[1]

Kim NS, Austin T, Baauw D, et al. Leakage current: Moore’s law meets static power. Computer 2003;36:68–75. CrossrefGoogle Scholar

[2]

Dennard R, Gaensslen F, Yu W-N, Rideout L, Bassous E, Le Blanc A. Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE J Solid State Circuits 1974;9:257–68. Google Scholar

[3]

Esmaeilzadeh H, Blem E, St. Amant R, Sankaralingam K, Burger D. Dark silicon and the end of multicore scaling. IEEE Micro 2012;32:122–34. CrossrefGoogle Scholar

[4]

Miller DAB. Attojoule optoelectronics for low-energy information processing and communications: a tutorial review, 2016. Google Scholar

[5]

Taylor MB. Is dark silicon useful? Harnessing the four horsemen of the coming dark silicon apocalypse. In: Proceedings of Design Automation Conference 2012:1131–6. Google Scholar

[6]

Andrae A, Edler T. On global electricity usage of communication technology: trends to 2030. Challenges 2015;6:117–57. Google Scholar

[7]

Kachris C, Tomkos I. A survey on optical interconnects for data centers. IEEE Commun Surv Tutorials 2012;14:1021–36. CrossrefGoogle Scholar

[8]

Hochberg M, Harris NC, Ding R, et al. Silicon photonics: the next fabless semiconductor industry. IEEE Solid State Circuits Mag 2013;5:48–58. Google Scholar

[9]

Hasler J, Marr B. Finding a roadmap to achieve large neuromorphic hardware systems. Front Neurosci 2013;7:118. CrossrefGoogle Scholar

[10]

Benjamin B, Gao P, McQuinn E, et al. Neurogrid: a mixed-analog-digital multichip system for large-scale neural simulations. Proc IEEE 2014;102:699–716. CrossrefGoogle Scholar

[11]

Merolla PA, Arthur JV, Alvarez-Icaza R, et al. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 2014;345:668–73. CrossrefGoogle Scholar

[12]

Schemmel J, Briiderle D, Griibl A, Hock M, Meier K, Millner S. A wafer-scale neuromorphic hardware system for large-scale neural modeling. In: Proceedings of 2010 IEEE International Symposium on Circuits and Systems. IEEE, 2010:1947–50. Google Scholar

[13]

Furber S, Galluppi F, Temple S, Plana L. The SpiNNaker project. Proc IEEE 2014;102:652–65. CrossrefGoogle Scholar

[14]

The HBP Report. Technical report, The Human Brain Project, 2012. Google Scholar

[15]

Miller DAB. Rationale and challenges for optical interconnects to electronic chips. Proc IEEE 2000;88:728–49. CrossrefGoogle Scholar

[16]

Boahen K. Point-to-point connectivity between neuromorphic chips using address events. Circuits Syst II Analog Digital Signal Process IEEE Trans 2000;47:416–34. Google Scholar

[17]

Keyes RW. Optical logic-in the light of computer technology. Opt Acta Int J Opt 1985;32:525–35. CrossrefGoogle Scholar

[18]

Prucnal PR, Shastri BJ, Tait AN, Nahmias MA, Ferreira de Lima T. Neuromorphic photonics. CRC Press, Boca Raton, FL, USA, 2017. Google Scholar

[19]

Liang D, Roelkens G, Baets R, Bowers JE. Hybrid integrated platforms for silicon photonics. Materials 2010;3:1782. CrossrefGoogle Scholar

[20]

Nahmias MA, de Lima TF, Tait AN, Shastri BJ, Prucnal PR. Photonically-enhanced neural networks: technology comparison. In: IEEE Photonics Conference. In preparation. Google Scholar

[21]

Fok MP, Deming H, Nahmias M, Rafidi N, Rosenbluth D, Tait A, Tian Y, Prucnal PR. Signal feature recognition based on lightwave neuromorphic signal processing. Opt Lett 2011;36:19–21. CrossrefGoogle Scholar

[22]

Kravtsov KS, Fok MP, Prucnal PR, Rosenbluth D. Ultrafast all-optical implementation of a leaky integrate-and-fire neuron. Opt Express 2011;19:2133–47. CrossrefGoogle Scholar

[23]

Rosenbluth D, Kravtsov K, Fok MP, Prucnal PR. A high performance photonic pulse processing device. Opt Express 2009;17:22767–72. CrossrefGoogle Scholar

[24]

Bengio Y, Courville A, Vincent P. Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell 2013;35:1798–828. CrossrefGoogle Scholar

[25]

Maass W. Networks of spiking neurons: the third generation of neural network models. Neural Netw 1997;10:1659–71. CrossrefGoogle Scholar

[26]

Eliasmith C. A unified approach to building and controlling spiking attractor networks. Neural Comput 2005;17:1276–314. CrossrefGoogle Scholar

[27]

Hopfield JJ. Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci USA 1982;79:2554–8. CrossrefGoogle Scholar

[28]

Perrett DI, Rolls ET, Caan W. Visual neurones responsive to faces in the monkey temporal cortex. Exp Brain Res 1982;47:329–42. CrossrefGoogle Scholar

[29]

Thorpe S, Delorme A, Rullen RV. Spike-based strategies for rapid processing. Neural Netw 2001;14:715–25. CrossrefGoogle Scholar

[30]

Izhikevich EM. Which model to use for cortical spiking neurons? IEEE Trans Neural Netw 2004;15:1063–70. CrossrefGoogle Scholar

[31]

Tait AN, Nahmias MA, Shastri BJ, Prucnal PR. Broadcast and weight: an integrated network for scalable photonic spike processing. J Lightw Technol 2014;32:3427–39. CrossrefGoogle Scholar

[32]

Alexander K, Van Vaerenbergh T, Fiers M, Mechet P, Dambre J, Bienstman P. Excitability in optically injected microdisk lasers with phase controlled excitatory and inhibitory response. Opt Express 2013;21:26182. CrossrefGoogle Scholar

[33]

Hurtado A, Javaloyes J. Controllable spiking patterns in long-wavelength vertical cavity surface emitting lasers for neuromorphic photonics systems. Appl Phys Lett 2015;107:241103. CrossrefGoogle Scholar

[34]

Nahmias MA, Shastri BJ, Tait AN, Prucnal PR. A leaky integrate-and-fire laser neuron for ultrafast cognitive computing. IEEE J Select Top Quantum Electron 2013;19:1–12. CrossrefGoogle Scholar

[35]

Selmi F, Braive R, Beaudoin G, Sagnes I, Kuszelewicz R, Barbay S. Relative refractory period in an excitable semiconductor laser. Phys Rev Lett 2014;112:183902. CrossrefGoogle Scholar

[36]

Selmi F, Braive R, Beaudoin G, Sagnes I, Kuszelewicz R, Barbay S. Temporal summation in a neuromimetic micropillar laser. Opt Lett 2015;40:5690–3. CrossrefGoogle Scholar

[37]

Barbay S, Kuszelewicz R, Yacomotti AM. Excitability in a semiconductor laser with saturable absorber. Opt Lett 2011;36:4476–8. CrossrefGoogle Scholar

[38]

Shastri B, Tait A, Nahmias M, Wu B, Prucnal P. Spatiotemporal pattern recognition with cascadable graphene excitable lasers. In: Photonics Conference (IPC), 2014 IEEE, 2014:573–4. Google Scholar

[39]

Shastri BJ, Nahmias MA, Tait AN, Rodriguez AW, Wu B, Prucnal PR. Spike processing with a graphene excitable laser. Sci Rep 2016;6:19126. CrossrefGoogle Scholar

[40]

Shastri BJ, Tait AN, Nahmias M, Wu B, Prucnal P. Coincidence detection with graphene excitable laser. In: CLEO. Optical Society of America, 2014:STu3I.5. Google Scholar

[41]

Nahmias MA, Tait AN, Tolias L, et al. An integrated analog O/E/O link for multi-channel laser neurons. Appl Phys Lett 2016;108:151106. CrossrefGoogle Scholar

[42]

Tait A, Wu A, Zhou E, et al. Demonstration of a silicon photonic neural network. In: Summer Topicals Meeting Series (SUM). IEEE, 2016.

[43]

Izhikevich EM. Dynamical systems in neuroscience: the geometry of excitability and bursting. Vol. 25. MIT Press, Cambridge, MA, USA, 2006. Google Scholar

[44]

Van Vaerenbergh T, Fiers M, Mechet P, et al. Cascadable excitability in microrings. Opt Express 2012;20:20292. CrossrefGoogle Scholar

[45]

Indiveri G, Linares-Barranco B, Hamilton TJ, et al. Neuromorphic silicon neuron circuits. Front Neurosci 2011;5:1–23. CrossrefGoogle Scholar

[46]

Pickett MD, Medeiros-Ribeiro G, Williams RS. A scalable neuristor built with Mott memristors. Nat Mater 2013;12:114–7. CrossrefGoogle Scholar

[47]

Heck M, Bowers J. Energy efficient and energy proportional optical interconnects for multi-core processors: driving the need for on-chip sources. Select Top Quantum Electron IEEE J 2014;20:332–43. CrossrefGoogle Scholar

[48]

Liang D, Bowers JE. Recent progress in lasers on silicon. Nat Photon 2010;4:511–7. CrossrefGoogle Scholar

[49]

Roelkens G, Liu L, Liang D, et al. III-V/silicon photonics for on-chip and intra-chip optical interconnects. Laser Photon Rev 2010;4:751–79. CrossrefGoogle Scholar

[50]

Vlasov Y. Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100g. Commun Mag IEEE 2012;50:s67–72. CrossrefGoogle Scholar

[51]

Barwicz T, Boyer N, Harel S, et al. Automated, self-aligned assembly of 12 fibers per nanophotonic chip with standard microelectronics assembly tooling. In: Electronic Components and Technology Conference (ECTC), 2015 IEEE 65th, 2015:775–82. Google Scholar

[52]

Sysak M, Liang D, Jones R, et al. Hybrid silicon laser technology: a thermal perspective. Select Top Quantum Electron IEEE J 2011;17:1490–8. CrossrefGoogle Scholar

[53]

Yamada M. A theoretical analysis of self-sustained pulsation phenomena in narrow-stripe semiconductor lasers. IEEE J Quantum Electron 1993;29:1330–6. CrossrefGoogle Scholar

[54]

Dubbeldam JLA, Krauskopf B. Self-pulsations of lasers with saturable absorber: dynamics and bifurcations. Opt Commun 1999;159:325–38. CrossrefGoogle Scholar

[55]

Dubbeldam JLA, Krauskopf B, Lenstra D. Excitability and coherence resonance in lasers with saturable absorber. Phys Rev E 1999;60:6580–8. CrossrefGoogle Scholar

[56]

Elsass T, Gauthron K, Beaudoin G, Sagnes I, Kuszelewicz R, Barbay S. Control of cavity solitons and dynamical states in a monolithic vertical cavity laser with saturable absorber. Eur Phys J D 2010;59:91–6. CrossrefGoogle Scholar

[57]

Larotonda MA, Hnilo A, Mendez JM, Yacomotti AM. Experimental investigation on excitability in a laser with a saturable absorber. Phys Rev A 2002;65:033812. CrossrefGoogle Scholar

[58]

Nahmias MA, Tait AN, Shastri BJ, de Lima TF, Prucnal PR. Excitable laser processing network node in hybrid silicon: analysis and simulation. Opt Express 2015;23:26800–13. CrossrefGoogle Scholar

[59]

Shastri BJ, Nahmias MA, Tait AN, Prucnal PR. Simulations of a graphene excitable laser for spike processing. Opt Quantum Electron 2014;46:1353–8. CrossrefGoogle Scholar

[60]

Shastri BJ, Nahmias MA, Tait AN, Wu B, Prucnal PR. Simpel: circuit model for photonic spike processing laser neurons. Opt Express 2015;23:8029–44. CrossrefGoogle Scholar

[61]

Spühler GJ, Paschotta R, Fluck R, et al. Experimentally confirmed design guidelines for passively q-switched microchip lasers using semiconductor saturable absorbers. J Opt Soc Am B Opt Phys 1999;16:376–88. CrossrefGoogle Scholar

[62]

Coomans W, Beri S, Sande GVD, Gelens L, Danckaert J. Optical injection in semiconductor ring lasers. Phys Rev A 2010;81:033802. CrossrefGoogle Scholar

[63]

Coomans W, Gelens L, Beri S, Danckaert J, Van Der Sande G. Solitary and coupled semiconductor ring lasers as optical spiking neurons. Phys Rev E Stat Nonlinear Soft Matter Phys 2011;84:1–8. CrossrefGoogle Scholar

[64]

Coomans W, Van der Sande G, Gelens L. Oscillations and multistability in two semiconductor ring lasers coupled by a single waveguide. Phys Rev A 2013;88:033813. CrossrefGoogle Scholar

[65]

Gelens L, Mashal L, Beri S, et al. Excitability in semiconductor microring lasers: experimental and theoretical pulse characterization. Phys Rev A 2010;82:063841. CrossrefGoogle Scholar

[66]

Van Vaerenbergh T, Alexander K, Dambre J, Bienstman P. Excitation transfer between optically injected microdisk lasers. Opt Express 2013;21:28922. CrossrefGoogle Scholar

[67]

Brunstein M, Yacomotti AM, Sagnes I, Raineri F, Bigot L, Levenson A. Excitability and self-pulsing in a photonic crystal nanocavity. Phys Rev A 2012;85:031803. CrossrefGoogle Scholar

[68]

Yacomotti AM, Monnier P, Raineri F, et al. Fast thermo-optical excitability in a two-dimensional photonic crystal. Phys Rev Lett 2006;97:143904. CrossrefGoogle Scholar

[69]

Yacomotti AM, Raineri F, Vecchi G, et al. All-optical bistable band-edge Bloch modes in a two-dimensional photonic crystal. Appl Phys Lett 2006;88. CrossrefGoogle Scholar

[70]

Romeira B. Dynamics of resonant tunneling diode optoelectronic oscillators. PhD thesis, Universidade do Algarve, 2012. Google Scholar

[71]

Romeira B, Avó R, Javaloyes J, Balle S, Ironside C, Figueiredo J. Stochastic induced dynamics in neuromorphic optoelectronic oscillators. Opt Quantum Electron 2014;46:1391–6. CrossrefGoogle Scholar

[72]

Romeira B, Javaloyes J, Ironside CN, Figueiredo JML, Balle S, Piro O. Excitability and optical pulse generation in semiconductor lasers driven by resonant tunneling diode photo-detectors. Opt Express 2013;21:20931–40. CrossrefGoogle Scholar

[73]

Barland S, Piro O, Giudici M, Tredicce JR, Balle S. Experimental evidence of van der Pol-Fitzhugh-Nagumo dynamics in semiconductor optical amplifiers. Phys Rev E 2003;68:036209. CrossrefGoogle Scholar

[74]

Garbin B, Goulding D, Hegarty SP, Huyet G, Kelleher B, Barland S. Incoherent optical triggering of excitable pulses in an injection-locked semiconductor laser. Opt Lett 2014;39:1254. CrossrefGoogle Scholar

[75]

Garbin B, Javaloyes J, Tissoni G, Barland S. Topological solitons as addressable phase bits in a driven laser. Nat Commun 2015;6:5915. CrossrefGoogle Scholar

[76]

Goulding D, Hegarty SP, Rasskazov O, et al. Excitability in a quantum dot semiconductor laser with optical injection. Phys Rev Lett 2007;98:153903. CrossrefGoogle Scholar

[77]

Kelleher B, Bonatto C, Huyet G, Hegarty SP. Excitability in optically injected semiconductor lasers: contrasting quantum-well- and quantum-dot-based devices. Phys Rev E Stat Nonlinear Soft Matter Phys 2011;83:1–6. CrossrefGoogle Scholar

[78]

Kelleher B, Bonatto C, Skoda P, Hegarty SP, Huyet G. Excitation regeneration in delay-coupled oscillators. Phys Rev E Stat Nonlinear Soft Matter Phys 2010;81:1–5. Google Scholar

[79]

Marino F, Balle S. Excitable optical waves in semiconductor microcavities. Phys Rev Lett 2005;94:094101. CrossrefGoogle Scholar

[80]

Turconi M, Garbin B, Feyereisen M, Giudici M, Barland S. Control of excitable pulses in an injection-locked semiconductor laser. Phys Rev E 2013;88:022923. CrossrefGoogle Scholar

[81]

Wieczorek S, Krauskopf B, Lenstra D. Unifying view of bifurcations in a semiconductor laser subject to optical injection. Opt Commun 1999;172:279–95. CrossrefGoogle Scholar

[82]

Wieczorek S, Krauskopf B, Lenstra D. Multipulse excitability in a semiconductor laser with optical injection. Phys Rev Lett 2002;88:063901. CrossrefGoogle Scholar

[83]

Wieczorek S, Krauskopf B, Simpson TB, Lenstra D. The dynamical complexity of optically injected semiconductor lasers. Phys Rep 2005;416:1–128. CrossrefGoogle Scholar

[84]

Aragoneses A, Perrone S, Sorrentino T, Torrent MC, Masoller C. Unveiling the complex organization of recurrent patterns in spiking dynamical systems. Sci Rep 2014;4:4696 EP. CrossrefGoogle Scholar

[85]

Giacomelli G, Giudici M, Balle S, Tredicce JR. Experimental evidence of coherence resonance in an optical system. Phys Rev Lett 2000;84:3298–301. CrossrefGoogle Scholar

[86]

Heil T, Fischer I, Elsäßer W, Gavrielides A. Dynamics of semiconductor lasers subject to delayed optical feedback: the short cavity regime. Phys Rev Lett 2001;87:243901. CrossrefGoogle Scholar

[87]

Giudici M, Green C, Giacomelli G, Nespolo U, Tredicce JR. Andronov bifurcation and excitability in semiconductor lasers with optical feedback. Phys Rev E 1997;55:6414–8. CrossrefGoogle Scholar

[88]

Sorrentino T, Quintero-Quiroz C, Aragoneses A, Torrent MC, Masoller C. Effects of periodic forcing on the temporally correlated spikes of a semiconductor laser with feedback. Opt Express 2015;23:5571–81. CrossrefGoogle Scholar

[89]

Wünsche HJ, Brox O, Radziunas M, Henneberger F. Excitability of a semiconductor laser by a two-mode homoclinic bifurcation. Phys Rev Lett 2001;88:023901. CrossrefGoogle Scholar

[90]

Yacomotti AM, Eguia MC, Aliaga J, Martinez OE, Mindlin GB, Lipsich A. Interspike time distribution in noise driven excitable systems. Phys Rev Lett 1999;83:292–5. CrossrefGoogle Scholar

[91]

Hurtado A, Henning ID, Adams MJ. Optical neuron using polarisation switching in a 1550nm-VCSEL. Opt Express 2010;18:25170–6. Google Scholar

[92]

Hurtado A, Schires K, Henning ID, Adams MJ. Investigation of vertical cavity surface emitting laser dynamics for neuromorphic photonic systems. Appl Phys Lett 2012;100:103703. CrossrefGoogle Scholar

[93]

Prucnal PR, Shastri BJ, Ferreira de Lima T, Nahmias MA, Tait AN. Recent progress in semiconductor excitable lasers for photonic spike processing. Adv Opt Photon 2016;8:228. CrossrefGoogle Scholar

[94]

Durstewitz D, Seamans JK, Sejnowski TJ. Neurocomputational models of working memory. Nat Neurosci 2000;3:1184–91. CrossrefGoogle Scholar

[95]

Pillow JW, Shlens J, Paninski L, et al. Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature 2008;454:995–9. CrossrefGoogle Scholar

[96]

Theunissen FE, David SV, Singh NC, Hsu A, Vinje WE, Gallant JL. Estimating spatio-temporal receptive fields of auditory and visual neurons from their responses to natural stimuli. Netw Comput Neural Syst 2001;12:289–316. CrossrefGoogle Scholar

[97]

Izhikevich EM. Polychronization: computation with spikes. Neural Comput 2006;18:245–82. CrossrefGoogle Scholar

[98]

Chrostowski L, Hochberg M. Silicon photonics design: from devices to systems. Cambridge University Press, Cambridge, UK, 2015. Google Scholar

[99]

Smit MK. Generic InP-based integration technology, today and tomorrow. In: Advanced Photonics Congress. Washington, DC, USA, 2012:IM2A.1. Google Scholar

[100]

Tait AN, Wu AX, de Lima TF, et al. Microring weight banks. IEEE J Select Top Quantum Electron 2016;22:312–25. CrossrefGoogle Scholar

[101]

Wang Y, Wang X, Flueckiger J, et al. Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits. Opt Express 2014;22:20652–62. CrossrefGoogle Scholar

[102]

Tait A, Ferreira de Lima T, Nahmias M, Shastri B, Prucnal P. Continuous calibration of microring weights for analog optical networks. Photon Technol Lett IEEE 2016;28:887–90. CrossrefGoogle Scholar

[103]

Preston K, Sherwood-Droz N, Levy JS, Lipson M. Performance guidelines for WDM interconnects based on silicon microring resonators. In: CLEO:2011 - Laser Applications to Photonic Applications. Optical Society of America, 2011:CThP4. Google Scholar

[104]

Ramaswami R. Multiwavelength lightwave networks for computer communication. Commun Mag IEEE 1993;31:78–88. CrossrefGoogle Scholar

[105]

Klein E, Geuzebroek D, Kelderman H, Sengo G, Baker N, Driessen A. Reconfigurable optical add-drop multiplexer using microring resonators. Photon Technol Lett IEEE 2005;17:2358–60. CrossrefGoogle Scholar

[106]

Mak J, Sacher W, Xue T, Mikkelsen J, Yong Z, Poon J. Automatic resonance alignment of high-order microring filters. Quantum Electron IEEE J 2015;51:1–11. CrossrefGoogle Scholar

[107]

Cox JA, Lentine AL, Trotter DC, Starbuck AL. Control of integrated micro-resonator wavelength via balanced homodyne locking. Opt Express 2014;22:11279–89. CrossrefGoogle Scholar

[108]

Cardenas J, Foster MA, Sherwood-Droz N, Poitras CB, Lira HLR, Zhang B, et al. Wide-bandwidth continuously tunable optical delay line using silicon microring resonators. Opt Express 2010;18:26525–34. CrossrefGoogle Scholar

[109]

DeRose CT, Watts MR, Trotter DC, Luck DL, Nielson GN, Young RW. Silicon microring modulator with integrated heater and temperature sensor for thermal control. In: Conference on Lasers and Electro-Optics 2010. Optical Society of America, 2010:CThJ3. Google Scholar

[110]

Jayatilleka H, Murray K, Ángel Guillén-Torres M, et al. Wavelength tuning and stabilization of microring-based filters using silicon in-resonator photoconductive heaters. Opt Express 2015;23:25084–97. CrossrefGoogle Scholar

[111]

Akopyan F, Sawada J, Cassidy A, et al. Truenorth: design and tool flow of a 65 mw 1 million neuron programmable neurosynaptic chip. Comput Aided Des Integr Circuits Syst IEEE Trans 2015;34:1537–57. Google Scholar

[112]

Tait A, Nahmias M, Ferreira de Lima T, et al. Continuous control of microring weight banks. In: Proc. IEEE Photonics Conf. (IPC), 2015. Google Scholar

[113]

Tait AN, Ferreira de Lima T, Nahmias MA, Shastri BJ, Prucnal PR. Multi-channel control for microring weight banks. Opt Express 2016;24:8895–906. CrossrefGoogle Scholar

[114]

Green500 list. https://www.top500.org/green500/. June 2016.

[115]

Friedmann S, Frémaux N, Schemmel J, Gerstner W, Meier K. Reward-based learning under hardware constraints – using a RISC processor embedded in a neuromorphic substrate. Front Neurosci 2013;7:160. CrossrefGoogle Scholar

[116]

Jayatilleka H, Murray K, Caverley M, Jaeger N, Chrostowski L, Shekhar S. Crosstalk in SOI microring resonator-based filters. Lightw Technol J 2015;34:2886–96. CrossrefGoogle Scholar

[117]

Sherwood-Droz N, Preston K, Levy JS, Lipson M. Device guidelines for WDM interconnects using silicon microring resonators. In: Workshop on the Interaction between Nanophotonic Devices and Systems (WINDS), colocated with Micro. Vol. 43. 2010:15–8. Google Scholar

[118]

Xu Q, Fattal D, Beausoleil RG. Silicon microring resonators with 1.5-μm radius. Opt Express 2008;16:4309–15. CrossrefGoogle Scholar

[119]

Biberman A, Shaw MJ, Timurdogan E, Wright JB, Watts MR. Ultralow-loss silicon ring resonators. Opt Lett 2012;37: 4236–8. CrossrefGoogle Scholar

[120]

Xiong K, Xiao X, Hu Y, et al. Single-mode silicon-on-insulator elliptical microdisk resonators with high q factors. In: Photonics and Optoelectronics Meetings (POEM). 2011;8333:83330A–A-7. Google Scholar

[121]

Soltani M, Li Q, Yegnanarayanan S, Adibi A. Toward ultimate miniaturization of high Q silicon traveling-wave microresonators. Opt Express 2010;18:19541–57. CrossrefGoogle Scholar

[122]

Ferreira de Lima T, Shastri BJ, Nahmias MA, Tait AN, Prucnal PR. Physical modeling of photonic neural networks. In: Summer Topicals Meeting Series (SUM), 2016. IEEE, 2016.

[123]

Jalali B, Mahjoubfar A. Tailoring wideband signals with a photonic hardware accelerator. Proc IEEE 2015;103:1071–86. CrossrefGoogle Scholar

[124]

Brunner D, Soriano MC, Mirasso CR, Fischer I. Parallel photonic information processing at gigabyte per second data rates using transient states. Nat Commun 2013;4:1364. CrossrefGoogle Scholar

[125]

Duport F, Schneider B, Smerieri A, Haelterman M, Massar S. All-optical reservoir computing. Opt Express 2012;20: 22783–95. CrossrefGoogle Scholar

[126]

Larger L, Soriano MC, Brunner D, et al. Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing. Opt Express 2012;20:3241–9. CrossrefGoogle Scholar

[127]

Ortn S, Soriano MC, Pesquera L, et al. A unified framework for reservoir computing and extreme learning machines based on a single time-delayed neuron. Sci Rep 2015;5:14945 EP. CrossrefGoogle Scholar

[128]

Vandoorne K, Mechet P, Van Vaerenbergh T, et al. Experimental demonstration of reservoir computing on a silicon photonics chip. Nat Commun 2014;5:3541. CrossrefGoogle Scholar

[129]

Larsson E, Edfors O, Tufvesson F, Marzetta T. Massive MIMO for next generation wireless systems. IEEE Commun Mag 2014;52:186–95. CrossrefGoogle Scholar

[130]

Gesbert D, Shafi M, Shan Shiu D, Smith PJ, Naguib A. From theory to practice: an overview of MIMO space-time coded wireless systems. IEEE J Select Areas Commun 2003;21:281–302. CrossrefGoogle Scholar

[131]

Hansen RC. Phased array antennas. Vol. 213. John Wiley & Sons, Hoboken, NJ, USA, 2009. Google Scholar

[132]

Jerez JL, Constantinides GA, Kerrigan EC. An FPGA implementation of a sparse quadratic programming solver for constrained predictive control. In: ACM/SIGDA International Symposium on Field Programmable Gate Arrays – FPGA, 2011:209–18.

[133]

Xia Y. A new neural network for solving linear and quadratic programming problems. IEEE Trans Neural Netw 2001;12:1074–83. CrossrefGoogle Scholar

[134]

Keviczky T, Balas GJ. Receding horizon control of an F-16 aircraft: a comparative study. Control Eng Pract 2006;14:1023–33. CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.