[1]

Harris SE, Field JE, Imamoglu A. Nonlinear optical processes using electromagnetically induced transparency. Phys Rev Lett 1990;64:1107. PubMedCrossrefGoogle Scholar

[2]

Boller KJ, Imamoglu A, Harris SE. Observation of electromagnetically induced transparency. Phys Rev Lett 1991;66:2593. CrossrefPubMedGoogle Scholar

[3]

Kasapi A, Jain M, Yin GY, Harris SE. Electromagnetically induced transparency: propagation dynamics. Phys Rev Lett 1995;74:2447. PubMedCrossrefGoogle Scholar

[4]

Hau LV, Harris SE, Dutton Z, Behroozi CH. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 1999;397:594–8. CrossrefGoogle Scholar

[5]

Phillips DF, Fleischhauer A, Mair A, Walsworth RL, Lukin MD. Storage of light in atomic vapor. Phys Rev Lett 2001;86:783. CrossrefPubMedGoogle Scholar

[6]

Liu C, Dutton Z, Behroozi CH, Hau LV, Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 2001;409:490–3. CrossrefGoogle Scholar

[7]

Boyd RW, Gauthier DJ. Controlling the velocity of light pulses. Science 2009;326:1074–7. PubMedCrossrefGoogle Scholar

[8]

Kimble HJ. The quantum internet. Nature 2008;453:1023–30. PubMedCrossrefGoogle Scholar

[9]

Lukin MD, Imamoglu A. Controlling photons using electromagnetically induced transparency. Nature 2001;413:273–6. PubMedCrossrefGoogle Scholar

[10]

Lvovsky AI, Sanders BC, Tittel W. Optical quantum memory. Nat Photonics 2009;3:706–14. CrossrefGoogle Scholar

[11]

Fleischhauer M, Imamoglu A, Marangos JP. Electromagnetically induced transparency: optics in coherent media. Rev Mod Phys 2005;77:633. CrossrefGoogle Scholar

[12]

Scully MO. From lasers and masers to phaseonium and phasers. Phys Rep 1992;219:191–201. CrossrefGoogle Scholar

[13]

Harris SE. Electromagnetically induced transparency. Phys Today 1997;50:37. Google Scholar

[14]

Lukin MD, Hemmer P, Scully MO. Resonant nonlinear optics in phase-coherent media. Adv At Mol Opt Phys 2000;42:347–86. CrossrefGoogle Scholar

[15]

Matsko AB, Kocharovskaya O, Rostovtsev Y, Welch GR, Zibrov AS, Scully MO. Slow, ultraslow, stored, and frozen light. Adv At Mol Opt Phys 2001;46:191–242. CrossrefGoogle Scholar

[16]

Vitanov, NV, Fleischhauer M, Shore BW, Bergmann K. Coherent manipulation of atoms and molecules by sequential laser pulses. Adv At Mol Opt Phys 2001;46:55–190. CrossrefGoogle Scholar

[17]

Lukin, MD. Colloquium: trapping and manipulating photon states in atomic ensembles. Rev Mod Phys 2003;75:457. CrossrefGoogle Scholar

[18]

Arimondo E. Coherent population trapping in laser spectroscopy. Prog Optics 1996;35:259–354. Google Scholar

[19]

Marangos JP. Electromagnetically induced transparency. J Mod Opt 1998;45:471–503. CrossrefGoogle Scholar

[20]

Novikova I, Walsworth RL, Xiao Y. Electromagnetically induced transparency-based slow and stored light in warm atoms. Laser Photonics Rev 201 2;6:333–53. CrossrefGoogle Scholar

[21]

Fano U. Effects of configuration interaction on intensities and phase shifts. Phys Rev 1961;124:1866. CrossrefGoogle Scholar

[22]

Imamoglu A, Harris SE. Lasers without inversion: interference of dressed lifetime-broadened states. Opt Lett 1989;14: 1344–6. CrossrefPubMedGoogle Scholar

[23]

Zhang, GZ, Katsuragawa M, Hakuta K, Thompson RI, Stoicheff BP. Sum-frequency generation using strong-field coupling and induced transparency in atomic hydrogen. Phys Rev A 1995;52:1584. CrossrefPubMedGoogle Scholar

[24]

Dalibard J, Castin Y, Molmer K. Wave-function approach to dissipative processes in quantum optics. Phys Rev Lett 1992;68:580. CrossrefPubMedGoogle Scholar

[25]

Gardiner, CW, Parkins AS, Zoller P. Wave-function quantum stochastic differential equations and quantum-jump simulation methods. Phys Rev A 1992;46:4363. PubMedCrossrefGoogle Scholar

[26]

Fan S. Sharp asymmetric line shapes in side-coupled waveguide-cavity systems. Appl Phys Lett 2002;80:908. CrossrefGoogle Scholar

[27]

Chao CY, Guo LJ. Biochemical sensors based on polymer microrings with sharp asymmetrical resonance. Appl Phys Lett 2003;83:1527. CrossrefGoogle Scholar

[28]

Liang W, Yang L, Poon JKS, Huang Y, Vahala KJ, Yariv A. Transmission characteristics of a Fabry-Perot etalon-microtoroid resonator coupled system. Opt Lett 2006;31:510–2. PubMedCrossrefGoogle Scholar

[29]

Lu Y, Yao J, Li X, Wang P. Tunable asymmetrical Fano resonance and bistability in a microcavity-resonator-coupled Mach-Zehnder interferometer. Opt Lett 2005;30:3069–71. CrossrefGoogle Scholar

[30]

Zhou LJ, Poon AW. Fano resonance-based electrically reconfigurable adddrop filters in silicon microring resonator-coupled MachZehnder interferometers. Opt Lett 2007;32:781–3. CrossrefGoogle Scholar

[31]

Smith DD, Chang H, Fuller KA, Rosenberger AT, Boyd RW. Coupled-resonator-induced transparency. Phys. Rev. A 2004;69:063804. CrossrefGoogle Scholar

[32]

Yanik MF, Suh W, Wang Z, Fan S. Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency. Phys Rev Lett 2004;93:233903. CrossrefGoogle Scholar

[33]

Chu ST, Little BE, Pan W, Kaneko T, Kokubun Y. Second-order filter response from parallel coupled glass microring resonators. IEEE Photonics Technol Lett 1999;11:1426–8. CrossrefGoogle Scholar

[34]

Naweed A, Farea G, Shopova SI, Rosenberger AT. Induced transparency and absorption in coupled whispering-gallery microresonators. Phys Rev A 2005;71:043804. CrossrefGoogle Scholar

[35]

Poon JK, Zhu L, DeRose GA, Yariv A. Transmission and group delay of microring coupled-resonator optical waveguides. Opt Lett 2006;31:456–8. CrossrefPubMedGoogle Scholar

[36]

Totsuka K, Kobayashi N, Tomita M. Slow light in coupled-resonator-induced transparency. Phys Rev Lett 2007;98:213904. CrossrefPubMedGoogle Scholar

[37]

Xu Q, Sandhu S, Povinelli ML, Shakya J, Fan S, Lipson M. Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency. Phys Rev Lett 2006;96:123901. PubMedCrossrefGoogle Scholar

[38]

Xu Q, Dong P, Lipson M. Breaking the delay-bandwidth limit in a photonic structure. Nature Phys 2007;3:406–10. CrossrefGoogle Scholar

[39]

Xiao YF, Gaddam V, Yang L. Coupled optical microcavities: an enhanced refractometric sensing configuration. Opt Express 2008;16:12538–43. PubMedCrossrefGoogle Scholar

[40]

Xiao Y-F, Min B, Jiang X, Dong C-H, Yang L. Coupling whispering-gallery-mode microcavities with modal coupling mechanism. IEEE J Quant Electon 2008;44:1065–70. CrossrefGoogle Scholar

[41]

Xiao Y-F, Li M, Liu Y-C, Li Y, Sun X, Gong Q. Asymmetric Fano resonance analysis in indirectly coupled microresonators. Phys Rev A 2010;82:065804. CrossrefGoogle Scholar

[42]

Li B-B, Xiao Y-F, Zou C-L, et al. Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators. Appl Phys Lett 2012;100:021108. CrossrefGoogle Scholar

[43]

Xiao YF, Zou XB, Jiang W, Chen YL, Guo GC. Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems. Phys Rev A 2007;75:063833. CrossrefGoogle Scholar

[44]

Xiao YF, He L, Zhu J, Yang L. Electromagnetically induced transparency-like effect in a single polydimethylsiloxane-coated silica microtoroid. Appl Phys Lett 2009;94:231115. CrossrefGoogle Scholar

[45]

Dong CH, Zou CL, Xiao YF, Cui JM, Han ZF, Guo GC. Modified transmission spectrum induced by two-mode interference in a single silica microsphere. J Phys B 2009;42:215401. CrossrefGoogle Scholar

[46]

Li B-B, Xiao Y-F, Zou C-L, et al. Experimental observation of Fano resonance in a single whispering-gallery microresonator. Appl Phys Lett 2011;98:021116. CrossrefGoogle Scholar

[47]

Yang Y, Saurabh S, Ward J, Chormaic SN. Coupled-mode-induced transparency in aerostatically tuned microbubble whispering-gallery resonators. Opt Lett 2015;40:1834–7. CrossrefPubMedGoogle Scholar

[48]

Chiba A, Fujiwara H, Hotta JI, Takeuchi S, Sasaki K. Fano resonance in a multimode tapered fiber coupled with a microspherical cavity. Appl Phys Lett 2005;86:261106. CrossrefGoogle Scholar

[49]

Fan S, Joannopoulos JD. Analysis of guided resonances in photonic crystal slabs. Phys Rev B 2002;65:235112. CrossrefGoogle Scholar

[50]

Yang X, Yu M, Kwong DL, Wong CW. All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities. Phys Rev Lett 2009;102:173902. PubMedCrossrefGoogle Scholar

[51]

Yanik MF, Fan S. Stopping light all optically. Phys Rev Lett 2004;92:083901. PubMedCrossrefGoogle Scholar

[52]

Zheng C, Jiang XS, Hua SY, et al. Controllable optical analog to electromagnetically induced transparency in coupled high-Q microtoroid cavities. Opt Express 2012;20:18319. CrossrefPubMedGoogle Scholar

[53]

Lin T, Chau FS, Deng J, Zhou GY. Dynamic control of the asymmetric Fano resonance in side-coupled FabryPerot and photonic crystal nanobeam cavities. Appl Phys Lett 2015;107:223105. CrossrefGoogle Scholar

[54]

Shi P, Zhou GY, Deng J, Tian F, Chau FS. Tuning all-optical analog to electromagnetically induced transparency in nanobeam cavities using nanoelectromechanical system. Sci Rep 2015;5:14379. PubMedCrossrefGoogle Scholar

[55]

Zheng Y, Yang J, Shen Z, et al. Optically induced transparency in a micro-cavity. Light Sci Appl 2015;5:e16072. Google Scholar

[56]

Shen Z, Zhang YL, Chen Y, et al. Experimental realization of optomechanically induced non-reciprocity. Nat Photonics 2016;10:657–61. CrossrefGoogle Scholar

[57]

Ruesink F, Miri, MA, Alù A, Verhagen E. Nonreciprocity and magnetic-free isolation based on optomechanical interactions. Nat Commun 2016;7:13662. CrossrefPubMedGoogle Scholar

[58]

Li J, Yu R, Wu Y. Actively tunable double-Fano and Ramsey-Fano resonances in photonic molecules and improved sensing performance. Phys Rev A 2016;94:063822. CrossrefGoogle Scholar

[59]

Tassin P, Zhang L, Zhao R, Jain A, Koschny T, Soukoulis CM. Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation. Phys Rev Lett 2012;109:187401. CrossrefPubMedGoogle Scholar

[60]

Miroshnichenko AE, Flach S, Kivshar YS. Fano resonances in nanoscale structures. Rev Mod Phys 2010;82:2257. CrossrefGoogle Scholar

[61]

Hao F, Sonnefraud Y, Dorpe PV, Maier SA, Halas NJ, Nordlander P. Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. Nano Lett 2008;8:3983–8. CrossrefGoogle Scholar

[62]

Luk’yanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P. The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 2010;9:707–15. PubMedCrossrefGoogle Scholar

[63]

Zhang S, Genov DA, Wang Y, Liu M, Zhang X. Plasmon-induced transparency in metamaterials. Phys Rev Lett 2008;101:047401. CrossrefPubMedGoogle Scholar

[64]

Papasimakis N, Fedotov VA, Zheludev NI, Prosvirnin SL. Metamaterial analog of electromagnetically induced transparency. Phys Rev Lett 2008;101:253903. CrossrefPubMedGoogle Scholar

[65]

Tassin P, Zhang L, Koschny T, Economou EN, Soukoulis CM. Low-loss metamaterials based on classical electromagnetically induced transparency. Phys Rev Lett 2009;102:053901. CrossrefPubMedGoogle Scholar

[66]

Chiam SY, Singh R, Rockstuhl C, Lederer F, Zhang W, Bettiol AA. Analogue of electromagnetically induced transparency in a terahertz metamaterial. Phys Rev B 2009;80:153103. CrossrefGoogle Scholar

[67]

Rahmani M, Luk’yanchuk B, Hong M. Fano resonance in novel plasmonic nanostructures. Laser Photonics Rev 2013;7:329–49. CrossrefGoogle Scholar

[68]

Vahala KJ. Optical microcavities. Nature 2003;424:839–46. PubMedCrossrefGoogle Scholar

[69]

Braginsky VB, Gorodetsky ML, Ilchenko VS. Quality-factor and nonlinear properties of optical whispering-gallery modes. Phys Lett A 1989;137:393–7. CrossrefGoogle Scholar

[70]

Armani DK, Kippenberg TJ, Spillane SM, Vahala KJ. Ultra-high-Q toroid microcavity on a chip. Nature 2003;421:925–8. PubMedCrossrefGoogle Scholar

[71]

Aoki T, Dayan B, Wilcut E, et al. Observation of strong coupling between one atom and a monolithic microresonator. Nature 2006;443: 671–4. CrossrefGoogle Scholar

[72]

Park YS, Cook AK, Wang H. Cavity QED with diamond nanocrystals and silica microspheres. Nano Lett 2006;6:2075–9. PubMedCrossrefGoogle Scholar

[73]

Ilchenko VS, Savchenkov AA, Matsko AB, Maleki L. Nonlinear optics and crystalline whispering gallery mode cavities. Phys Rev Lett 2004;92:043903. PubMedCrossrefGoogle Scholar

[74]

Sandoghdar V, Treussart F, Hare J, Lefevre-Seguin V, Raimond JM, Haroche S. Very low threshold whispering-gallery-mode microsphere laser. Phys Rev A 1996;54:R1777. PubMedCrossrefGoogle Scholar

[75]

Vollmer F, Braun D, Libchaber A, Khoshsima M, Teraoka I, Arnold S. Protein detection by optical shift of a resonant microcavity. Appl Phys Lett 2002;80:4057. CrossrefGoogle Scholar

[76]

White IM, Oveys H, Fan X. Liquid-core optical ring-resonator sensors. Opt Lett 2006;31:1319–21. CrossrefPubMedGoogle Scholar

[77]

Armani AM, Kulkarni RP, Fraser SE, Flagan RC, Vahala KJ. Label-free, single-molecule detection with optical microcavities. Science 2007;317:783–7. PubMedCrossrefGoogle Scholar

[78]

Vollmer F, Arnold S, Keng D. Single virus detection from the reactive shift of a whispering-gallery mode. Proc Natl Acad Sci USA 2008;105:20701–4. CrossrefGoogle Scholar

[79]

Zhu J, Ozdemir SK, Xiao Y-F, et al. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat Photon 2010;4:46–9. CrossrefGoogle Scholar

[80]

He L, Ozdemir SK, Zhu J, Kim W Yang L. Detecting single viruses and nanoparticles using whispering gallery microlasers. Nature Nanotech 2011;6:428432. Google Scholar

[81]

Li B-B, Clements WR, Yu X-C, Shi K, Gong Q, Xiao Y-F. Single nanoparticle detection using split-mode microcavity Raman lasers. Proc Natl Acad Sci USA 2014;111:1465714662. Google Scholar

[82]

Ozdemir SK, Zhu J, Yang X, et al. Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser. Proc Natl Acad Sci USA 2014;111:E3836E3844. Google Scholar

[83]

Peng B, Özdemir SK, Chen W, Nori F, Yang L. What is and what is not electromagnetically induced transparency in whispering-gallery microcavities. Nat Commun 2014;5:5082. CrossrefPubMedGoogle Scholar

[84]

Sun HC, Liu YX, Hou I, You JQ, Il’Ichev E, Nori F. Electromagnetically induced transparency and autler-townes splitting in superconducting flux quantum circuits. Phys Rev A 2013;89:063822. Google Scholar

[85]

He L, Xiao Y-F, Dong C, Zhu J, Gaddam V, Yang L. Compensation of thermal refraction effect in high-Q toroidal microresonator. Appl Phys Lett 2008;93:201102. CrossrefGoogle Scholar

[86]

Min B, Yang L, Vahala K. Perturbative analytic theory of an ultrahigh-Q toroidal microcavity. Phys Rev A 2007;76:013823. CrossrefGoogle Scholar

[87]

Gardiner CW, Zoller P. Quantum noise. 3rd ed. Berlin: Springer, 2004. Google Scholar

[88]

Aspelmeyer M, Kippenberg TJ, Marquardt F. Cavity optomechanics. Rev Mod Phys 2014;86:1391. CrossrefGoogle Scholar

[89]

Meystre P. A short walk through quantum optomechanics. Ann Phys 2013;525:215–33. CrossrefGoogle Scholar

[90]

Kippenberg TJ, Vahala KJ. Cavity optomechanics: back-action at the mesoscale. Science 2008;321:1172–6. CrossrefPubMedGoogle Scholar

[91]

Hu YW, Xiao YF, Liu YC, Gong QH. Optomechanical sensing with on-chip microcavities. Front Phys 2013;8:475–90. CrossrefGoogle Scholar

[92]

Liu YC, Hu YW, Wong CW, Xiao YF. Review of cavity optomechanical cooling. Chinese Physics B 2013;22:114213. CrossrefGoogle Scholar

[93]

Liu YC, Xiao YF. Macroscopic mechanical systems are entering the quantum world. National Science Review 2015;2:9–10. CrossrefGoogle Scholar

[94]

Gigan S, Böhm HR, Paternostro M, et al. Self-cooling of a micromirror by radiation pressure. Nature 2006;444:67–71. CrossrefPubMedGoogle Scholar

[95]

Arcizet O, Cohadon PF, Briant T, Pinard M, Heidmann A. Radiation-pressure cooling and micromechanical instability of a micromirror. Nature 2006;444:71–5. CrossrefPubMedGoogle Scholar

[96]

Kippenberg TJ, Rokhsari H, Carmon T, Scherer A, Vahala KJ. Radiation-pressure induced parametric instability. Phys Rev Lett 2005;95:033901. PubMedGoogle Scholar

[97]

Tomes M, Carmon T. Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates. Phys Rev Lett 2009;102:113601. PubMedCrossrefGoogle Scholar

[98]

Ma R, Schliesser A, Del’Haye P, Dabirian A, Anetsberger G, Kippenberg TJ. Radiation-pressure-driven vibrational modes in ultrahigh-Q silica microspheres. Opt Lett 2007;32:2200–2. PubMedCrossrefGoogle Scholar

[99]

Jiang X, Lin Q, Rosenberg J, Vahala K, Painter O. High-Q double-disk microcavities for cavity optomechanics. Opt Express 2009;17:20911–9. CrossrefPubMedGoogle Scholar

[100]

Wiederhecker GS, Chen L, Gondarenko A, Lipson M. Controlling photonic structures using optical forces. Nature 2009;462:633–6. CrossrefPubMedGoogle Scholar

[101]

Eichenfield M, Camacho R, Chan J, Vahala KJ, Painter O. A picogram- and nanometre-scale photonic-crystal optomechanical cavity. Nature 2009;459:550–5. PubMedCrossrefGoogle Scholar

[102]

Eichenfield M, Chan J, Camacho RM, Vahala KJ, Painter O. Optomechanical crystals. Nature 2009;462:78–82. CrossrefPubMedGoogle Scholar

[103]

Li Y, Zheng J, Gao J, Shu J, Aras MS, Wong CW. Design of dispersive optomechanical coupling and cooling in ultrahigh-Q/V slot-type photonic crystal cavities. Opt Express 2010;18:23844–56. PubMedCrossrefGoogle Scholar

[104]

Zheng J, Li Y, Aras MS, Stein A, Shepard KL, Wong CW. Parametric optomechanical oscillations in two-dimensional slot-type high-Q photonic crystal cavities. App Phys Lett 2012;100:211908. CrossrefGoogle Scholar

[105]

Thompson JD, Zwickl BM, Jayich AM, Marquardt F, Girvin SM, Harris JGE. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 2008;452:72–5. PubMedCrossrefGoogle Scholar

[106]

Cheung HK, Law CK. Nonadiabatic optomechanical Hamiltonian of a moving dielectric membrane in a cavity. Phys Rev A 2011;84:023812. CrossrefGoogle Scholar

[107]

Bui CH, Zheng J, Hoch SW, Lee LYT, Harris JGE, Wong CW. High-reflectivity, high-Q micromechanical membranes via guided resonances for enhanced optomechanical coupling. App Phys Lett 2012;100:021110. CrossrefGoogle Scholar

[108]

Li HK, Liu YC, Yi X, Zou CL, Ren XX, Xiao YF. Proposal for a near-field optomechanical system with enhanced linear and quadratic coupling. Phys Rev A 2012;85:053832. CrossrefGoogle Scholar

[109]

Anetsberger G, Arcizet O, Unterreithmeier QP, et al. Near-field cavity optomechanics with nanomechanical oscillators. Nat Phys 2009;5:909–14. CrossrefGoogle Scholar

[110]

Li M, Pernice WHP, Xiong C, Baehr-Jones T, Hochberg M, Tang HX. Harnessing optical forces in integrated photonic circuits. Nature 2008;456:480–4. CrossrefPubMedGoogle Scholar

[111]

Favero I, Stapfner S, Hunger D, et al. Fluctuating nanomechanical system in a high finesse optical microcavity. Opt Express 2009;17:12813–20. CrossrefGoogle Scholar

[112]

Zheng J, Sun X, Li Y, et al. Femtogram dispersive L3-nanobeam optomechanical cavities: design and experimental comparison. Opt Express 2012;20:26484–98. Google Scholar

[113]

Hu YW, Li BB, Liu YC, Xiao YF, Gong QH. Hybrid photonic-plasmonic mode for refractometer and nanoparticle trapping. Opt Commun 2013;291:380–5. CrossrefGoogle Scholar

[114]

Chang DE, Regal CA, Papp SB, et al. Cavity opto-mechanics using an optically levitated nanosphere. Proc Natl Acad Sci USA 2010;107:1005–10. CrossrefGoogle Scholar

[115]

Romero-Isart O, Juan ML, Quidant R, Cirac JI. Toward quantum superposition of living organisms. New J Phys 2010;12:033015. CrossrefGoogle Scholar

[116]

Li T, Kheifets S, Raizen MG. Millikelvin cooling of an optically trapped microsphere in vacuum. Nat Phys 2011;7:527–30. CrossrefGoogle Scholar

[117]

Gieseler J, Deutsch B, Quidant R, Novotny L. Subkelvin parametric feedback cooling of a laser trapped nanoparticle. Phys Rev Lett 2012;109:103603. PubMedCrossrefGoogle Scholar

[118]

Pender GAT, Barker PF, Marquardt F, Millen J, Monteiro TS. Optomechanical cooling of levitated spheres with doubly resonant fields. Phys Rev A 2012;85:021802(R). Google Scholar

[119]

Yin ZQ, Li T, Feng M. Three-dimensional cooling and detection of a nanosphere with a single cavity. Phys Rev A 2011;83:013816. CrossrefGoogle Scholar

[120]

Yin ZQ, Li T, Zhang X, et al. Large quantum superpositions of a levitated nanodiamond through spin-optomechanical coupling. Phys Rev A 2013;88:033614. CrossrefGoogle Scholar

[121]

Brennecke F, Ritter S, Donner T, Esslinger T. Cavity optomechanics with a Bose-Einstein condensate. Science 2008;322:235–8. PubMedCrossrefGoogle Scholar

[122]

Murch KW, Moore KL, Gupta S, Stamper-Kurn DM. Observation of quantum-measurement backaction with an ultracold atomic gas. Nat Phys 2008;4:561–4. CrossrefGoogle Scholar

[123]

Zhang K, Meystre P, Zhang W. Role reversal in a Bose-condensed optomechanical system. Phys Rev Lett 2012;108:240405. CrossrefGoogle Scholar

[124]

Regal CA, Teufel JD, Lehnert KW. Measuring nanomechanical motion with a microwave cavity interferometer. Nat Phys 2008;4:555–60. CrossrefGoogle Scholar

[125]

Agarwal GS, Huang S. Electromagnetically induced transparency in mechanical effects of light. Phys Rev A 2010;81:041803(R). Google Scholar

[126]

Chang DE, Safavi-Naeini AH, Hafezi M, Painter O. Slowing and stopping light using an optomechanical crystal array. New J Phys 2011;13:023003. CrossrefGoogle Scholar

[127]

Weis S, Rivière R, Deléglise S, et al. Optomechanically induced transparency. Science 2010;330:1520–3. CrossrefPubMedGoogle Scholar

[128]

Safavi-Naeini AH, Alegre TPM, Chan J, et al. Electromagnetically induced transparency and slow light with optomechanics. Nature 2011;472:69–73. PubMedCrossrefGoogle Scholar

[129]

Teufel JD, Li D, Allman MS, et al. Circuit cavity electromechanics in the strong-coupling regime. Nature 2011;471:204–8. PubMedCrossrefGoogle Scholar

[130]

Karuza M, Biancofiore C, Bawaj M, et al. Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature. Phys Rev A 2013;88:013804. CrossrefGoogle Scholar

[131]

Law CK. Interaction between a moving mirror and radiation pressure: a Hamiltonian formulation. Phys Rev A 1995;51:2537–41. PubMedCrossrefGoogle Scholar

[132]

Massel F, Heikkilä TT, Pirkkalainen JM, et al. Microwave amplification with nanomechanical resonators. Nature 2011;480:351–4. PubMedCrossrefGoogle Scholar

[133]

Hocke F, Zhou X, Schliesser A, Kippenberg TJ, Huebl H, Gross R. Electromechanically induced absorption in a circuit nano-electromechanical system. New J Phys 2012;14:123037. CrossrefGoogle Scholar

[134]

Qu K, Agarwal GS. Phonon-mediated electromagnetically induced absorption in hybrid opto-electromechanical systems. Phys Rev A 2013;87:031802(R). Google Scholar

[135]

Lezama A, Barreiro S, Akulshin A, Electromagnetically induced absorption. Phys Rev A 1999;59:4732. CrossrefGoogle Scholar

[136]

Xiong H, Si LG, Zheng AS, Yang X, Wu Y. Higher-order sidebands in optomechanically induced transparency. Phys Rev A 2012;86:013815. CrossrefGoogle Scholar

[137]

Lemonde MA, Didier N, Clerk AA. Nonlinear interaction effects in a strongly driven optomechanical cavity. Phys Rev Lett 2013;111:053602. CrossrefGoogle Scholar

[138]

Børkje K, Nunnenkamp A, Teufel JD, Girvin SM. Signatures of nonlinear cavity optomechanics in the weak coupling regime. Phys Rev Lett 2013;111:053603. CrossrefPubMedGoogle Scholar

[139]

Liu YC, Xiao YF, Chen YL, Yu XC, Gong QH. Parametric down-conversion and polariton pair generation in optomechanical systems. Phys Rev Lett 2013;111:083601. CrossrefPubMedGoogle Scholar

[140]

Kronwald A, Marquardt F. Optomechanically induced transparency in the nonlinear quantum regime. Phys Rev Lett 2013;111:133601. PubMedCrossrefGoogle Scholar

[141]

Lin Q, Rosenberg J, Chang D, et al. Coherent mixing of mechanical excitations in nano-optomechanical structures. Nat Photonics 2010;4:236–42. CrossrefGoogle Scholar

[142]

Massel F, Cho SU, Pirkkalainen JM, Hakonen PJ, Heikkilä TT, Sillanpää MA. Multimode circuit optomechanics near the quantum limit. Nat Commun 2012;3:987. CrossrefPubMedGoogle Scholar

[143]

Huang S, Agarwal GS. Electromagnetically induced transparency with quantized fields in optocavity mechanics. Phys Rev A 2011;83:043826. CrossrefGoogle Scholar

[144]

Huang S, Agarwal GS. Electromagnetically induced transparency from two-phonon processes in quadratically coupled membranes. Phys Rev A 2011;83:023823. CrossrefGoogle Scholar

[145]

Dong CH, Fiore V, Kuzyk MC, Tian L, Wang H. Optical wavelength conversion via optomechanical coupling in a silica resonator. Annalen der Physik 2015;527:100. CrossrefGoogle Scholar

[146]

Dong CH, Fiore V, Kuzyk MC, Wang H. Transient optomechanically induced transparency in a silica microsphere. Phys Rev A 2013;87:055802. CrossrefGoogle Scholar

[147]

Dong CH, Shen Z, Zou CL, Zhang YL, Fu W, Guo GC. Brillouin scattering induced transparency and non-reciprocal light storage. Nat Commun 2015;6:6193. PubMedCrossrefGoogle Scholar

[148]

Kim JH, Kuzyk MC, Han K, Wang H, Bahl G. Non-reciprocal Brillouin scattering induced transparency. Nature Physics 2015;11:275–80. CrossrefGoogle Scholar

[149]

Ma J, Cai Y, Si LG, Xiong H, Yang XX, Wu Y. Optomechanically induced transparency in the mechanical-mode splitting regime. Opt Lett 2014;39:4180–3. PubMedCrossrefGoogle Scholar

[150]

Yan XB, Jia WZ, Li Y, Wu JH. Optomechanically induced amplification and perfect transparency in double-cavity optomechanics. Front Phys 2015;10:351–7. CrossrefGoogle Scholar

[151]

Jing H, Özdemir SK, Geng Z, et al. Optomechanically-induced transparency in parity-time-symmetric microresonators. Sci Rep 2015;5:9663. PubMedCrossrefGoogle Scholar

[152]

Gu WJ, Li GX. Quantum interference effects on ground-state optomechanical cooling. Phys Rev A 2013;87:025804. CrossrefGoogle Scholar

[153]

Liu YC, Xiao YF, Luan X, Wong CW. Ground state cooling of mechanical motion through coupled cavity interactions in the unresolved sideband regime. CLEO (Optical Society of America) 2013:p.QM2B.2. Google Scholar

[154]

Liu YC, Xiao YF, Luan X, Gong QH, Wong CW. Coupled cavities for motional ground state cooling and strong optomechanical coupling. Phys Rev A 2015;91:033818. CrossrefGoogle Scholar

[155]

Guo YJ, Li K, Nie WJ, Li Y. Electromagnetically-induced-transparency-like ground-state cooling in a double-cavity optomechanical system. Phys Rev A 2014;90:053841. CrossrefGoogle Scholar

[156]

Ojanen T, Børkje K. Ground-state cooling of mechanical motion in the unresolved sideband regime by use of optomechanically induced transparency. Phys Rev A 2014;90:013824. CrossrefGoogle Scholar

[157]

Liu YC, Xiao YF, Luan XS, Gong QH, Wong CW. Optomechanically-induced-transparency cooling of massive mechanical resonators to the quantum ground state. Sci China-Phys Mech Astron 2015;58:050305. Google Scholar

[158]

Liu N, Weiss T, Mesch M, et al. Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett 2010;10:1103. CrossrefPubMedGoogle Scholar

[159]

Intaraprasonk V, Fan S. Enhancing the waveguide- resonator optical force with an all-optical on-chip analog of electromagnetically induced transparency. Phys Rev A 2012;86:063833. CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.