[1]

Moiseyev N. Non-hermitian quantum mechanics. Cambridge, UK, Cambridge University Press, 2011. Google Scholar

[2]

Heiss WD, Sannino AL. Avoided level crossing and exceptional points. J Phys A Math Gen 1990;23:1167–78. CrossrefGoogle Scholar

[3]

Heiss WD. Repulsion of resonance states and exceptional points. Phys Rev E 2000;61:929–32. CrossrefGoogle Scholar

[4]

Heiss WD. Exceptional points of non-Hermitian operators. J Phys A Math Gen 2004;37:2455–64. CrossrefGoogle Scholar

[5]

Berry MV. Physics of nonhermitian degeneracies. Czech J Phys 2004;54:1039–47. CrossrefGoogle Scholar

[6]

Ryu JW, Son WS, Hwang DU, Lee SY, Kim SW. Exceptional points in coupled dissipative dynamical systems. Phys Rev E 2015;91:052910. CrossrefGoogle Scholar

[7]

Kirillov ON. Exceptional and diabolical points in stability questions. Fortschr Phys 2013;61:205–24. CrossrefGoogle Scholar

[8]

Stehmann T, Heiss WD, Scholtz FG. Observation of exceptional points in electronic circuits. J Phys A Math Gen 2004;37:7813–9. CrossrefGoogle Scholar

[9]

Kammerer M, Merz F, Jenko F. Exceptional points in linear gyrokinetics. Phys Plasmas 2016;15:052102. Google Scholar

[10]

Heiss WD. The physics of exceptional points. J Phys A 2012;45:444016. CrossrefGoogle Scholar

[11]

Bender CM, Boettcher S. Real spectra in non-Hermitian Hamiltonians having *PT*-symmetry. Phys Rev Lett 1998;80:5243. CrossrefGoogle Scholar

[12]

Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H, Christodoulides DN. Unidirectional invisibility induced by *PT*-symmetric periodic structures. Phys Rev Lett 2011;106:213901. CrossrefPubMedGoogle Scholar

[13]

Regensburger A, Bersch C, Miri MA, Onishchukov G, Christodoulides DN, Peschel U. Parity-time synthetic photonic lattices. Nature 2012;488:167–71. CrossrefPubMedGoogle Scholar

[14]

Makris KG, EI-Ganainy R, Christodoulides DN, Musslimani ZH. Beam dynamics in *PT* symmetric optical lattices. Phys Rev Lett 2008;100:103904. PubMedCrossrefGoogle Scholar

[15]

Cerjan A, Raman A, Fan S. Exceptional contours and band structure design in parity-time symmetric photonic crystals. Phys Rev Lett 2016;116:203902. CrossrefPubMedGoogle Scholar

[16]

Musslimani ZH, Makris KG, El-Ganainy R, Christodoulides DN. Optical solitons in *PT* periodic potentials. Phys Rev Lett 2008;100:030402. PubMedCrossrefGoogle Scholar

[17]

Ruter CE, Makris KG, El-Ganainy R, Christodoulides DN, Segev M, Kip D. Observation of parity-time symmetry in optics. Nat Phys 2010;6:192–5. CrossrefGoogle Scholar

[18]

Guo A, Salamo JG, Duchesne D, et al. Observation of *PT*-symmetry breaking in complex optical potentials. Phys Rev Lett 2009;103:093902. CrossrefPubMedGoogle Scholar

[19]

Chang L, Jiang X, Hua S, et al. Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators. Nat Photon 2014;8:524–9. CrossrefGoogle Scholar

[20]

Zhou X, Chong YD. *PT* symmetry breaking and nonlinear optical isolation in coupled microcavities. Opt Express 2016;24:6919–30. Google Scholar

[21]

Longhi S. *PT*-symmetric laser absorber. Phys Rev A 2010;82:031801. CrossrefGoogle Scholar

[22]

Chong YD, Ge L, Stone AD. *PT*-symmetry breaking and laser-absorber modes in optical scattering systems. Phys Rev Lett 2011;106:093902. PubMedCrossrefGoogle Scholar

[23]

Sun Y, Tan W, Li H, Li J, Chen H. Experimental demonstration of a coherent perfect absorber with *PT* phase transition. Phys Rev Lett 2014;112:143903. PubMedCrossrefGoogle Scholar

[24]

Radi Y, Sounas DL, Alu A, Tretyakov SA. Parity-time-symmetric teleportation. Phys Rev B 2016;93:235427. CrossrefGoogle Scholar

[25]

Lupu A, Benisty H, Degiron A. Switching using *PT*-symmetry in plasmonic systems: positive role of the losses. Opt Express 2013;21:21651–68. CrossrefPubMedGoogle Scholar

[26]

Savoia S, Castaldi G, Galdi V. Tunneling of obliquely incident waves through *PT*-symmetric epsilon-near-zero bilayers. Phys Rev B 2014;89:085105. CrossrefGoogle Scholar

[27]

Vysloukh VA, Kartashov YV. Resonant mode conversion in the waveguides with unbroken and broken *PT*-symmetry. Opt Lett 2014;39:5933–6. CrossrefPubMedGoogle Scholar

[28]

Feng S. Loss-induced super scattering and gain-induced absorption. Opt Express 2016;24:1291–304. PubMedCrossrefGoogle Scholar

[29]

Dmitriev SV, Sukhorukov AA, Kivshar YS. Binary parity-time symmetric nonlinear lattices with balanced gain and loss. Opt Lett 2010;35:2976–8. CrossrefPubMedGoogle Scholar

[30]

Miroshnichenko AE, Malomed BA, Kivshar YS. Nonlinearly *PT*-symmetric systems: spontaneous symmetry breaking and transmission resonances. Phys Rev A 2011;84:012123. CrossrefGoogle Scholar

[31]

Lazarides N, Tsironis GP. Gain-driven discrete breathers in *PT*-symmetric nonlinear metamaterials. Phys Rev Lett 2013;110:053901. PubMedCrossrefGoogle Scholar

[32]

Mostafazadeh A. Spectral singularities of complex scattering potentials and infinite reflection and transmission coefficients at real energies. Phys Rev Lett 2009;102:220402. CrossrefPubMedGoogle Scholar

[33]

Fan S, Baets R, Petrov A, et al. Comment on “Nonreciprocal light propagation in a silicon photonic circuit”. Science 2012;335:38. Google Scholar

[34]

Yin X, Zhang X. Unidirectional light propagation at exceptional points. Nat Mater 2013;12:175–7. PubMedCrossrefGoogle Scholar

[35]

Cannata F, Dedonder JP, Ventura A. Scattering in *PT*-symmetric quantum mechanics. Ann Phys 2007;322:397–433. CrossrefGoogle Scholar

[36]

Choi Y, Kang S, Lim S, et al. Quasieigenstate coalescence in an atom-cavity quantum composite. Phys Rev Lett 2010;104:153601. CrossrefGoogle Scholar

[37]

Cartarius H, Main J, Wunner G. Exceptional points in atomic spectra. Phys Rev Lett 2007;99:173003. PubMedCrossrefGoogle Scholar

[38]

Ge L, Chong YD, Stone AD. Conservation relations and anisotropic transmission resonances in one-dimensional *PT*-symmetric photonic heterostructures. Phys Rev A 2012;85:023802. CrossrefGoogle Scholar

[39]

Longhi S. Invisibility in *PT*-symmetric complex crystals. J Phys A Math Theor 2011;44:485302. CrossrefGoogle Scholar

[40]

Jackson JD. Classical electrodynamics. New York, Wiley, 2007. Google Scholar

[41]

Sarisaman M. Unidirectional reflectionlessness and invisibility in the TE and TM modes of a *PT*-symmetric slab system. Phys Rev A 2017;95:013806. CrossrefGoogle Scholar

[42]

Kalish S, Lin Z, Kottos T. Light transport in random media with *PT* symmetry. Phys Rev A 2012;85:055802. CrossrefGoogle Scholar

[43]

Midya B. Supersymmetry-generated one-way-invisible *PT*-symmetric optical crystals. Phys Rev A 2012;89:032116. Google Scholar

[44]

Fu Y, Xu Y, Chen H. Zero index metamaterials with *PT* symmetry in a waveguide system. Opt Express 2016;24:1648–57. CrossrefGoogle Scholar

[45]

Rivolta NXA, Maes B. Side-coupled resonators with parity-time symmetry for broadband unidirectional invisibility. Phys Rev A 2016;94:053854. CrossrefGoogle Scholar

[46]

Fleury R, Sounas DL, Alu A. Negative refraction and planar focusing based on parity-time symmetric metasurfaces. Phys Rev Lett 2014;113:023903. CrossrefPubMedGoogle Scholar

[47]

Hahn C, Choi Y, Yoon JW, Song SH, Oh CH, Berini P. Observation of exceptional points in reconfigurable non-Hermitian vector-field holographic lattices. Nat Commun 2016;7:12201. PubMedCrossrefGoogle Scholar

[48]

Yang F, Mei Z. Guiding SPPs with *PT*-symmetry. Sci Rep 2015;5:14981. CrossrefPubMedGoogle Scholar

[49]

Ritchie RH. Plasma losses by fast electrons in thin films. Phys Rev 1957;106:874. CrossrefGoogle Scholar

[50]

Schuller JA, Barnard ES, Cai WS, Jun YC, White JS, Brongersma ML. Plasmonics for extreme light concentration and manipulation. Nat Mater 2010;9:193–204. PubMedCrossrefGoogle Scholar

[51]

Hecht B, Bielefeldt H, Novotny L, Inouye Y, Pohl DW. Local excitation, scattering, and interference of surface plasmons. Phys Rev Lett 1996;77:1889. CrossrefPubMedGoogle Scholar

[52]

Pendry J. Playing tricks with light. Science 1999;285:1687–8. CrossrefGoogle Scholar

[53]

Soukoulis CM, Koschny T, Tassin P, Shen N, Dastmalchi B. What is a good conductor for metamaterials or plasmonics. Nanophotonics 2015;4:69–74. Google Scholar

[54]

Atwater HA, Polman A. Plasmonics for improved photovoltaic devices. Nat Mater 2010;9:205–13. CrossrefPubMedGoogle Scholar

[55]

Liu Z, Mu H, Xiao S, et al. Pulsed lasers employing solution-processed plasmonic Cu3-xP colloidal nanocrystals. Adv Mater 2016;28:3535–42. CrossrefPubMedGoogle Scholar

[56]

Ye C, Liu K, Soref RA, Sorger VJ. A compact plasmonic MOS-based 2×2 electro-optic switch. Nanophotonics 2015;4:261–8. Google Scholar

[57]

Li J, Liang S, Xiao S, et al. Four-wave mixing signal enhancement and optical bistability of a hybrid metal nanoparticle-quantum dot molecule in a nanomechanical resonator. Opt Express 2016;24:2360–9. CrossrefGoogle Scholar

[58]

Yang Z, Antosiewicz TJ, Shegai T. Role of material loss and mode volume of plasmonic nanocavities for strong plasmon-exciton interactions. Opt Express 2016;24:20373–81. PubMedCrossrefGoogle Scholar

[59]

Chen K, Leong ESP, Rukavina M, Nagao T, Liu Y, Zheng Y. Active molecular plasmonics: tuning surface plasmon resonances by exploiting molecular dimensions. Nanophotonics 2015;4:186–97. Google Scholar

[60]

Zhu X, Feng L, Zhang P, Yin X, Zhang X. One-way invisible cloak using parity-time symmetric transformation optics. Opt Lett 2013;38:2821–4. PubMedCrossrefGoogle Scholar

[61]

Ramezani H, Li H, Wang Y, Zhang X. Unidirectional spectral singularities. Phys Rev Lett 2014;113:263905. PubMedCrossrefGoogle Scholar

[62]

Jin L, Zhang XZ, Zhang G, Song Z. Reciprocal and unidirectional scattering of parity-time symmetric structures. Sci Rep 2016;6:20976. PubMedCrossrefGoogle Scholar

[63]

Feng L, Wong ZJ, Ma R, Wang Y, Zhang X. Single-mode laser by parity-time symmetry breaking. Science 2014;346:972–5. CrossrefPubMedGoogle Scholar

[64]

Wong ZJ, Xu Y, Kim J, et al. Lasing and anti-lasing in a single cavity. Nat Photon 2016;10:796–801. CrossrefGoogle Scholar

[65]

Kim KH, Hwang MS, Kim HR, Choi JH, No YS, Park HG. Direct observation of exceptional points in coupled photonic-crystal lasers with asymmetric optical gains. Nat Commun 2016;7:13893. CrossrefPubMedGoogle Scholar

[66]

Hodaei H, Miri MA, Heinrich M, Christodoulides DN, Khajavikhan M. Parity-time-symmetric microring lasers. Science 2014;346:975–8. CrossrefPubMedGoogle Scholar

[67]

Hodaei H, Miri MA, Hassan AU, et al. Single mode lasing in transversely multi-moded *PT*-symmetric microring resonators. Laser Photon Rev 2016;10:494–9. CrossrefGoogle Scholar

[68]

Feng L, Xu Y, Fegadolli WS, et al. Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. Nat Mater 2013;12:108–13. PubMedCrossrefGoogle Scholar

[69]

Zhao H, William SF, Yu J, et al. Metawaveguide for asymmetric interferometric light-light switching. Phys Rev Lett 2016;117:193901. CrossrefPubMedGoogle Scholar

[70]

Zhang J, MacDonald KF, Zheludev NI. Controlling light-with-light without nonlinearity. Light Sci Appl 2012;1:e18. CrossrefGoogle Scholar

[71]

Fang X, MacDonald KF, Zheludev NI. Controlling light with light using coherent metadevices: all-optical transistor, summator and invertor. Light Sci Appl 2015;1:e292. Google Scholar

[72]

Lan S, Kang L, Schoen DT, et al. Backward phase-matching for nonlinear optical generation in negative-index materials. Nat Mater 2015;14:807–12. CrossrefPubMedGoogle Scholar

[73]

Volz T, Reinhard A, Winger M, et al. Ultrafast all-optical switching by single photons. Nat Photon 2012;6:605–9. CrossrefGoogle Scholar

[74]

Englund D, Majumdar A, Bajcsy M, Faraon A, Petroff P, Vuckovic J. Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system. Phys Rev Lett 2012;108:093604. CrossrefGoogle Scholar

[75]

Jia Y, Yan Y, Kesava SV, Gomez ED, Giebink NC. Passive parity-time symmetry in organic thin film waveguides. ACS Photo 2015;2:319–25. CrossrefGoogle Scholar

[76]

Rosenblatt D, Sharon A, Friesem AA. Resonant grating waveguide structures. IEEE J Quantum Electron 1997;33: 2038–59. CrossrefGoogle Scholar

[77]

Yan Y, Giebink NC. Passive *PT* symmetry in organic composite films via complex refractive index modulation. Adv Opt Mater 2014;2:423–7. CrossrefGoogle Scholar

[78]

Zhu X, Xu Y, Zou Y, et al. Asymmetric diffraction based on a passive parity-time grating. Appl Phys Lett 2016;109:111101. CrossrefGoogle Scholar

[79]

Dai D, Shi Y, He S, Wosinski L, Thylen L. Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium. Opt Express 2011;19:12925–36. CrossrefGoogle Scholar

[80]

Yu Z, Veronis G, Fan S. Gain-induced switching in metal-dielectric-metal plasmonic waveguides. Appl Phys Lett 2008;92:041117. CrossrefGoogle Scholar

[81]

García-Blanco SM, Pollnau M, Bozhevolnyi SI. Loss compensation in long-range dielectric-loaded surface plasmon-polariton waveguides. Opt Express 2011;19:25298–311. CrossrefPubMedGoogle Scholar

[82]

Berini P, Leon ID. Surface plasmon-polariton amplifiers and lasers. Nat Photon 2011;6:16–24. Google Scholar

[83]

Li D, Feng J, Pacifici D. Higher-order surface plasmon contributions to passive and active plasmonic interferometry. Opt Express 2016;24:27309–18. CrossrefPubMedGoogle Scholar

[84]

Hahn C, Song SH, Oh CH, Berini P. Single-mode lasers and parity-time symmetry broken gratings based on active dielectric-loaded long-range surface plasmon polariton waveguides. Opt Express 2015;23:19922–31. CrossrefPubMedGoogle Scholar

[85]

Kulishov M, Kress B, Slavík R. Resonant cavities based on parity-time-symmetric diffractive gratings. Opt Express 2013;21:9473–83. CrossrefPubMedGoogle Scholar

[86]

Castaldi G, Savoia S, Galdi V, Alu A, Engheta N. *PT* metamaterials via complex-coordinate transformation optics. Phys Rev Lett 2013;110:173901. PubMedCrossrefGoogle Scholar

[87]

Gear J, Liu F, Chu ST, Rotter S, Li J. Parity-time symmetry from stacking purely dielectric and magnetic slabs. Phys Rev A 2015;91:033825. CrossrefGoogle Scholar

[88]

Mejıa-Cortes C, Molina MI. Interplay of disorder and *PT* symmetry in one-dimensional optical lattices. Phys Rev A 2015;113:033815. Google Scholar

[89]

Ding K, Zhang Q, Chan CT. Coalescence of exceptional points and phase diagrams for one-dimensional *PT*-symmetric photonic crystals. Phys Rev A 2015;92:235310. Google Scholar

[90]

Ge L, Tureci HE. Antisymmetric *PT*-photonic structures with balanced positive- and negative-index materials. Phys Rev A 2013;88:053810. CrossrefGoogle Scholar

[91]

Wu J, Artoni M, La Rocca GC. Non-Hermitian degeneracies and unidirectional reflectionless atomic lattices. Phys Rev Lett 2014;113:123004. PubMedCrossrefGoogle Scholar

[92]

Wu J, Artoni M, La Rocca GC. Parity-time-antisymmetric atomic lattices without gain. Phys Rev A 2015;91:033811. CrossrefGoogle Scholar

[93]

Szameit A, Rechtsman MC, Bahat-Treidel O, Segev M. *PT*-symmetry in honeycomb photonic lattice. Phys Rev A 2011;84:021806(R). CrossrefGoogle Scholar

[94]

Ramezani H, Kottos T, Kovanis V, Christodoulides DN. Exceptional-point dynamics in photonic honeycomb lattices with *PT* symmetry. Phys Rev A 2012;85:013818. CrossrefGoogle Scholar

[95]

Zhen B, Hsu CW, Igarashi Y, et al. Spawning rings of exceptional points out of Dirac cones. Nature 2015;525:354–8. CrossrefPubMedGoogle Scholar

[96]

Lin Z, Pick A, Loncar M, Rodriguez AW. Enhanced spontaneous emission at third-order Dirac exceptional points in inverse-designed photonic crystals. Phys Rev Lett 2016;117:117402. Google Scholar

[97]

Turduev M, Botey M, Giden I, et al. Two-dimensional complex parity-time-symmetric photonic structures. Phys Rev A 2015;91:203825. Google Scholar

[98]

Mock A. Parity-time-symmetry breaking in two-dimensional photonic crystals: square lattice. Phys Rev A 2016;93: 063812. CrossrefGoogle Scholar

[99]

Mostafazadeh A. Invisibility and *PT* symmetry. Phys Rev A 2013;87:012103. CrossrefGoogle Scholar

[100]

Horsley SAR, Artoni M, La Rocca GC. Spatial Kramers-Kronig relations and the reflection of waves. Nat Photon 2015;9: 436–9. CrossrefGoogle Scholar

[101]

Lucarini V, Bassani F, Peiponen KE, Saarinen JJ. Dispersion theory and sum rules in linear and nonlinear optics. Riv Nuovo Cimento 2003;26:1–120. Google Scholar

[102]

Feng L, Zhu X, Yang S, et al. Demonstration of a large-scale optical exceptional point structure. Opt Express 2014;22:1760–7. CrossrefPubMedGoogle Scholar

[103]

Yariv A, Yeh P. Photonics: optical electronics in modern communications. New York, Oxford University Press, 2007. Google Scholar

[104]

Shen Y, Deng X, Chen L. Unidirectional invisibility in a two-layer non-*PT*-symmetric slab. Opt Express 2014;22:19440–7. CrossrefGoogle Scholar

[105]

Ge L, Feng L. Optical-reciprocity-induced symmetry in photonic heterostructures and its manifestation in scattering *PT*-symmetry breaking. Phys Rev A 2016;94:043836. CrossrefGoogle Scholar

[106]

Kang M, Cui H, Li T, Chen J, Zhu W, Premaratne M. Unidirectional phase singularity in ultrathin metamaterials at exceptional points. Phys Rev A 2014;89:065801. CrossrefGoogle Scholar

[107]

Huang Y, Veronis G, Min C. Unidirectional reflectionless propagation in plasmonic waveguide-cavity systems at exceptional points. Opt Express 2015;23:29882–95. CrossrefPubMedGoogle Scholar

[108]

Nath J, Modak S, Rezadad I, et al. Far-infrared absorber based on standing-wave resonances in metal-dielectric-metal cavity. Opt Express 2015;23:20366–80. PubMedCrossrefGoogle Scholar

[109]

Cao G, Li H, Deng Y, Zhan S, He Z, Li B. Plasmon-induced transparency in a single multimode stub resonator. Opt Express 2014;22:25215–23. CrossrefGoogle Scholar

[110]

Huang Y, Min C, Dastmalchi P, Veronis G. Slow-light enhanced subwavelength plasmonic waveguide refractive index sensors. Opt Express 2015;23:14922–36. CrossrefPubMedGoogle Scholar

[111]

Zhan S, Li H, He Z, Li B, Chen Z, Xu H. Sensing analysis based on plasmon induced transparency in nanocavity-coupled waveguide. Opt Express 2015;23:20313–20. PubMedCrossrefGoogle Scholar

[112]

Blanchard-Dionne A, Meunier M. Optical transmission theory for metal-insulator-metal periodic nanostructures. Nanophotonics 2017;6:349–55. Google Scholar

[113]

Shin W, Fan S. Unified picture of modal loss rates from microwave to optical frequencies in deep-subwavelength metallic structures: a case study with slot waveguides. Appl Phys Lett 2015;107:171102. CrossrefGoogle Scholar

[114]

Hu B, Zhang Y, Wang Q. Surface magneto plasmons and their applications in the infrared frequencies. Nanophotonics 2015;4:383–96. Google Scholar

[115]

Neutens P, Dorpe V, De Vlaminck I, Lagae L, Borghs G. Electrical detection of confined gap plasmons in metal-insulator-metal waveguides. Nat Photon 2009;3:283–6. CrossrefGoogle Scholar

[116]

Huang Y, Min C, Tao S, Veronis G. Design of compact Mach-Zehnder interferometer based slow light enhanced plasmonic waveguide sensors. J Lightw Technol 2016;34:2796–803. CrossrefGoogle Scholar

[117]

Economou EN. Surface plasmons in thin films. Phys Rev 1969;182:539–54. CrossrefGoogle Scholar

[118]

Salamin Y, Heni W, Haffner C, et al. Direct conversion of free space millimeter waves to optical domain by plasmonic modulator antenna. Nano Lett 2015;15:8342–6. CrossrefPubMedGoogle Scholar

[119]

Yang X, Hu X, Yang H, Gong Q. Ultracompact all-optical logic gates based on nonlinear plasmonic nanocavities. Nanophotonics 2017;6:365–76. Google Scholar

[120]

Huang Y, Veronis G. Compact slit-based couplers for metal-dielectric-metal plasmonic waveguides. Opt Express 2012;20:22233–44. PubMedCrossrefGoogle Scholar

[121]

Kocabas SE, Veronis G, Miller DAB, Fan S. Transmission line and equivalent circuit models for plasmonic waveguide components. IEEE J Sel Top Quantum Electron 2008;14: 1462–72. CrossrefGoogle Scholar

[122]

Huang Y, Min C, Veronis G. Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparency. Appl Phys Lett 2011;99:143117. CrossrefGoogle Scholar

[123]

Kekatpure RD, Barnard ES, Cai W, Brongersma ML. Phase coupled plasmon induced transparency. Phys Rev Lett 2010;104:243902. CrossrefPubMedGoogle Scholar

[124]

Shin W, Cai W, Catrysse PB, Veronis G, Brongersma ML, Fan S. Broadband sharp 90-degree bends and T-splitters in plasmonic coaxial waveguides. Nano Lett 2013;13:4753–8. CrossrefPubMedGoogle Scholar

[125]

Mahigir A, Dastmalchi P, Shin W, Fan S, Veronis G. Plasmonic coaxial waveguide-cavity devices. Opt Express 2015;23:20549–62. CrossrefPubMedGoogle Scholar

[126]

Yang E, Lu Y, Wang Y, Dai Y, Wang P. Unidirectional reflectionless phenomenon in periodic ternary layered material. Opt Express 2016;24:14311–21. CrossrefPubMedGoogle Scholar

[127]

Huang Y, Min C, Veronis G. Broadband near total light absorption in non-*PT*-symmetric waveguide-cavity systems. Opt Express 2016;24:22219–31. PubMedCrossrefGoogle Scholar

[128]

Wang K, Yu Z, Sandhu S, Fan S. Fundamental bounds on decay rates in asymmetric single-mode optical resonators. Opt Lett 2013;38:100–2. PubMedCrossrefGoogle Scholar

[129]

Manolatou C, Khan MJ, Fan S, Villeneuve PR, Haus HA, Joannopoulos JD. Coupling of modes analysis of resonant channel add-drop filters. IEEE J Sel Top Quantum Electron 1999;35:1322–31. CrossrefGoogle Scholar

[130]

Ramezani H, Wang Y, Yablonovitch E, Zhang X. Unidirectional perfect absorber. IEEE J Sel Top Quantum Electron 2016;22:5000706. Google Scholar

[131]

Xia F, Sekaric L, Vlasov Y. Ultracompact optical buffers on a silicon chip. Nat Photon 2007;1:65–71. CrossrefGoogle Scholar

[132]

Notomi M, Kuramochi E, Tanabe T. Large-scale arrays of ultrahigh-Q coupled nanocavities. Nat Photon 2008;2:741–7. CrossrefGoogle Scholar

[133]

Peng B, Ozdemir SK, Liertzer M, et al. Chiral modes and directional lasing at exceptional points. Proc Natl Acad Sci U S A 2016;113:6845–50. CrossrefPubMedGoogle Scholar

[134]

Peng B, Ozdemir SK, Lei F, et al. Parity-time-symmetric whispering gallery microcavities. Nat Phys 2014;10:394–8. CrossrefGoogle Scholar

[135]

Wiersig J. Structure of whispering-gallery modes in optical microdisks perturbed by nanoparticles. Phys Rev A 2011;84:063828. CrossrefGoogle Scholar

[136]

Dembowski C, Dietz B, Graf HD, et al. Observation of a chiral state in a microwave cavity. Phys Rev Lett 2003;90:034101. CrossrefGoogle Scholar

[137]

Heiss WD, Harney HL. The chirality of exceptional points. Eur Phys J D 2001;17:149–51. CrossrefGoogle Scholar

[138]

Shen Y, Bradford M, Shen JT. Single-photon diode by exploiting the photon polarization in a waveguide. Phys Rev Lett 2011;107:173902. CrossrefGoogle Scholar

[139]

Alaeian H, Dionne JA. Non-Hermitian nanophotonic and plasmonic waveguides. Phys Rev B 2014;89:075136. CrossrefGoogle Scholar

[140]

Fleury R, Sounas D, Alu A. An invisible acoustic sensor based on parity-time symmetry. Nat Commun 2015;6:5905. PubMedCrossrefGoogle Scholar

## Kommentare (0)

Allgemeiner Hinweis: Durch die Nutzung der Kommentarfunktion auf degruyter.com erklären Sie sich mit unserer Datenschutzerklärung einverstanden. Wir legen Wert auf einen respektvollen Umgang miteinander. Daher möchten wir Sie gerne auf unsere Hausregeln aufmerksam machen.