[1]

Leuthold J, Hoessbacher C, Muehlbrandt S. Plasmonic communications: Light on a wire. Opt Phot News 2013;24:28–35. CrossrefGoogle Scholar

[2]

Maier SA. Plasmonics: fundamentals and applications, 1st ed. New York, Springer, 2007, xxiv. Google Scholar

[3]

Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML. Plasmonics for extreme light concentration and manipulation. Nat Mater 2010;9:193–204. PubMedCrossrefGoogle Scholar

[4]

Gramotnev DK, Bozhevolnyi SI. Plasmonics beyond the diffraction limit. Nat Photonics 2010;4:83–91. CrossrefGoogle Scholar

[5]

Hill MT, Oei YS, Smalbrugge B, et al. Lasing in metallic-coated nanocavities. Nat Photonics 2007;1:589–94. CrossrefGoogle Scholar

[6]

Oulton RF, Sorger VJ, Zentgraf T, et al. Plasmon lasers at deep subwavelength scale. Nature 2009;461:629–32. PubMedCrossrefGoogle Scholar

[7]

Lu YJ, Kim J, Chen HJ, et al. Plasmonic nanolaser using epitaxially grown silver film. Science 2012;337:450–53. PubMedCrossrefGoogle Scholar

[8]

Zhang Q, Li G, Liu X, et al. A room temperature low-threshold ultraviolet plasmonic nanolaser. Nat Commun 2014;5:4953. CrossrefPubMedGoogle Scholar

[9]

Choo H, Kim MK, Staffaroni N, et al. Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper. Nat Photonics 2012;6:838–44. CrossrefGoogle Scholar

[10]

Ma RM, Yin X, Oulton RF, Sorger VJ, Zhang X. Multiplexed and electrically modulated plasmon laser circuit. Nano Lett 2012;12:5396–402. PubMedCrossrefGoogle Scholar

[11]

Melikyan A, Alloatti L, Muslija A, et al. High-speed plasmonic phase modulators. Nat Photonics 2014;8:229–33. CrossrefGoogle Scholar

[12]

Haffner C, Heni W, Fedoryshyn Y, et al. All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale. Nat Photonics 2015;9:525–8. CrossrefGoogle Scholar

[13]

Mühlbrandt S, Melikyan A, Harter T, et al. Silicon-plasmonic internal-photoemission detector for 40Gbit/s data reception. Optica 2016;3:741–7. CrossrefGoogle Scholar

[14]

Berini P, De Leon I. Surface plasmon–polariton amplifiers and lasers. Nat Photonics 2012;6:16–24. CrossrefGoogle Scholar

[15]

Krasavin AV, Vo TP, Dickson W, Bolger PM, Zayats AV. All-plasmonic modulation via stimulated emission of copropagating surface plasmon polaritons on a substrate with gain. Nano Lett 2011;11:2231–5. CrossrefPubMedGoogle Scholar

[16]

Noginov MA, Podolskiy VA, Zhu G, et al. Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium. Opt Express 2008;16:1385–92. PubMedCrossrefGoogle Scholar

[17]

Liu N, Wei H, Li J, et al. Plasmonic amplification with ultra-high optical gain at room temperature. Sci Rep 2013;3:1967. PubMedCrossrefGoogle Scholar

[18]

Gather MC, Meerolz K, Danz N, Leosson K. Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer. Nat Photonics 2010;4:457–61. CrossrefGoogle Scholar

[19]

Grandidier J, Colas des Francs G, Massenot S, et al. Gain-assisted propagation in a plasmonic waveguide at telecom wavelength. Nano Lett 2009;9:2935–9. CrossrefGoogle Scholar

[20]

Radko IP, Nielsen MG, Albrektsen O, Bozhevolnyi SI. Stimulated emission of surface plasmon polaritons by lead-sulphide quantum dots at near infra-red wavelengths. Opt Express 2010;18:18633–41. PubMedCrossrefGoogle Scholar

[21]

Ambati M, Nam SH, Ulin-Avila E, Genov DA, Bartal G, Zhang X. Observation of stimulated emission of surface plasmon polaritons. Nano Lett 2008;8:3998–4001. PubMedCrossrefGoogle Scholar

[22]

Kéna-Cohen S, Stavrinou PN, Bradley DDC, Maier SA. Confined surface plasmon–polariton amplifiers. Nano Lett 2013;13:1323–9. PubMedCrossrefGoogle Scholar

[23]

De Leon I, Berini P. Amplification of long-range surface plasmons by a dipolar gain medium. Nat Photonics 2010;4:382–7. CrossrefGoogle Scholar

[24]

Paul A, Zhen YR, Wang Y, et al. Dye-assisted gain of strongly confined surface plasmon polaritons in silver nanowires. Nano Lett 2014;14:3628–33. CrossrefPubMedGoogle Scholar

[25]

Wild B, Cao L, Sun Y, et al. Propagation lengths and group velocities of plasmons in chemically synthesized gold and silver nanowires. ACS Nano 2012;6:472–82. CrossrefPubMedGoogle Scholar

[26]

Ma Y, Li X, Yu H, Tong L, Gu Y, Gong Q. Direct measurement of propagation losses in silver nanowires. Opt Lett 2010;35:1160–2. PubMedCrossrefGoogle Scholar

[27]

Wang W, Yang Q, Fan F, Xu H, Wang Z. Light propagation in curved silver nanowire plasmonic waveguides. Nano Lett 2011;11:1603–8. CrossrefPubMedGoogle Scholar

[28]

Dong CH, Ren XF, Yang R, et al. Coupling of light from an optical fiber taper into silver nanowires. Appl Phys Lett 2009;95:221109. CrossrefGoogle Scholar

[29]

Tian J, Ma Z, Li Q, et al. Nanowaveguides and couplers based on hybrid plasmonic modes. Appl Phys Lett 2010;97:231121. CrossrefGoogle Scholar

[30]

Guo X, Qiu M, Bao J, et al. Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits. Nano Lett 2009;9:4515–9. PubMedCrossrefGoogle Scholar

[31]

Flynn RA, Bussmann K, Simpkins BS, Vurgaftman I, Kim CS, Long JP. Propagation length of surface plasmon polaritons determined by emission from introduced surface discontinuities. J Appl Phys 2010;107:013109. CrossrefGoogle Scholar

[32]

Bracher G, Schraml K, Jakubeit C, Kaniber M, Finley JJ. Direct measurement of plasmon propagation lengths on lithographically defined metallic waveguides on GaAs. J Appl Phys 2011;110:123106. CrossrefGoogle Scholar

[33]

Zia R, Schulle JA, Brongersma ML. Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides. Phys Rev B 2006;74:165415. CrossrefGoogle Scholar

[34]

Gordillo H, Suárez I, Abargues R, Rodríguez-Cantó PJ, Martínez-Pastor JP. Color tuning and white light by dispersing cdse, cdte, and cds in pmma nanocomposite waveguides. IEEE Photon J 2013;5:2201412. CrossrefGoogle Scholar

[35]

Arques L, Carrascosa A, Zamora V, Díez A, Cruz JL, Andrés MV. Excitation and interrogation of whispering-gallery modes in optical microresonators using a single fused-tapered fiber tip. Opt Lett 2011;36:3452–4. PubMedCrossrefGoogle Scholar

[36]

Dal Negro L, Bettotti P, Cazzanelli M, Pacifi D, Pavesi L. Applicability conditions and experimental analysis of the variable stripe length method for gain measurements. Opt Commun 2004;229:337–48. CrossrefGoogle Scholar

[37]

Berini P. Long-range surface plasmon polaritons. Adv Opt Photonics 2009;1:484–588. CrossrefGoogle Scholar

[38]

Berini P. Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures. Phys Rev B 2001;63:125417. CrossrefGoogle Scholar

[39]

Zia R, Selker MD, Brongersma ML. Leaky and bound modes of surface plasmon waveguides. Phys Rev B 2005;71:165431. CrossrefGoogle Scholar

[40]

Lifante G. Integrated photonics. Fundamentals, 1st ed. USA: John Wiley & Sons. 2003. Google Scholar

[41]

Palik ED. Handbook of optical constants of solids. The Netherlands: Elsevier. 1997. Google Scholar

[42]

Johnson PB, Christy RW. Optical constants of the noble metals. Phys Rev B 1972;6:4370. CrossrefGoogle Scholar

[43]

Oulton RF, Sorger VJ, Genov DA, Pile DFP, Zhang XA. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat Photonics 2008;2:496–500. CrossrefGoogle Scholar

[44]

Suárez I, Gordillo H, Abargues R, Albert S, Martínez-Pastor JP. Photoluminescence waveguiding in CdSe and CdTe QDs–PMMA nanocomposite films. Nanotechnology 2011;22:435202. CrossrefPubMedGoogle Scholar

[45]

Boltasseva A, Nikolajsen T, Leosson K, Kjaer K, Larsen MS, Bozhevolnyi SI. Integrated optical components utilizing long-range surface plasmon polaritons. J Lightwave Technol 2005;23:413–22. CrossrefGoogle Scholar

[46]

Barnes WL. Fluorescence near interfaces: The role of photonic mode density. J Mod Opt 2009;45:661–99. Google Scholar

[47]

Klimov VI, Mikhailovsky AA, Xu S, et al. Optical gain and stimulated emission in nanocrystal quantum dots. Science 2000;290:314–7. CrossrefPubMedGoogle Scholar

[48]

Jasieniak JJ, Fortunati I, Gardin S, et al. Highly efficient amplified stimulated emission from CdSe-CdS-ZnS quantum dot doped waveguides with two-photon infrared optical pumping. Adv Mater 2008;20:69–73. CrossrefGoogle Scholar

[49]

Hervás J, Suárez I, Pérez J, et al. MWP phase shifters integrated in PbS-SU8 waveguides. Opt Express 2015;23:14351–9. CrossrefPubMedGoogle Scholar

[50]

Mecozzi A, Mork J, Hofmann M. Transient four-wave mixing with a collinear pump and probe. Opt Lett 2005;21:1017–9. Google Scholar

[51]

Gordillo H, Suárez I, Abargues R, Rodríguez-Cantó PJ, Almuneau G, Martínez-Pastor JP. Quantum-dot double layer polymer waveguides by evanescent light coupling. J Lightwave Technol. 2013;31:2515–25. CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.