[1]

Javidi B, ed. Optical and digital techniques for information security. Springer Verlag, 2005. Google Scholar

[2]

Réfrégier P, Javidi B. Optical image encryption based on input plane and Fourier plane random encoding. Opt Lett 1995;20:767–9. CrossrefGoogle Scholar

[3]

Wang RK, Watson LA, Chatwin C. Random phase encoding for optical security. Opt Eng 1996;35:2464–9. CrossrefGoogle Scholar

[4]

Mogensen PC, Glückstad J. Phase-only optical encryption. Opt Lett 2000;25:566–8. CrossrefGoogle Scholar

[5]

Unnikrishnan G, Joseph J, Singh K. Optical encryption by double-random phase encoding in the fractional Fourier domain. Opt Lett 2000;25:887–9. CrossrefGoogle Scholar

[6]

Hennelly K, Sheridan JT. Fractional Fourier transform based image encryption: phase retrieval algorithm. Opt Commun 2003;226:61–80. CrossrefGoogle Scholar

[7]

Matoba O, Javidi B. Encrypted optical memory system using three-dimensional keys in the Fresnel domain. Opt Lett 1999;24:762–4. CrossrefGoogle Scholar

[8]

Situ G., Zhang JA. Lensless optical security system based on computer-generated phase only masks. Opt Commun 2004;232:115–22. CrossrefGoogle Scholar

[9]

Situ G, Zhang J. Double random-phase encoding in the Fresnel domain. Opt Lett 2004;29:1584–6. CrossrefGoogle Scholar

[10]

Chen L, Zhao D. Optical image encryption with Hartley transforms. Opt Lett 2006;31, 3438–40. CrossrefGoogle Scholar

[11]

Rosen J, Javidi B. Hidden images in halftone pictures. Appl Opt 2001;40:3346–53. CrossrefGoogle Scholar

[12]

Kim JJ, Kim JH, Kim ES. Optodigital implementation of multiple information hiding and extraction system. Opt Eng 2004;43:113–25. CrossrefGoogle Scholar

[13]

Hayasaki Y, Matsuba Y, Nagaoka A, Yamamoto H, Nishida N. Hiding an image with a light-scattering medium and use of a contrast-discrimination method for readout. Appl Opt 2004;43:1552–58. CrossrefGoogle Scholar

[14]

Situ G, Zhang J. Image hiding with computer-generated phase codes for optical authentication. Opt Commun 2005;245:55–65. CrossrefGoogle Scholar

[15]

Takai N, Mifune Y. Digital watermarking by a holographic technique. Appl Opt 2002;43:3078–84. Google Scholar

[16]

Kishk S, Javidi B. 3D object watermarking by a 3D hidden object. Opt Express 2003;11:874–88. CrossrefGoogle Scholar

[17]

Li Y, Kreske K, Rosen J. Security and encryption optical systems based on a correlator with significant output images. Appl Opt 2000;39:5295–301. CrossrefGoogle Scholar

[18]

Abookasis D, Arazi O, Rosen J, Javidi B. Security optical systems based on a joint transform correlator with significant output images. Opt Eng 2001;40:1584–9. CrossrefGoogle Scholar

[19]

Yamazaki M, Ohtsubo J. Optimization of encrypted holograms in optical security systems. Opt Eng 2001;40:132–7. CrossrefGoogle Scholar

[20]

Abookasis D, Batikoff A, Famini H, Rosen J. Performance comparison of iterative algorithms for generating digital correlation holograms used in optical security systems. Appl Opt 2006;45:4617–24. CrossrefGoogle Scholar

[21]

Chang HT, Lu WC, Kuo CJ. Multiple-phase retrieval for optical security systems by use of random-phase encoding. Appl Opt 2002;41:4815–34. CrossrefGoogle Scholar

[22]

Situ G, Zhang J. A cascaded iterative Fourier transform algorithm for optical security applications. Optik 2003;114:473–7. CrossrefGoogle Scholar

[23]

Meng XF, Cai LZ, Yang XL, Shen XX, Dong GY. Information security system by iterative multiple-phase retrieval and pixel random permutation. Appl Opt 2006;45:3289–97. CrossrefGoogle Scholar

[24]

Matsumoto H, Matsumoto T. Clone match rate evaluation for an artifact-metric system. IPSJ J 2003;44:1991–2001. Google Scholar

[25]

Naruse M, Tate N, Aono M, Ohtsu M. Information physics fundamentals of nanophotonics. Rep Prog Phys 2013;76:056401. CrossrefGoogle Scholar

[26]

Naruse M, Tate N, Ohtsu M. Optical security based on near-field processes at the nanoscale. J Opt 2012;14:094002. CrossrefGoogle Scholar

[27]

Kobayashi K, Sangu S, Ito H, Ohtsu M. Near-field optical potential for a neutral atom. Phys Rev A 2001;63:013806. CrossrefGoogle Scholar

[28]

Ohtsu M, Kobayashi K. Optical near fields. Berlin: Springer, 2004. Google Scholar

[29]

Tanaka Y, Kobayashi K. Spatial localization of an optical near field in one-dimensional nanomaterial system. Phys E 2007;40:297–300. CrossrefGoogle Scholar

[30]

Ohtsu M. Dressed photons—concepts of light-matter fusion technology. Berlin: Springer, 2013. Google Scholar

[31]

Matsumoto T, Hoga M, Ohyagi Y, et al. Nano-artifact metrics based on random collapse of resist. Sci Rep 2014;4:1–5. Google Scholar

[32]

Matoba O, Nomura T, Pérez-Cabré E, Millan MS, Javidi B. Optical techniques for information security. Proc IEEE J 2009;97:1128–1148. CrossrefGoogle Scholar

[33]

Chen W, Javidi B, Chen X. Advances in optical security systems. Adv Opt Photonics 2014;6:120–155. CrossrefGoogle Scholar

[34]

Carnicer A, Hassanfiroozi A, Latorre-Carmona P, Huang Y.-P, Javidi B. Security authentication using phase-encoded nanoparticle structures and polarized light. Opt Lett 2015;40:135–138. CrossrefGoogle Scholar

[35]

Carnicer A, Arteaga O, Pascual E, et al. Optical security verification by synthesizing thin films with unique polarimetric signatures. Opt Lett 2015;40:5399–402. CrossrefGoogle Scholar

[36]

Javidi B, Carnicer A, Yamaguchi M, et al. Roadmap on optical security. J Opt 2016;18:083001. CrossrefGoogle Scholar

[37]

Namatsu H, Kurihara K, Nagase M, Iwadate K, Murase K. Dimensional limitations of silicon nanolines resulting from pattern distortion due to surface tension of rinse water. Appl Phys Lett 1995;66:2655–7. CrossrefGoogle Scholar

[38]

Naruse M, Hoga M, Ohyagi Y, et al. Eigenanalysis of morphological diversity in silicon random nanostructures formed via resist collapse. Physica A 2016;462:883–8. CrossrefGoogle Scholar

[39]

Matsumoto T, Yoshida N, Nishio S, et al. Optical nano artifact metrics using silicon random nanostructures. Sci Rep 2016;6:32438. CrossrefGoogle Scholar

[40]

Javidi B, Horner JL. Optical pattern recognition for validation and security verification. Opt Eng 1994;33:1752–6. CrossrefGoogle Scholar

[41]

Refregier P, Javidi B. Optical image encryption based on input plane and Fourier plane random encoding. Opt Lett 1995;20:767–9. CrossrefGoogle Scholar

[42]

Rakuljic GA, Leyva V, Yariv A. Optical data storage by using orthogonal wavelength-multiplexed volume holograms. Opt Lett 1992;17:1471–3. CrossrefGoogle Scholar

[43]

Tate N, Nomura W, Yatsui T, Naruse M, Ohtsu M. Hierarchical hologram based on optical near- and far-field responses. Opt Express 2008;16:607–12. CrossrefGoogle Scholar

[44]

Tate N, Naruse M, Yatsui T, et al. Nanophotonic code embedded in embossed hologram for hierarchical information retrieval. Opt Express 2010;18:7497–505. CrossrefGoogle Scholar

[45]

Naruse M, Yatsui T, Nomura W, Hirose N, Ohtsu M. Hierarchy in optical near-fields and its application to memory retrieval. Opt Express 2005;13:9265–71. CrossrefGoogle Scholar

[46]

Tate N, Naruse M, Nomura W, et al. Non-scanning optical near-field microscopy for nanophotonic security. App Phys A Mater 2015;121:1383–7. CrossrefGoogle Scholar

[47]

Naruse M, Hori H, Kobayashi K, et al. Information theoretical analysis of hierarchical nano-optical systems in the subwavelength regime. J Opt Soc Am B 2009;26:1772–9. CrossrefGoogle Scholar

[48]

Candès EJ, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inform Theory 2006;52:489–509. CrossrefGoogle Scholar

[49]

Donoho D. Compressed sensing. IEEE Trans Inf Theory 2006;52:1289–306. CrossrefGoogle Scholar

[50]

Haupt J, Nowak R. Signal reconstruction from noisy random projections. IEEE Trans Inf Theory 2006;52:4036–48. CrossrefGoogle Scholar

[51]

Harris C, Stephens MA. Combined corner and edge detector. Proc of the Fourth Alvey Vision Conf 1998;147–51. Google Scholar

[52]

Smith SM, Brady JM. SUSAN—A new approach to low level image processing. Int J Comput Vision 1997;23:45–78. CrossrefGoogle Scholar

[53]

Lowe DG. Object recognition from local scale-invariant features. In Int Conf on Computer Vision 1999;1150–1157. Google Scholar

[54]

Rosten E, Drummond T. Machine learning for high-speed corner detection. Volume 3951 of the series Lecture Notes in Computer Science 2006;430–43. Google Scholar

[55]

Pihosh Y, Turkevych I, Ye J, et al. Physical and photocatalytic properties of TiO_{2} nanostructures fabricated by means of glancing angle deposition. ECS Trans 2009;16:49–58. Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.