[1]

Touch J, Willner A. Native digital processing for optical networking. In: Proc. IEEE Third Int’l. Conference on Future Generation Communication Technologies (FGCT), 2014. Google Scholar

[2]

Touch J, Cao Y, Ziyadi M, et al. A candidate approach for optical in-network computation. Invited paper, IEEE Summer Topicals, 2016. Google Scholar

[3]

Green P. An all-optical computer network: lessons learned. IEEE Netw 1992;6:56–60. CrossrefGoogle Scholar

[4]

Harai H, Murata M. High-speed buffer management for 40 Gb/s-based photonic packet switches. IEEE/ACM Trans Netw 2006;14:191–204. CrossrefGoogle Scholar

[5]

Jeon M, Pan Z, Cao J, et al. Demonstration of all-optical packet switching routers with optical label swapping and 2R regeneration for scalable optical label switching network application. IEEE/OSA J Lightwave Technol 2003;21:2723. CrossrefGoogle Scholar

[6]

Touch J, Bannister J, Suryaputra S, Willner A. A design for an Internet router with a digital optical data plane. Invited paper, Photonics West, 2014. Google Scholar

[7]

Chowdhury N, Boutaba R. A survey of network virtualization. Comput Netw 2010;54:862–76. CrossrefGoogle Scholar

[8]

McKeown N, Anderson T, Balakrishnan H, et al. OpenFlow: enabling innovation in campus networks. ACM SIGCOMM Comput Commun Rev 2008;28:38. Google Scholar

[9]

Gringeri S, Basch E, Xia T. Technical considerations for supporting data rates beyond 100 Gb/s. IEEE Commun 2012;50:521–30. Google Scholar

[10]

Athale R, Psaltis D. Optical computing: past and future. Optics Photon News 2016;27:29–39. Google Scholar

[11]

Xu Q, Fattal D, Beausoleil R. Silicon microring resonators with 1.5-μm radius. Optics Express 2008;16:4309–15. CrossrefGoogle Scholar

[12]

Arrathoon R. Digital optical computing: possibilities and pitfalls. In: Proc. SPIE Real Time Signal Processing IV, V564, 1985, pp. 108–18. Google Scholar

[13]

Caulfield H, Dolev S. Why future supercomputing requires optics. Nat Photon 2010;4:261–3. CrossrefGoogle Scholar

[14]

Jackson D. Photonic processors: a systems approach. Appl Optics 1994;33:5451–66. CrossrefGoogle Scholar

[15]

Miller D. Correspondence – the role of optics in computing. Nat Photon 2010;4:406. CrossrefGoogle Scholar

[16]

Feitelson D. Optical computing: a survey for computer scientists. MIT Press, Cambridge, MA, 1992. Google Scholar

[17]

Tucker R. Correspondence – the role of optics in computing. Nat Photon 2010;4:405. CrossrefGoogle Scholar

[18]

Abraham W, Seaton C, Smith S. The optical computer. Sci Am 1983;85–93. CrossrefGoogle Scholar

[19]

Ambs P. Optical computing: a 60-year adventure. Adv Opt Tech 2010;2010:1–15. Google Scholar

[20]

Jain K, Pratt GW Jr. Optical transistor. Appl Phys Lett 1976;28:719–21. CrossrefGoogle Scholar

[21]

Miller D. Are optical transistors the logical next step? Nat Photon 2010;4:3–4. CrossrefGoogle Scholar

[22]

Mistry K. Tri-gate transistors: enabling Moore’s law at 22nm and beyond. In: Presentation at Semicon West 2014. Available at: http://www.semiconwest.org/sites/semiconwest.org/files/docs/Kaizad%20Mistry_Intel.pdf. Accessed June 2014.

[23]

Chattopadhyay T, Roy JN. All-optical quaternary computing and information processing: a promising path. J Optics 2013;42:228–38. CrossrefGoogle Scholar

[24]

Kakande J, Slavík R, Parmigiani F, et al. Multilevel quantization of optical phase in a novel coherent parametric mixer architecture. Nat Photon 2011;5:748–52. CrossrefGoogle Scholar

[25]

Slavík R, Parmigiani F, Kakande J, et al. All-optical phase and amplitude regenerator for next-generation telecommunications systems. Nat Photon 2010;4:690–5. CrossrefGoogle Scholar

[26]

Zhu Z, Funabashi M, Pan Z, Xiang B, Paraschis L, Yoo S. Jitter and amplitude noise accumulations in cascaded all-optical regenerators. IEEE/OSA J Lightwave Technol 2008;26:1640–52. CrossrefGoogle Scholar

[27]

Yang JY, Akasaka Y, Ziyadi M, et al. PSA and PSA-based optical regeneration for extending the reach of spectrally efficient advanced modulation formats. Invited paper, IEEE Summer Topicals 2015. Google Scholar

[28]

Sawchuk A, Strand T. Digital optical computing. Proc. IEEE 1984;72:758–79. CrossrefGoogle Scholar

[29]

Hardy J, Shamir J. Optics inspired logic architecture. Optics Express 2007;15:150–65. CrossrefGoogle Scholar

[30]

Huang A. Parallel algorithms for optical digital computers. In: Proc. SPIE Int’l. Optical Computing Conf., April 1983, pp. 13–17. Google Scholar

[31]

Paquot Y, Duport F, Smerieri A, et al. Optoelectronic reservoir computing. Sci Rep 2012;2:1–6. CrossrefGoogle Scholar

[32]

Touch J, Mohajerin-Ariaei A, Chitgarha M, et al. The impact of errors on differential optical processing. USC/ISI Tech Report ISI-TR-690, 2014. Google Scholar

[33]

Mamyshev P. All-optical data regeneration based on self-phase modulation effect. In: ECOC 1998. Google Scholar

[34]

Striegler A, Schmauss B. All-optical DPSK signal regeneration based on cross-phase modulation. IEEE Photon Technol Lett 2004;16:1083–5. CrossrefGoogle Scholar

[35]

Hauer M, McGeehan J, Kumar S, et al. Optically-assisted Internet routing using arrays of novel dynamically reconfigurable FBG-based correlators. IEEE/OSA J Lightwave Technol Spec Issue Opt Netw 2003;21:2765–78. CrossrefGoogle Scholar

[36]

McGeehan J, Kumar S, Gurkan D, et al. All-optical decrementing of a packet’s time-to-live (TTL) field and subsequent dropping of a zero-TTL packet. IEEE/OSA J Lightwave Technol Spec Issue Opt Netw 2003;21:2746–52. CrossrefGoogle Scholar

[37]

Liu L, Kumar R, Huybrechts K, et al. An ultra-small, low-power, all-optical flip-flop memory on a silicon chip. Nat Photon 2010;4:182–7. Google Scholar

[38]

Wang J, Yang JY, Wu X, Yilmaz O, Nuccio S, Willner A. 40-Gbaud/s (120-Gbit/s) octal and 10-Gbaud/s (40-Gbit/s) hexadecimal simultaneous addition and subtraction using 8PSK/16PSK and highly nonlinear fiber. In: OFC 2011. Google Scholar

[39]

Wang J, Yang JY, Huang H, Willner A. Three-input optical addition and subtraction of quaternary base numbers. Optics Express 2013;21:488–99. CrossrefGoogle Scholar

[40]

Mohajerin-Ariaei A, Ziyadi M, Chitgarha M, et al. Phase noise mitigation of QPSK signal utilizing phase-locked multiplexing of signal harmonics and amplitude saturation. Optics Lett 2015;40:3328–31. CrossrefGoogle Scholar

[41]

Almaiman A, Cao Y, Ziyadi M, et al. Experimental demonstration of phase-sensitive regeneration of a 20–40 Gb/s QPSK channel without phase-locked loop using Brillouin amplification. In: ECOC 2016. Google Scholar

[42]

Cao Y, Alishahi F, Akasaka Y, et al. Experimental investigation of quasi-periodic power spectrum in Raman-assisted phase sensitive amplifier for 10/20/50-Gbaud QPSK and 10-Gbaud 16QAM signals. In: ECOC 2016. Google Scholar

[43]

Chitgarha MR, Khaleghi S, Ziyadi M, et al. Demonstration of tunable optical generation of higher-order modulation formats using nonlinearities and coherent frequency comb. Optics Lett 2014;39:4915–8. CrossrefGoogle Scholar

[44]

Ziyadi M, Chitgarha M, Mohajerin-Ariaei A, et al. Optical channel de-aggregator of 30-Gbaud QPSK and 20-Gbaud 8-PSK data using mapping onto constellation axes. Optics Lett 2015;40:4899–902. Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.