[1]

Moiseyev N. Non-hermitian quantum mechanics. Cambridge, UK, Cambridge University Press, 2011. Google Scholar

[2]

Heiss WD, Sannino AL. Avoided level crossing and exceptional points. J Phys A Math Gen 1990;23:1167–78. CrossrefGoogle Scholar

[3]

Heiss WD. Repulsion of resonance states and exceptional points. Phys Rev E 2000;61:929–32. CrossrefGoogle Scholar

[4]

Heiss WD. Exceptional points of non-Hermitian operators. J Phys A Math Gen 2004;37:2455–64. CrossrefGoogle Scholar

[5]

Berry MV. Physics of nonhermitian degeneracies. Czech J Phys 2004;54:1039–47. CrossrefGoogle Scholar

[6]

Ryu JW, Son WS, Hwang DU, Lee SY, Kim SW. Exceptional points in coupled dissipative dynamical systems. Phys Rev E 2015;91:052910. CrossrefGoogle Scholar

[7]

Kirillov ON. Exceptional and diabolical points in stability questions. Fortschr Phys 2013;61:205–24. CrossrefGoogle Scholar

[8]

Stehmann T, Heiss WD, Scholtz FG. Observation of exceptional points in electronic circuits. J Phys A Math Gen 2004;37:7813–9. CrossrefGoogle Scholar

[9]

Kammerer M, Merz F, Jenko F. Exceptional points in linear gyrokinetics. Phys Plasmas 2016;15:052102. Google Scholar

[10]

Heiss WD. The physics of exceptional points. J Phys A 2012;45:444016. CrossrefGoogle Scholar

[11]

Bender CM, Boettcher S. Real spectra in non-Hermitian Hamiltonians having *PT*-symmetry. Phys Rev Lett 1998;80:5243. CrossrefGoogle Scholar

[12]

Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H, Christodoulides DN. Unidirectional invisibility induced by *PT*-symmetric periodic structures. Phys Rev Lett 2011;106:213901. CrossrefPubMedGoogle Scholar

[13]

Regensburger A, Bersch C, Miri MA, Onishchukov G, Christodoulides DN, Peschel U. Parity-time synthetic photonic lattices. Nature 2012;488:167–71. CrossrefPubMedGoogle Scholar

[14]

Makris KG, EI-Ganainy R, Christodoulides DN, Musslimani ZH. Beam dynamics in *PT* symmetric optical lattices. Phys Rev Lett 2008;100:103904. PubMedCrossrefGoogle Scholar

[15]

Cerjan A, Raman A, Fan S. Exceptional contours and band structure design in parity-time symmetric photonic crystals. Phys Rev Lett 2016;116:203902. CrossrefPubMedGoogle Scholar

[16]

Musslimani ZH, Makris KG, El-Ganainy R, Christodoulides DN. Optical solitons in *PT* periodic potentials. Phys Rev Lett 2008;100:030402. PubMedCrossrefGoogle Scholar

[17]

Ruter CE, Makris KG, El-Ganainy R, Christodoulides DN, Segev M, Kip D. Observation of parity-time symmetry in optics. Nat Phys 2010;6:192–5. CrossrefGoogle Scholar

[18]

Guo A, Salamo JG, Duchesne D, et al. Observation of *PT*-symmetry breaking in complex optical potentials. Phys Rev Lett 2009;103:093902. CrossrefPubMedGoogle Scholar

[19]

Chang L, Jiang X, Hua S, et al. Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators. Nat Photon 2014;8:524–9. CrossrefGoogle Scholar

[20]

Zhou X, Chong YD. *PT* symmetry breaking and nonlinear optical isolation in coupled microcavities. Opt Express 2016;24:6919–30. Google Scholar

[21]

Longhi S. *PT*-symmetric laser absorber. Phys Rev A 2010;82:031801. CrossrefGoogle Scholar

[22]

Chong YD, Ge L, Stone AD. *PT*-symmetry breaking and laser-absorber modes in optical scattering systems. Phys Rev Lett 2011;106:093902. PubMedCrossrefGoogle Scholar

[23]

Sun Y, Tan W, Li H, Li J, Chen H. Experimental demonstration of a coherent perfect absorber with *PT* phase transition. Phys Rev Lett 2014;112:143903. PubMedCrossrefGoogle Scholar

[24]

Radi Y, Sounas DL, Alu A, Tretyakov SA. Parity-time-symmetric teleportation. Phys Rev B 2016;93:235427. CrossrefGoogle Scholar

[25]

Lupu A, Benisty H, Degiron A. Switching using *PT*-symmetry in plasmonic systems: positive role of the losses. Opt Express 2013;21:21651–68. CrossrefPubMedGoogle Scholar

[26]

Savoia S, Castaldi G, Galdi V. Tunneling of obliquely incident waves through *PT*-symmetric epsilon-near-zero bilayers. Phys Rev B 2014;89:085105. CrossrefGoogle Scholar

[27]

Vysloukh VA, Kartashov YV. Resonant mode conversion in the waveguides with unbroken and broken *PT*-symmetry. Opt Lett 2014;39:5933–6. CrossrefPubMedGoogle Scholar

[28]

Feng S. Loss-induced super scattering and gain-induced absorption. Opt Express 2016;24:1291–304. PubMedCrossrefGoogle Scholar

[29]

Dmitriev SV, Sukhorukov AA, Kivshar YS. Binary parity-time symmetric nonlinear lattices with balanced gain and loss. Opt Lett 2010;35:2976–8. CrossrefPubMedGoogle Scholar

[30]

Miroshnichenko AE, Malomed BA, Kivshar YS. Nonlinearly *PT*-symmetric systems: spontaneous symmetry breaking and transmission resonances. Phys Rev A 2011;84:012123. CrossrefGoogle Scholar

[31]

Lazarides N, Tsironis GP. Gain-driven discrete breathers in *PT*-symmetric nonlinear metamaterials. Phys Rev Lett 2013;110:053901. PubMedCrossrefGoogle Scholar

[32]

Mostafazadeh A. Spectral singularities of complex scattering potentials and infinite reflection and transmission coefficients at real energies. Phys Rev Lett 2009;102:220402. CrossrefPubMedGoogle Scholar

[33]

Fan S, Baets R, Petrov A, et al. Comment on “Nonreciprocal light propagation in a silicon photonic circuit”. Science 2012;335:38. Google Scholar

[34]

Yin X, Zhang X. Unidirectional light propagation at exceptional points. Nat Mater 2013;12:175–7. PubMedCrossrefGoogle Scholar

[35]

Cannata F, Dedonder JP, Ventura A. Scattering in *PT*-symmetric quantum mechanics. Ann Phys 2007;322:397–433. CrossrefGoogle Scholar

[36]

Choi Y, Kang S, Lim S, et al. Quasieigenstate coalescence in an atom-cavity quantum composite. Phys Rev Lett 2010;104:153601. CrossrefGoogle Scholar

[37]

Cartarius H, Main J, Wunner G. Exceptional points in atomic spectra. Phys Rev Lett 2007;99:173003. PubMedCrossrefGoogle Scholar

[38]

Ge L, Chong YD, Stone AD. Conservation relations and anisotropic transmission resonances in one-dimensional *PT*-symmetric photonic heterostructures. Phys Rev A 2012;85:023802. CrossrefGoogle Scholar

[39]

Longhi S. Invisibility in *PT*-symmetric complex crystals. J Phys A Math Theor 2011;44:485302. CrossrefGoogle Scholar

[40]

Jackson JD. Classical electrodynamics. New York, Wiley, 2007. Google Scholar

[41]

Sarisaman M. Unidirectional reflectionlessness and invisibility in the TE and TM modes of a *PT*-symmetric slab system. Phys Rev A 2017;95:013806. CrossrefGoogle Scholar

[42]

Kalish S, Lin Z, Kottos T. Light transport in random media with *PT* symmetry. Phys Rev A 2012;85:055802. CrossrefGoogle Scholar

[43]

Midya B. Supersymmetry-generated one-way-invisible *PT*-symmetric optical crystals. Phys Rev A 2012;89:032116. Google Scholar

[44]

Fu Y, Xu Y, Chen H. Zero index metamaterials with *PT* symmetry in a waveguide system. Opt Express 2016;24:1648–57. CrossrefGoogle Scholar

[45]

Rivolta NXA, Maes B. Side-coupled resonators with parity-time symmetry for broadband unidirectional invisibility. Phys Rev A 2016;94:053854. CrossrefGoogle Scholar

[46]

Fleury R, Sounas DL, Alu A. Negative refraction and planar focusing based on parity-time symmetric metasurfaces. Phys Rev Lett 2014;113:023903. CrossrefPubMedGoogle Scholar

[47]

Hahn C, Choi Y, Yoon JW, Song SH, Oh CH, Berini P. Observation of exceptional points in reconfigurable non-Hermitian vector-field holographic lattices. Nat Commun 2016;7:12201. PubMedCrossrefGoogle Scholar

[48]

Yang F, Mei Z. Guiding SPPs with *PT*-symmetry. Sci Rep 2015;5:14981. CrossrefPubMedGoogle Scholar

[49]

Ritchie RH. Plasma losses by fast electrons in thin films. Phys Rev 1957;106:874. CrossrefGoogle Scholar

[50]

Schuller JA, Barnard ES, Cai WS, Jun YC, White JS, Brongersma ML. Plasmonics for extreme light concentration and manipulation. Nat Mater 2010;9:193–204. PubMedCrossrefGoogle Scholar

[51]

Hecht B, Bielefeldt H, Novotny L, Inouye Y, Pohl DW. Local excitation, scattering, and interference of surface plasmons. Phys Rev Lett 1996;77:1889. CrossrefPubMedGoogle Scholar

[52]

Pendry J. Playing tricks with light. Science 1999;285:1687–8. CrossrefGoogle Scholar

[53]

Soukoulis CM, Koschny T, Tassin P, Shen N, Dastmalchi B. What is a good conductor for metamaterials or plasmonics. Nanophotonics 2015;4:69–74. Google Scholar

[54]

Atwater HA, Polman A. Plasmonics for improved photovoltaic devices. Nat Mater 2010;9:205–13. CrossrefPubMedGoogle Scholar

[55]

Liu Z, Mu H, Xiao S, et al. Pulsed lasers employing solution-processed plasmonic Cu3-xP colloidal nanocrystals. Adv Mater 2016;28:3535–42. CrossrefPubMedGoogle Scholar

[56]

Ye C, Liu K, Soref RA, Sorger VJ. A compact plasmonic MOS-based 2×2 electro-optic switch. Nanophotonics 2015;4:261–8. Google Scholar

[57]

Li J, Liang S, Xiao S, et al. Four-wave mixing signal enhancement and optical bistability of a hybrid metal nanoparticle-quantum dot molecule in a nanomechanical resonator. Opt Express 2016;24:2360–9. CrossrefGoogle Scholar

[58]

Yang Z, Antosiewicz TJ, Shegai T. Role of material loss and mode volume of plasmonic nanocavities for strong plasmon-exciton interactions. Opt Express 2016;24:20373–81. PubMedCrossrefGoogle Scholar

[59]

Chen K, Leong ESP, Rukavina M, Nagao T, Liu Y, Zheng Y. Active molecular plasmonics: tuning surface plasmon resonances by exploiting molecular dimensions. Nanophotonics 2015;4:186–97. Google Scholar

[60]

Zhu X, Feng L, Zhang P, Yin X, Zhang X. One-way invisible cloak using parity-time symmetric transformation optics. Opt Lett 2013;38:2821–4. PubMedCrossrefGoogle Scholar

[61]

Ramezani H, Li H, Wang Y, Zhang X. Unidirectional spectral singularities. Phys Rev Lett 2014;113:263905. PubMedCrossrefGoogle Scholar

[62]

Jin L, Zhang XZ, Zhang G, Song Z. Reciprocal and unidirectional scattering of parity-time symmetric structures. Sci Rep 2016;6:20976. PubMedCrossrefGoogle Scholar

[63]

Feng L, Wong ZJ, Ma R, Wang Y, Zhang X. Single-mode laser by parity-time symmetry breaking. Science 2014;346:972–5. CrossrefPubMedGoogle Scholar

[64]

Wong ZJ, Xu Y, Kim J, et al. Lasing and anti-lasing in a single cavity. Nat Photon 2016;10:796–801. CrossrefGoogle Scholar

[65]

Kim KH, Hwang MS, Kim HR, Choi JH, No YS, Park HG. Direct observation of exceptional points in coupled photonic-crystal lasers with asymmetric optical gains. Nat Commun 2016;7:13893. CrossrefPubMedGoogle Scholar

[66]

Hodaei H, Miri MA, Heinrich M, Christodoulides DN, Khajavikhan M. Parity-time-symmetric microring lasers. Science 2014;346:975–8. CrossrefPubMedGoogle Scholar

[67]

Hodaei H, Miri MA, Hassan AU, et al. Single mode lasing in transversely multi-moded *PT*-symmetric microring resonators. Laser Photon Rev 2016;10:494–9. CrossrefGoogle Scholar

[68]

Feng L, Xu Y, Fegadolli WS, et al. Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. Nat Mater 2013;12:108–13. PubMedCrossrefGoogle Scholar

[69]

Zhao H, William SF, Yu J, et al. Metawaveguide for asymmetric interferometric light-light switching. Phys Rev Lett 2016;117:193901. CrossrefPubMedGoogle Scholar

[70]

Zhang J, MacDonald KF, Zheludev NI. Controlling light-with-light without nonlinearity. Light Sci Appl 2012;1:e18. CrossrefGoogle Scholar

[71]

Fang X, MacDonald KF, Zheludev NI. Controlling light with light using coherent metadevices: all-optical transistor, summator and invertor. Light Sci Appl 2015;1:e292. Google Scholar

[72]

Lan S, Kang L, Schoen DT, et al. Backward phase-matching for nonlinear optical generation in negative-index materials. Nat Mater 2015;14:807–12. CrossrefPubMedGoogle Scholar

[73]

Volz T, Reinhard A, Winger M, et al. Ultrafast all-optical switching by single photons. Nat Photon 2012;6:605–9. CrossrefGoogle Scholar

[74]

Englund D, Majumdar A, Bajcsy M, Faraon A, Petroff P, Vuckovic J. Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system. Phys Rev Lett 2012;108:093604. CrossrefGoogle Scholar

[75]

Jia Y, Yan Y, Kesava SV, Gomez ED, Giebink NC. Passive parity-time symmetry in organic thin film waveguides. ACS Photo 2015;2:319–25. CrossrefGoogle Scholar

[76]

Rosenblatt D, Sharon A, Friesem AA. Resonant grating waveguide structures. IEEE J Quantum Electron 1997;33: 2038–59. CrossrefGoogle Scholar

[77]

Yan Y, Giebink NC. Passive *PT* symmetry in organic composite films via complex refractive index modulation. Adv Opt Mater 2014;2:423–7. CrossrefGoogle Scholar

[78]

Zhu X, Xu Y, Zou Y, et al. Asymmetric diffraction based on a passive parity-time grating. Appl Phys Lett 2016;109:111101. CrossrefGoogle Scholar

[79]

Dai D, Shi Y, He S, Wosinski L, Thylen L. Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium. Opt Express 2011;19:12925–36. CrossrefGoogle Scholar

[80]

Yu Z, Veronis G, Fan S. Gain-induced switching in metal-dielectric-metal plasmonic waveguides. Appl Phys Lett 2008;92:041117. CrossrefGoogle Scholar

[81]

García-Blanco SM, Pollnau M, Bozhevolnyi SI. Loss compensation in long-range dielectric-loaded surface plasmon-polariton waveguides. Opt Express 2011;19:25298–311. CrossrefPubMedGoogle Scholar

[82]

Berini P, Leon ID. Surface plasmon-polariton amplifiers and lasers. Nat Photon 2011;6:16–24. Google Scholar

[83]

Li D, Feng J, Pacifici D. Higher-order surface plasmon contributions to passive and active plasmonic interferometry. Opt Express 2016;24:27309–18. CrossrefPubMedGoogle Scholar

[84]

Hahn C, Song SH, Oh CH, Berini P. Single-mode lasers and parity-time symmetry broken gratings based on active dielectric-loaded long-range surface plasmon polariton waveguides. Opt Express 2015;23:19922–31. CrossrefPubMedGoogle Scholar

[85]

Kulishov M, Kress B, Slavík R. Resonant cavities based on parity-time-symmetric diffractive gratings. Opt Express 2013;21:9473–83. CrossrefPubMedGoogle Scholar

[86]

Castaldi G, Savoia S, Galdi V, Alu A, Engheta N. *PT* metamaterials via complex-coordinate transformation optics. Phys Rev Lett 2013;110:173901. PubMedCrossrefGoogle Scholar

[87]

Gear J, Liu F, Chu ST, Rotter S, Li J. Parity-time symmetry from stacking purely dielectric and magnetic slabs. Phys Rev A 2015;91:033825. CrossrefGoogle Scholar

[88]

Mejıa-Cortes C, Molina MI. Interplay of disorder and *PT* symmetry in one-dimensional optical lattices. Phys Rev A 2015;113:033815. Google Scholar

[89]

Ding K, Zhang Q, Chan CT. Coalescence of exceptional points and phase diagrams for one-dimensional *PT*-symmetric photonic crystals. Phys Rev A 2015;92:235310. Google Scholar

[90]

Ge L, Tureci HE. Antisymmetric *PT*-photonic structures with balanced positive- and negative-index materials. Phys Rev A 2013;88:053810. CrossrefGoogle Scholar

[91]

Wu J, Artoni M, La Rocca GC. Non-Hermitian degeneracies and unidirectional reflectionless atomic lattices. Phys Rev Lett 2014;113:123004. PubMedCrossrefGoogle Scholar

[92]

Wu J, Artoni M, La Rocca GC. Parity-time-antisymmetric atomic lattices without gain. Phys Rev A 2015;91:033811. CrossrefGoogle Scholar

[93]

Szameit A, Rechtsman MC, Bahat-Treidel O, Segev M. *PT*-symmetry in honeycomb photonic lattice. Phys Rev A 2011;84:021806(R). CrossrefGoogle Scholar

[94]

Ramezani H, Kottos T, Kovanis V, Christodoulides DN. Exceptional-point dynamics in photonic honeycomb lattices with *PT* symmetry. Phys Rev A 2012;85:013818. CrossrefGoogle Scholar

[95]

Zhen B, Hsu CW, Igarashi Y, et al. Spawning rings of exceptional points out of Dirac cones. Nature 2015;525:354–8. CrossrefPubMedGoogle Scholar

[96]

Lin Z, Pick A, Loncar M, Rodriguez AW. Enhanced spontaneous emission at third-order Dirac exceptional points in inverse-designed photonic crystals. Phys Rev Lett 2016;117:117402. Google Scholar

[97]

Turduev M, Botey M, Giden I, et al. Two-dimensional complex parity-time-symmetric photonic structures. Phys Rev A 2015;91:203825. Google Scholar

[98]

Mock A. Parity-time-symmetry breaking in two-dimensional photonic crystals: square lattice. Phys Rev A 2016;93: 063812. CrossrefGoogle Scholar

[99]

Mostafazadeh A. Invisibility and *PT* symmetry. Phys Rev A 2013;87:012103. CrossrefGoogle Scholar

[100]

Horsley SAR, Artoni M, La Rocca GC. Spatial Kramers-Kronig relations and the reflection of waves. Nat Photon 2015;9: 436–9. CrossrefGoogle Scholar

[101]

Lucarini V, Bassani F, Peiponen KE, Saarinen JJ. Dispersion theory and sum rules in linear and nonlinear optics. Riv Nuovo Cimento 2003;26:1–120. Google Scholar

[102]

Feng L, Zhu X, Yang S, et al. Demonstration of a large-scale optical exceptional point structure. Opt Express 2014;22:1760–7. CrossrefPubMedGoogle Scholar

[103]

Yariv A, Yeh P. Photonics: optical electronics in modern communications. New York, Oxford University Press, 2007. Google Scholar

[104]

Shen Y, Deng X, Chen L. Unidirectional invisibility in a two-layer non-*PT*-symmetric slab. Opt Express 2014;22:19440–7. CrossrefGoogle Scholar

[105]

Ge L, Feng L. Optical-reciprocity-induced symmetry in photonic heterostructures and its manifestation in scattering *PT*-symmetry breaking. Phys Rev A 2016;94:043836. CrossrefGoogle Scholar

[106]

Kang M, Cui H, Li T, Chen J, Zhu W, Premaratne M. Unidirectional phase singularity in ultrathin metamaterials at exceptional points. Phys Rev A 2014;89:065801. CrossrefGoogle Scholar

[107]

Huang Y, Veronis G, Min C. Unidirectional reflectionless propagation in plasmonic waveguide-cavity systems at exceptional points. Opt Express 2015;23:29882–95. CrossrefPubMedGoogle Scholar

[108]

Nath J, Modak S, Rezadad I, et al. Far-infrared absorber based on standing-wave resonances in metal-dielectric-metal cavity. Opt Express 2015;23:20366–80. PubMedCrossrefGoogle Scholar

[109]

Cao G, Li H, Deng Y, Zhan S, He Z, Li B. Plasmon-induced transparency in a single multimode stub resonator. Opt Express 2014;22:25215–23. CrossrefGoogle Scholar

[110]

Huang Y, Min C, Dastmalchi P, Veronis G. Slow-light enhanced subwavelength plasmonic waveguide refractive index sensors. Opt Express 2015;23:14922–36. CrossrefPubMedGoogle Scholar

[111]

Zhan S, Li H, He Z, Li B, Chen Z, Xu H. Sensing analysis based on plasmon induced transparency in nanocavity-coupled waveguide. Opt Express 2015;23:20313–20. PubMedCrossrefGoogle Scholar

[112]

Blanchard-Dionne A, Meunier M. Optical transmission theory for metal-insulator-metal periodic nanostructures. Nanophotonics 2017;6:349–55. Google Scholar

[113]

Shin W, Fan S. Unified picture of modal loss rates from microwave to optical frequencies in deep-subwavelength metallic structures: a case study with slot waveguides. Appl Phys Lett 2015;107:171102. CrossrefGoogle Scholar

[114]

Hu B, Zhang Y, Wang Q. Surface magneto plasmons and their applications in the infrared frequencies. Nanophotonics 2015;4:383–96. Google Scholar

[115]

Neutens P, Dorpe V, De Vlaminck I, Lagae L, Borghs G. Electrical detection of confined gap plasmons in metal-insulator-metal waveguides. Nat Photon 2009;3:283–6. CrossrefGoogle Scholar

[116]

Huang Y, Min C, Tao S, Veronis G. Design of compact Mach-Zehnder interferometer based slow light enhanced plasmonic waveguide sensors. J Lightw Technol 2016;34:2796–803. CrossrefGoogle Scholar

[117]

Economou EN. Surface plasmons in thin films. Phys Rev 1969;182:539–54. CrossrefGoogle Scholar

[118]

Salamin Y, Heni W, Haffner C, et al. Direct conversion of free space millimeter waves to optical domain by plasmonic modulator antenna. Nano Lett 2015;15:8342–6. CrossrefPubMedGoogle Scholar

[119]

Yang X, Hu X, Yang H, Gong Q. Ultracompact all-optical logic gates based on nonlinear plasmonic nanocavities. Nanophotonics 2017;6:365–76. Google Scholar

[120]

Huang Y, Veronis G. Compact slit-based couplers for metal-dielectric-metal plasmonic waveguides. Opt Express 2012;20:22233–44. PubMedCrossrefGoogle Scholar

[121]

Kocabas SE, Veronis G, Miller DAB, Fan S. Transmission line and equivalent circuit models for plasmonic waveguide components. IEEE J Sel Top Quantum Electron 2008;14: 1462–72. CrossrefGoogle Scholar

[122]

Huang Y, Min C, Veronis G. Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparency. Appl Phys Lett 2011;99:143117. CrossrefGoogle Scholar

[123]

Kekatpure RD, Barnard ES, Cai W, Brongersma ML. Phase coupled plasmon induced transparency. Phys Rev Lett 2010;104:243902. CrossrefPubMedGoogle Scholar

[124]

Shin W, Cai W, Catrysse PB, Veronis G, Brongersma ML, Fan S. Broadband sharp 90-degree bends and T-splitters in plasmonic coaxial waveguides. Nano Lett 2013;13:4753–8. CrossrefPubMedGoogle Scholar

[125]

Mahigir A, Dastmalchi P, Shin W, Fan S, Veronis G. Plasmonic coaxial waveguide-cavity devices. Opt Express 2015;23:20549–62. CrossrefPubMedGoogle Scholar

[126]

Yang E, Lu Y, Wang Y, Dai Y, Wang P. Unidirectional reflectionless phenomenon in periodic ternary layered material. Opt Express 2016;24:14311–21. CrossrefPubMedGoogle Scholar

[127]

Huang Y, Min C, Veronis G. Broadband near total light absorption in non-*PT*-symmetric waveguide-cavity systems. Opt Express 2016;24:22219–31. PubMedCrossrefGoogle Scholar

[128]

Wang K, Yu Z, Sandhu S, Fan S. Fundamental bounds on decay rates in asymmetric single-mode optical resonators. Opt Lett 2013;38:100–2. PubMedCrossrefGoogle Scholar

[129]

Manolatou C, Khan MJ, Fan S, Villeneuve PR, Haus HA, Joannopoulos JD. Coupling of modes analysis of resonant channel add-drop filters. IEEE J Sel Top Quantum Electron 1999;35:1322–31. CrossrefGoogle Scholar

[130]

Ramezani H, Wang Y, Yablonovitch E, Zhang X. Unidirectional perfect absorber. IEEE J Sel Top Quantum Electron 2016;22:5000706. Google Scholar

[131]

Xia F, Sekaric L, Vlasov Y. Ultracompact optical buffers on a silicon chip. Nat Photon 2007;1:65–71. CrossrefGoogle Scholar

[132]

Notomi M, Kuramochi E, Tanabe T. Large-scale arrays of ultrahigh-Q coupled nanocavities. Nat Photon 2008;2:741–7. CrossrefGoogle Scholar

[133]

Peng B, Ozdemir SK, Liertzer M, et al. Chiral modes and directional lasing at exceptional points. Proc Natl Acad Sci U S A 2016;113:6845–50. CrossrefPubMedGoogle Scholar

[134]

Peng B, Ozdemir SK, Lei F, et al. Parity-time-symmetric whispering gallery microcavities. Nat Phys 2014;10:394–8. CrossrefGoogle Scholar

[135]

Wiersig J. Structure of whispering-gallery modes in optical microdisks perturbed by nanoparticles. Phys Rev A 2011;84:063828. CrossrefGoogle Scholar

[136]

Dembowski C, Dietz B, Graf HD, et al. Observation of a chiral state in a microwave cavity. Phys Rev Lett 2003;90:034101. CrossrefGoogle Scholar

[137]

Heiss WD, Harney HL. The chirality of exceptional points. Eur Phys J D 2001;17:149–51. CrossrefGoogle Scholar

[138]

Shen Y, Bradford M, Shen JT. Single-photon diode by exploiting the photon polarization in a waveguide. Phys Rev Lett 2011;107:173902. CrossrefGoogle Scholar

[139]

Alaeian H, Dionne JA. Non-Hermitian nanophotonic and plasmonic waveguides. Phys Rev B 2014;89:075136. CrossrefGoogle Scholar

[140]

Fleury R, Sounas D, Alu A. An invisible acoustic sensor based on parity-time symmetry. Nat Commun 2015;6:5905. PubMedCrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.