel HM. Ultrafast silicon-based active plasmonics at telecom wavelengths. Opt. Express 2010;18:19761–9. CrossrefGoogle Scholar

[126]

Cho D, Wu W, Ponizovskaya E, et al. Ultrafast modulation of optical metamaterials. Opt Express 2009;17:17652–7. CrossrefGoogle Scholar

[127]

Macdonald K, Sámson L, Stockman M, Zheludev N. Ultrafast active plasmonics. Nat Photon 2009;3:55–8. CrossrefGoogle Scholar

[128]

Ren M, Jia B, Ou J, et al. Nanostructured plasmonic medium for terahertz bandwidth all-optical switching. Adv Mater 2011;23:5540–4. CrossrefGoogle Scholar

[129]

Guo P, Schaller R, Ketterson J, Chang R. Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude. Nat Photon 2016;10:267–73. CrossrefGoogle Scholar

[130]

Abb M, Albella P, Aizpurua J, Muskens O. All-optical control of a single plasmonic nanoantenna–ito hybrid. Nano Lett 2011;11:2457–63. CrossrefGoogle Scholar

[131]

Chen H, Wang J, Yeh S, Chen C, Lin H. Modulation of surface plasmon wave by photo-induced refractive index changes of cdse quantum dots. Appl Phys Lett 2012;100:011102. CrossrefGoogle Scholar

[132]

Chen J, Li Z, Yue S, Gong Q. Highly efficient all-optical control of surface-plasmon-polariton generation based on a compact asymmetric single slit. Nano Lett 2011;11:2933–7. CrossrefGoogle Scholar

[133]

Sahu PP. Theoretical investigation of all optical switch based on compact surface plasmonic two mode interference coupler. J Lightwave Technol 2016;34:1300–5. CrossrefGoogle Scholar

[134]

Temnov VV, Armelles G, Woggon U, et al. Active magneto-plasmonics in hybrid metal-ferromagnet structures. Nat Photon 2010;4:107–11. CrossrefGoogle Scholar

[135]

Earl S, James T, Davis T, et al. Tunable optical antennas enabled by the phase transition in vanadium dioxide. Opt Express 2013;21:27503–8. CrossrefGoogle Scholar

[136]

Brüggemann C, Akimov A, Glavin B, et al. Modulation of a surface plasmon-polariton resonance by subterahertz diffracted coherent phonons. Phys Rev B 2012;86:121401. CrossrefGoogle Scholar

[137]

Tominaga J, Mihalcea C, Buchel D, et al. Local plasmon photonic transistor. Appl Phys Lett 2001;78:2417–9. CrossrefGoogle Scholar

[138]

Randhawa S, Lachèze S, Renger J, et al. Performance of electro-optical plasmonic ring resonators at telecom wavelengths. Opt Express 2012;20:2354–62. CrossrefGoogle Scholar

[139]

Haffner C, Heni W, Fedoryshyn Y, et al. All-plasmonic mach–zehnder modulator enabling optical high-speed communication at the microscale. Nat Photon 2015;9:525–8. CrossrefGoogle Scholar

[140]

Emboras A, Goykhman I, Desiatov B, et al. Nanoscale plasmonic memristor with optical readout functionality. Nano Lett 2013;13:6151–5. CrossrefGoogle Scholar

[141]

Anglin K, Ribaudo T, Adams D, et al. Voltage-controlled active mid-infrared plasmonic devices. J Appl Phys 2011;109:123103. CrossrefGoogle Scholar

[142]

Babicheva V, Lavrinenko A. Plasmonic modulator optimized by patterning of active layer and tuning permittivity. Opt Commun 2012;285:5500–7. CrossrefGoogle Scholar

[143]

Dicken M, Sweatlock L, Pacifici D, Lezec H, Bhattacharya K, Atwater H. Electrooptic modulation in thin film barium titanate plasmonic interferometers. Nano Lett 2008;8:4048–52. CrossrefGoogle Scholar

[144]

Dionne J, Diest K, Sweatlock L, Atwater H. Plasmostor: a metal-oxide-si field effect plasmonic modulator. Nano Lett 2009;9:897–902. CrossrefGoogle Scholar

[145]

Liew T, Kavokin A, Ostatnický T, Kaliteevski M, Shelykh I, Abram R. Exciton-polariton integrated circuits. Phys Rev B 2010;82:033302. CrossrefGoogle Scholar

[146]

Chin J, Steinle T, Wehlus T, et al. Nonreciprocal plasmonics enables giant enhancement of thin-film faraday rotation. Nature Commun 2013;4:1599. CrossrefGoogle Scholar

[147]

Papaioannou S, Kalavrouziotis D, Vyrsokinos K, et al. Active plasmonics in wdm traffic switching applications. Sci Rep 2012;2:652. CrossrefGoogle Scholar

[148]

Agrawal A, Susut C, Stafford G, et al. An integrated electrochromic nanoplasmonic optical switch. Nano Lett 2011;11:2774–8. CrossrefGoogle Scholar

[149]

Baba A, Tada K, Janmanee R, et al. Controlling surface plasmon optical transmission with an electrochemical switch using conducting polymer thin films. Adv Func Mater 2012;22:4383–8. CrossrefGoogle Scholar

[150]

Davis T, Vernon K, Gómez D. A plasmonic “ac wheatstone bridge” circuit for high-sensitivity phase measurement and single-molecule detection. J Appl Phys 2009;106:043502. CrossrefGoogle Scholar

[151]

Eftekhari F, Gómez D, Davis T. Measuring subwavelength phase differences with a plasmonic circuit: an example of nanoscale optical signal processing. Opt Lett 2014;39:2994–7. CrossrefGoogle Scholar

[152]

Davis TJ. Evanescent coupling between resonant plasmonic nanoparticles and the design of nanoparticle systems. In: Helsey KN, editor, Plasmons: Theory and Applications. New York, USA, Nova Science Publishers Inc., 2011:111–41. Google Scholar

[153]

Engheta N. Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science 2007;317:1698–702. CrossrefGoogle Scholar

[154]

Engheta N, Salandrino A, Alù A. Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors. Phys Rev Lett 2005;95:95504. CrossrefGoogle Scholar

[155]

Davis TJ. Modeling and fabrication of tuned circuits for optical meta-materials. In: Abbott D, Kivshar YS, Rubinsztein-Dunlop HH, Fan S, editors, Proc. SPIE 6038, Photonics: Design, Technology, and Packaging II, 60380Y, January 17, 2006. Bellingam, WA, USA, SPIE. doi: 10.1117/12.637871. Crossref

[156]

Abasahl B, Santschi C, Martin O. Quantitative extraction of equivalent lumped circuit elements for complex plasmonic nanostructures. ACS Photonics 2014;1:403–7. CrossrefGoogle Scholar

[157]

Nordlander P, Oubre C, Prodan E, Li K, Stockman M. Plasmon hybridization in nanoparticle dimers. Nano Lett 2004;4:899–903. CrossrefGoogle Scholar

[158]

Prodan E, Radloff C, Halas NJ, Nordlander P. Hybridization model for the plasmon response of complex nanostructures. Science 2003;302:419–22. CrossrefGoogle Scholar

[159]

Wang H, Brandl DW, Nordlander P, Halas NJ. Plasmonic nanostructures: artificial molecules. Acc Chem Res 2007;40:53–62. CrossrefGoogle Scholar

[160]

Mayergoyz ID, Zhang Z, Miano G. Analysis of dynamics of excitation and dephasing of plasmon resonance modes in nanoparticles. Phys Rev Lett 2007;98:147401. CrossrefGoogle Scholar

[161]

Mayergoyz ID, Fredkin DR, Zhang Z. Electrostatic (plasmon) resonances in nanoparticles. Phys Rev B 2005;72:155412. CrossrefGoogle Scholar

[162]

Ouyang F, Isaacson M. Surface plasmon excitation of objects with arbitrary shape and dielectric constant. Phil Mag B 1989;60:481–92. CrossrefGoogle Scholar

[163]

Davis TJ, Gómez DE, Vernon KC. Simple model for the hybridization of surface plasmon resonances in metallic nanoparticles. Nano Lett 2010;10:2618–25. CrossrefGoogle Scholar

[164]

Davis TJ, Vernon KC, Gómez DE. Designing plasmonic systems using optical coupling between nanoparticles. Phys Rev B 2009;79:155423. CrossrefGoogle Scholar

[165]

Gómez DE, Davis TJ, Funston AM. Plasmonics by design: design principles to structure–function relationships with assemblies of metal nanoparticles. J Mater Chem C 2014;2:3077–87. CrossrefGoogle Scholar

[166]

Davis TJ, Gómez DE, Eftekhari F. All-optical modulation and switching by a metamaterial of plasmonic circuits. Opt Lett 2014;39:4938–41. CrossrefGoogle Scholar

[167]

Djalalian-Assl A, Gómez DE, Roberts A, Davis T. Frequency-dependent optical steering from subwavelength plasmonic structures. Opt Lett 2012;37:4206–8. CrossrefGoogle Scholar

[168]

Eftekhari F, Davis T. Strong chiral optical response from planar arrays of subwavelength metallic structures supporting surface plasmon resonances. Phys Rev B 2012;86:075428. CrossrefGoogle Scholar

[169]

Giannini V, Fernández-Domínguez A, Heck S, Maier S. Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chem Rev 2011;111:3888–912. CrossrefGoogle Scholar

[170]

Novotny L, Niek VH. Antennas for light. Nat Photon 2011;5:83–90. CrossrefGoogle Scholar

[171]

Davis T, Gómez DE. Interaction of localized surface plasmons with chiral molecules. Phys Rev B 2014;90:235424. CrossrefGoogle Scholar

[172]

Davis T, Gómez D, Vernon K. Evanescent coupling between a raman-active molecule and surface plasmons in ensembles of metallic nanoparticles. Phys Rev B 2010;82:205434. CrossrefGoogle Scholar

[173]

He S, Cui Y, Ye Y, Zhang P, Jin Y. Optical nano-antennas and metamaterials. Materials Today 2009;12:16–24. CrossrefGoogle Scholar

[174]

Crozier K, Sundaramurthy A, Kino G, Quate C. Optical antennas: resonators for local field enhancement. J Appl Phys 2003;94:4632–42. CrossrefGoogle Scholar

[175]

Alonso-González P, Albella P, Neubrech F, et al. Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas. Phys Rev Lett 2013;110:203902. CrossrefGoogle Scholar

[176]

Maksymov IS. Optical switching and logic gates with hybrid plasmonic–photonic crystal nanobeam cavities. Phys Lett A 2011;375:918–21. CrossrefGoogle Scholar

[177]

Cohen M, Shavit R, Zalevsky Z. Enabling high efficiency nanoplasmonics with novel nanoantenna architectures. Sci Rep 2015;5:17562. CrossrefGoogle Scholar

[178]

Geisler P, Razinskas G, Krauss E, et al. Multimode plasmon excitation and in situ analysis in top-down fabricated nanocircuits. Phys Rev Lett 2013;111:183901. CrossrefGoogle Scholar

[179]

Huang J, Feichtner T, Biagioni P, Hecht B. Impedance matching and emission properties of nanoantennas in an optical nanocircuit. Nano Lett 2009;9:1897–902. CrossrefGoogle Scholar

[180]

Kosako T, Kadoya Y, Hofmann HF. Directional control of light by a nano-optical yagi–uda antenna. Nat Photon 2010;4:312–5. CrossrefGoogle Scholar

[181]

Li J, Salandrino A, Engheta N. Shaping light beams in the nanometer scale: a yagi-uda nanoantenna in the optical domain. Phys Rev B 2007;76:245403. CrossrefGoogle Scholar

[182]

Biagioni P, Savoini M, Huang J, DuÃ L, Finazzi M, Hecht B. Near-field polarization shaping by a near-resonant plasmonic cross antenna. Phys Rev B 2009;80:153409. CrossrefGoogle Scholar

[183]

James T, Davis T, Roberts A. Optical investigation of the j-pole and vee antenna families. Opt Express 2014;22:1336–41. CrossrefGoogle Scholar

[184]

James T, Teo Z, Gómez D, Davis T, Roberts A. The plasmonic j-pole antenna. Appl Phys Lett 2013;102:033106–4. CrossrefGoogle Scholar

[185]

Schuck P, Fromm D, Sundaramurthy A, Kino G, Moerner W. Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. Phys Rev Lett 2005;94:174021–4. CrossrefGoogle Scholar

[186]

Hao F, Zhang M, Wang Q, Wang J, Wang R, Ge H. Design and experimental demonstration of a plasmonic directional beaming device. J Opt Soc Am B 2012;29:2255–9. CrossrefGoogle Scholar

[187]

Matthews D, Summers H, Njoh K, Chappell S, Errington R, Smith P. Optical antenna arrays in the visible range. Opt Express 2007;15:3478–87. CrossrefGoogle Scholar

[188]

Dregely D, Lindfors K, Lippitz M, Engheta N, Totzeck M, Giessen H. Imaging and steering an optical wireless nanoantenna link. Nat Commun 2014;2:267–73. CrossrefGoogle Scholar

[189]

Ghenuche P, Cherukulappurath S, Taminiau T, Hulst N, Quidant R. Spectroscopic mode mapping of resonant plasmon nanoantennas. Phys Rev Lett 2008;101:1168051–4. CrossrefGoogle Scholar

[190]

Huang J, Kern J, Geisler P, et al. Mode imaging and selection in strongly coupled nanoantennas. Nano Lett 2010;10:2105–10. CrossrefGoogle Scholar

[191]

Liu Z, Wang Y, Yao J, Lee H, Srituravanich W, Zhang X. Broad band two-dimensional manipulation of surface plasmons. Nano Lett 2009;9:462–6. CrossrefGoogle Scholar

[192]

Hu H, Duan H, Yang J, Shen Z. Plasmon-modulated photoluminescence of individual gold nanostructures. ACS Nano 2012;6:10147–55. CrossrefGoogle Scholar

[193]

Taminiau T, Stefani F, Segerink F, Hulst N. Optical antennas direct single-molecule emission. Nat Photon 2008;2:234–7. CrossrefGoogle Scholar

[194]

Greffet J, Laroche M, Marquier F. Impedance of a nanoantenna and a single quantum emitter. Phys Rev Lett 2010;05:117701. CrossrefGoogle Scholar

[195]

Wang F, Chakrabarty A, Minkowski F, Sun K, Wei Q. Polarization conversion with elliptical patch nanoantennas. Appl Phys Lett 2012;101:023101. CrossrefGoogle Scholar

[196]

Alù A, Engheta N. Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas. Phys Rev Lett 2008;101:043901. CrossrefGoogle Scholar

[197]

Liu N, Wen F, Zhao Y, et al. Individual nanoantennas loaded with three-dimensional optical nanocircuits. Nano Lett 2013;13:142–7. CrossrefGoogle Scholar

[198]

Chen P, Alù A. Optical nanoantenna arrays loaded with nonlinear materials. Phys Rev B 2010;82:235405. CrossrefGoogle Scholar

[199]

Chen K, Razinskas G, Feichtner T, Grossmann S, Christiansen S, Hecht B. Electromechanically tunable suspended optical nanoantenna. Nano Lett 2016;16:2680–5. CrossrefGoogle Scholar

[200]

Alù A, Engheta N. Optical nanotransmission lines: synthesis of planar left-handed metamaterials in the infrared and visible. J Opt Soc Am B 2006;23:571–83. CrossrefGoogle Scholar

[201]

Nunes F, Weiner J. Equivalent circuits and nanoplasmonics. IEEE Trans Nanotechnol 2009;8:298–302. CrossrefGoogle Scholar

[202]

Sun Y, Edwards B, Alu A, Engheta N. Experimental realization of optical lumped nanocircuits at infrared wavelengths. Nat Mater 2012;11:208–12. CrossrefGoogle Scholar

[203]

Caglayan H, Hong S, Edwards B, Kagan C, Engheta N. Near-infrared metatronic nanocircuits by design. Phys Rev Lett 2013;111:073904. CrossrefGoogle Scholar

[204]

Lu H, Liu X, Wang G, Mao D. Tunable high-channel-count bandpass plasmonic filters based on an analogue of electromagnetically induced transparency. Nanotechnology 2012;23:444003. CrossrefGoogle Scholar

[205]

Zhang Q, Bai L, Bai Z, Hu P, Liu C. Equivalent-nanocircuit-theory-based design to infrared broad band-stop filters. Opt Express 2015;23:8290–7. CrossrefGoogle Scholar

[206]

Shi J, Monticone F, Elias S, et al. Modular assembly of optical nanocircuits. Nat Commun 2014;5:3896. CrossrefGoogle Scholar

[207]

Silva A, Monticone F, Castaldi G, Galdi V, Alù A, Engheta N. Performing mathematical operations with metamaterials. Science 2014;343:160–3. CrossrefGoogle Scholar

[208]

Pors A, Nielsen M, Bozhevolnyi S. Analog computing using reflective plasmonic metasurfaces. Nano Lett 2015;15:791–7. CrossrefGoogle Scholar

[209]

Tame MS, McEnery KR, Ozdemir SK, Lee J, Maier SA, Kim MS. Quantum plasmonics. Nat Phys 2013;9:329–40. CrossrefGoogle Scholar

[210]

Fakonas JS, Lee H, Kelaita YA, Atwater HA. Two-plasmon quantum interference. Nat Photon 2014;8:317–20. CrossrefGoogle Scholar

[211]

Zuloaga J, Prodan E, Nordlander P. Quantum description of the plasmon resonances of a nanoparticle dimer. Nano Lett 2009;9:887–91. CrossrefGoogle Scholar

[212]

Gómez D, Roberts A, Davis T, Vernon K. Surface plasmon hybridization and exciton coupling. Phys Rev B 2012;86:035411. CrossrefGoogle Scholar

[213]

Gómez D, Vernon K, Mulvaney P, Davis T. Coherent superposition of exciton states in quantum dots induced by surface plasmons. Appl Phys Lett 2010;96:073108–3. CrossrefGoogle Scholar

[214]

Hong F, Xiong S. Quantum interfaces using nanoscale surface plasmons. Eur Phys J D 2008;50:325–9. CrossrefGoogle Scholar

[215]

Boltasseva A, Atwater HA. Low-loss plasmonic metamaterials. Science 2011;331:290–1. CrossrefGoogle Scholar

[216]

West P, Ishii S, Naik G, Emani N, Shalaev V, Boltasseva A. Searching for better plasmonic materials. Laser Photonics Rev 2010;4:795–808. CrossrefGoogle Scholar

[217]

Naik GV, Schroeder JL, Ni X, Kildishev AV, Sands TD, Boltasseva A. Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Opt Mater Express 2012;2:478–9. CrossrefGoogle Scholar

[218]

Editorial. Commercializing plasmonics. Nat Photon 2015;9:477. Google Scholar

[219]

Krenn J. Perspective on plasmonics. Nat Photon 2012;6:714–5. CrossrefGoogle Scholar

[220]

Aydin K. Integrated optics: nanostructured silicon success. Nat Photon 2015;9:353–5. CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.