[1]

Shor PW. Algorithms for quantum computation: discrete logarithms and factoring. In 35th Annual Symposium on Foundations of Computer Science, 1994 Proceedings. IEEE, 1994:124–134. Google Scholar

[2]

Hallgren S. Polynomial-time quantum algorithms for Pell’s equation and the principal ideal problem. J ACM 2007;54:653–8. Google Scholar

[3]

Grigni M, Schulman L, Vazirani M, Vazirani U. Quantum mechanical algorithms for the nonabelian hidden subgroup problem. In Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing. ACM, 2001:68–74. Google Scholar

[4]

Bacon D, Childs AM, van Dam W. From optimal measurement to efficient quantum algorithms for the hidden subgroup problem over semidirect product groups. In 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS’05). IEEE, 2005:469–78. Google Scholar

[5]

Krovi H, Rötteler M. An efficient quantum algorithm for the hidden subgroup problem over weyl-heisenberg groups. In Mathematical methods in computer science. Karlsruhe, Germany: Springer, 2008:70–88. Google Scholar

[6]

Jordan SP, Lee KSM, Preskill J. Quantum algorithms for quantum field theories. Science 2012;336:1130–3. CrossrefGoogle Scholar

[7]

Berry DW, Childs AM, Cleve R, Kothari R, Somma RD. Exponential improvement in precision for simulating sparse Hamiltonians. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing. ACM, 2014:283–92. Google Scholar

[8]

Krovi H, Russell A. Quantum Fourier transforms and the complexity of link invariants for quantum doubles of finite groups. Commun Math Phys 2015;334:743–77. Google Scholar

[9]

Montanaro A, Pallister S. Quantum algorithms and the finite element method. Phys Rev A 2016;93:032324. CrossrefGoogle Scholar

[10]

Krovi H, Magniez F, Ozols M, Roland J. Quantum walks can find a marked element on any graph. Algorithmica 2016;74:851–907. CrossrefGoogle Scholar

[11]

Montanaro A. Quantum walk speedup of backtracking algorithms. arXiv preprint:arXiv:1509.02374. Google Scholar

[12]

Blais A, Huang R, Wallraff A, Girvin SM, Schoelkopf RJ. Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys Rev A 2004;69:062320. CrossrefGoogle Scholar

[13]

Cirac JI, Zoller P. Quantum computations with cold trapped ions. Phys Rev Lett 1995;74:4091. CrossrefGoogle Scholar

[14]

Loss D, DiVincenzo DP. Quantum computation with quantum dots. Phys Rev A 1998;57:120. CrossrefGoogle Scholar

[15]

Kok P, Munro WJ, Nemoto K, Ralph TC, Dowling JP, Milburn GJ. Linear optical quantum computing with photonic qubits. Rev Mod Phys 2007;79:135. CrossrefGoogle Scholar

[16]

Krovi H, Guha S, Dutton Z, da Silva MP. Optimal measurements for symmetric quantum states with applications to optical communication. Phys Rev A 2015;92:062333. CrossrefGoogle Scholar

[17]

Gisin N, Ribordy G, Tittel W, Zbinden H. Quantum cryptography. Rev Mod Phys 2002;74:145. CrossrefGoogle Scholar

[18]

Krovi H, Guha S, Dutton Z, Slater JA, Simon C, Tittel W. Practical quantum repeaters with parametric down-conversion sources. Appl Phys B 2016;122:1–8. Google Scholar

[19]

Saglamyurek E, Sinclair N, Jin J, et al. Broadband waveguide quantum memory for entangled photons. Nature 2011;469:512–5. Google Scholar

[20]

Usmani I. Mapping multiple photonic qubits into and out of one solid-state atomic ensemble. Nat Commun 2010;1:1–7. CrossrefGoogle Scholar

[21]

Kielpinski D, Meyer V, Rowe MA, et al. A decoherence-free quantum memory using trapped ions. Science 2001;291:1013–1015. CrossrefGoogle Scholar

[22]

Azuma K, Tamaki K, Lo H-K. All-photonic quantum repeaters. Nat Commun 2015;6:6787. CrossrefGoogle Scholar

[23]

Arora S, Barak B. Computational complexity: a modern approach. Cambridge: Cambridge University Press, 2009. Google Scholar

[24]

Farhi E, Harrow AW. Quantum supremacy through the quantum approximate optimization algorithm. *arXiv preprint arXiv:1602.07674*, 2016. Google Scholar

[25]

Nielsen MA, Chuang IL. Quantum computation and quantum information. Cambridge: Cambridge University Press, 2010. Google Scholar

[26]

Braunstein SL. Squeezing as an irreducible resource. Phys Rev A 2005;71:055801. CrossrefGoogle Scholar

[27]

Lloyd S, Braunstein SL. Quantum computation over continuous variables. In: Quantum Information with Continuous Variables. Dordrecht: Springer, 1999, 9–17. Google Scholar

[28]

Cerf NJ, Adami C, Kwiat PG. Optical simulation of quantum logic. Phys Rev A 1998;57:0R1477. Google Scholar

[29]

Reck M, Zeilinger A, Bernstein HJ, Bertani P. Experimental realization of any discrete unitary operator. Phys Rev Lett 1994;73:58. Google Scholar

[30]

Chuang IL, Yamamoto Y. Simple quantum computer. Phys Rev A 1995;52:3489. CrossrefGoogle Scholar

[31]

Knill E, Laflamme R, Milburn GJ. A scheme for efficient quantum computation with linear optics. Nature 2001;409:46–52. CrossrefGoogle Scholar

[32]

Shapiro JH. Single-photon kerr nonlinearities do not help quantum computation. Phys Rev A 2006;73:062305. CrossrefGoogle Scholar

[33]

Gottesman D, Kitaev A, Preskill J. Encoding a qubit in an oscillator. Phys Rev A 2001;64:012310. CrossrefGoogle Scholar

[34]

Ghose S, Sanders BC. Non-gaussian ancilla states for continuous variable quantum computation via gaussian maps. J Mod Opt 2007;54:855–69. CrossrefGoogle Scholar

[35]

Ralph TC, Gilchrist A, Milburn GJ, Munro WJ, Glancy S. Quantum computation with optical coherent states. Phys Rev A 2003;68:042319. CrossrefGoogle Scholar

[36]

Aaronson S, Arkhipov A. The computational complexity of linear optics. In: Proceedings of the forty-third annual ACM symposium on Theory of computing, ACM, 2011, 333–42. Google Scholar

[37]

Lund AP, Laing A, Rahimi-Keshari S, Rudolph T, O’Brien JL, Ralph TC. Boson sampling from a gaussian state. Phys Rev Lett 2014;113:100502. CrossrefGoogle Scholar

[38]

Farhi E, Goldstone J, Gutmann S, Lapan J, Lundgren A, Preda D. A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 2001;292:472–5. CrossrefGoogle Scholar

[39]

Kadowaki T, Nishimori H. Quantum annealing in the transverse Ising model. Phys Rev E 1998;58:5355. CrossrefGoogle Scholar

[40]

Aharonov D, Van Dam W, Kempe J, Landau Z, Lloyd S, Regev O. Adiabatic quantum computation is equivalent to standard quantum computation. SIAM Rev 2008;500:755–87. CrossrefGoogle Scholar

[41]

Altshuler B, Krovi H, Roland J. Anderson localization makes adiabatic quantum optimization fail. Proc Natl Acad Sci USA 2010;107:12446–50. CrossrefGoogle Scholar

[42]

Messiah A. Quantum mechanics. vol. i. North Holland: Elsevier Science & Technology Books, 1961. Google Scholar

[43]

Krovi H, Ozols M, Roland J. Adiabatic condition and the quantum hitting time of Markov chains. Phys Rev A 2010;82:022333. CrossrefGoogle Scholar

[44]

Jack Copeland B. The modern history of computing. In: Zalta EN, ed. The Stanford Encyclopedia of Philosophy, 2008. http://plato.stanford.edu/archives/fall2008/entries/computing-history/, fall 2008 edition.

[45]

Solli DR, Jalali B. Analog optical computing. Nat Photonics 2015;9:704–6. CrossrefGoogle Scholar

[46]

Tsang M, Psaltis D. Metaphoric optical computing for fluid dynamics. In: Integrated Optoelectronic Devices 2005, International Society for Optics and Photonics. Baltimore, Maryland: Optical Society of America, 2005, 1–8. Google Scholar

[47]

Pittman TB, Jacobs BC, Franson JD. Probabilistic quantum logic operations using polarizing beam splitters. Phys Rev A 2001;64:062311. CrossrefGoogle Scholar

[48]

Pittman TB, Fitch MJ, Jacobs BC, Franson JD. Experimental controlled-not logic gate for single photons in the coincidence basis. Phys Rev A 2003;68:032316. CrossrefGoogle Scholar

[49]

O’Brien JL, Pryde GJ, White AG, Ralph TC, Branning D. Demonstration of an all-optical quantum controlled-not gate. Nature 2003;426:264–7. CrossrefGoogle Scholar

[50]

Patel M, Altepeter JB, Hall MA, Medic M, Kumar P. Experimental characterization of a telecommunications-band quantum controlled-not gate. IEEE J Sel Topics Quantum Electron 2009;15:1685–93. CrossrefGoogle Scholar

[51]

Pittman TB, Jacobs BC, Franson JD. Demonstration of nondeterministic quantum logic operations using linear optical elements. Phys Rev Lett 2002;88:257902. CrossrefGoogle Scholar

[52]

Stárek R, Mičuda M, Miková M, et al. Experimental investigation of a four-qubit linear-optical quantum logic circuit. Sci Rep 2016;6:33475. CrossrefGoogle Scholar

[53]

Mower J, Harris NC, Steinbrecher GR, Lahini Y, Englund D. High-fidelity quantum state evolution in imperfect photonic integrated circuits. Phys Rev A 2015;92:032322. CrossrefGoogle Scholar

[54]

Tillmann M, Dakić B, Heilmann R, Nolte S, Szameit A, Walther P. Experimental boson sampling. Nat Photonics 2013;7:540–4. CrossrefGoogle Scholar

[55]

Spring JB, Kolthammer WS, Gates JC, et al. Experimental boson sampling. Science 2012;339:798–801, (arXiv: 1212.2622). Google Scholar

[56]

Broome M, Fedrizzi A, Rahimi-Keshari S, et al. Experimental boson sampling. In Conference on Coherence and Quantum Optics, Optical Society of America, 2013, W5B–3. Google Scholar

[57]

Crespi A, Osellame R, Ramponi R, et al. Integrated multimode interferometers with arbitrary designs for photonic boson sampling. Nat Photonics 2013;7:545–9. CrossrefGoogle Scholar

[58]

Spagnolo N, Vitelli C, Bentivegna M, et al. Experimental validation of photonic boson sampling. Nat Photonics 2014;8:615–20. CrossrefGoogle Scholar

[59]

Carolan J, Meinecke JDA, Shadbolt PJ, et al. On the experimental verification of quantum complexity in linear optics. Nat Photonics 2014;8:621–6. CrossrefGoogle Scholar

[60]

Bentivegna M, Spagnolo N, Vitelli C, et al. Experimental scattershot boson sampling. Sci Adv 2015;1:e1400255. Google Scholar

[61]

Marandi A, Wang Z, Takata K, Byer RL, Yamamoto Y. Network of time-multiplexed optical parametric oscillators as a coherent Ising machine. Nat Photonics 2014;8:937–42. CrossrefGoogle Scholar

[62]

Utsunomiya S, Takata K, Yamamoto Y. Mapping of Ising models onto injection-locked laser systems. Opt Express 2011;19:18091–108. CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.